1
|
Forsberg F, Ruge T, Larsson A, Wändell P, Carlsson AC, Nilsson PM, Swärd P. Angiotensin converting enzyme 2 in patients with sepsis associate with comorbidities but neither with mortality nor with organ failure. Sci Rep 2025; 15:14198. [PMID: 40268960 PMCID: PMC12019403 DOI: 10.1038/s41598-025-96640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
High levels of circulating angiotensin converting enzyme 2 (ACE2) are associated with several chronic diseases and mortality risk. Less is known about the prognostic value of ACE2 in patients with sepsis. In the present study, we aimed to investigate the association between plasma ACE2 levels on admission to the ED and 28-day mortality, organ failure, and level of care in a prospectively recruited observational study sample. Six hundred patients with sepsis admitted to the emergency in Malmö 2013-2015 were included in the analysis. Uni- and multivariable binary logistic regression was conducted to investigate the association between ACE2 and 28-day mortality, organ failure, and level of care. Plasma ACE2 levels were increased in patients with male sex, high age, and comorbidities, including diabetes, cardiovascular disease, and cancer. Plasma ACE2 levels associated with hospitalization and intermediate care unit stay in univariate but not multivariate analysis. Plasma ACE2 did neither associate with 28-day mortality, OR 1.19 (95% CI 0.86-1.65, p = 0.29), nor with organ failure, OR 1.08 (95% CI 0.73-1.56. p = 0.72). Future studies investigating the dynamics of circulating ACE2 levels in patients with sepsis longitudinally are warranted.
Collapse
Affiliation(s)
- Felix Forsberg
- Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopedics and Clinical Sciences, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.
| | - Toralph Ruge
- Department of Clinical Sciences Malmö & Department of Internal Medicine, Skåne University Hospital, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skånes University Hospital, Malmö, Sweden
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - Per Wändell
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 83, Huddinge, Sweden
| | - Axel C Carlsson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Alfred Nobels Allé 23, 141 83, Huddinge, Sweden
| | - Peter M Nilsson
- Department of Clinical Sciences, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Per Swärd
- Clinical and Molecular Osteoporosis Research Unit, Departments of Orthopedics and Clinical Sciences, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.
| |
Collapse
|
2
|
Amiral J, Ferol R. Update on the measurement of "soluble angiotensin converting enzyme 2" in plasma and its emerging significance as a novel biomarker of cardiovascular and kidney diseases: A concise commentary. Transfus Apher Sci 2025; 64:104090. [PMID: 39923730 DOI: 10.1016/j.transci.2025.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Angiotensin Converting Enzyme 2 has emerged as a major cell-surface enzyme receptor for controlling the Renin-Angiotensin-Aldosterone-System. The SARS-Cov-2 pandemics has focused a major interest on that cell-surface receptor. It is the virus entry door for cell infection, and when inside it can replicate and lead to cell destruction. In some physio-pathological conditions, ADAM 17 and TMPSSR2 enzymes can cleave ACE2 on the cell surface and release its extra-cellular domain into the blood circulation. Measurement of this soluble protein then becomes possible, preferentially in plasma, but also in serum. Clinical studies have shown that Soluble ACE2 is an emerging biomarker for cardiovascular and kidney diseases and it could be of prognostic value for heart failure and kidney dysfunctions. In Covid-19 its diagnostic value is controversial, and the various studies lead to different conclusions. Many laboratory assays have been reported for the measurement of this biomarker. They concern enzymatic assays, aptamer methods, or immunoassays, either chemiluminescent or ELISA. Normal and pathological plasma concentrations reported with the various assays yet lack standardization and are very heterogenous. Recently introduced immunoassays tend to yield more compliant results despite variations due to the assay design and calibration, or the antibody targeted epitopes and reactivity. This article reports an ELISA designed with affinity purified rabbit polyclonal antibodies, obtained with recombinant ACE2 and calibrated with the recombinant protein in plasma. This assay has a global reactivity with the various ACE2 protein epitopes. Assay performance characteristics, and values measured in normal populations are presented. Availability of optimized ELISAs can contribute to a better harmonization of sACE2 measurements in plasma, and confirm its clinical significance as biomarker.
Collapse
Affiliation(s)
- Jean Amiral
- Scientific Hemostasis, Franconville, France.
| | - Rémy Ferol
- Scientific Hemostasis, Franconville, France
| |
Collapse
|
3
|
Wafa SEI, Sawatari H, Ahmed R, Deshpande S, Khan H, Providencia R, Padmanabhan D, Somers VK, Ramphul K, Awad W, Chahal CAA, Khanji MY. CHA 2DS 2-VASc predicts readmission, outcomes and resource utilization in patients undergoing coronary artery bypass grafting: A 7-year National Readmission Database study. Int J Cardiol 2024; 417:132529. [PMID: 39244101 DOI: 10.1016/j.ijcard.2024.132529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND CHA2DS2-VASc score is used to assess thromboembolic risk in patients with atrial fibrillation (AF)/atrial flutter (AFL), however its utilization to predict outcomes and readmission at following discharge in patients undergoing coronary artery bypass grafting (CABG) regardless of AF/AFL presence is understudied. We sought to assess its utility in predicting outcomes, length of hospital stay (LOS), and healthcare-associated costs (HAC) in these patients. METHOD The National Readmission Database (NRD) was queried from 2010 to 2017 for patients with/without AF/AFL undergoing CABG using the International Classification of Diseases, Ninth and Tenth editions (ICD-9-&-10). Multiple regression analysis and multivariate analysis using Cox-Hazard analysis were used to evaluate outcomes up to 90-day readmission from discharge, LOS, and HAC against CHA2DS2-VASc score (cut-off-score:6) were abstracted from the database. RESULTS Of the 420,458 patients that underwent CABG, 76,859 (18.3 %) were re-admitted to hospital within 90-days from discharge. Statistically significant increase in 90-day all-cause readmissions were demonstrated with increasing CHA2DS2-VASc score [No AF/AFL vs AF/AFL: score-0 (2.4 % vs1.4 %), score-6 (3.1 % vs 4.5 %, p-value<0.0001]. Similar trends were seen in re-admissions for TIA/Stroke and heart failure. The survival rate for all events were lower with incremental increase in CHA2DS2-VASc score (score-0 = 100 %; score-6 = 73 %, p-value<0.0001). Greater LOS and HAC was associated with increasing higher CHA2DS2-VASc score (standardized-beta[β]; no AF/AFL vs AF/AFL: LOS = score-1: 0.08 vs 0.06, score-6: 0.12 vs 0.13. HAC = score-1: 0.02 vs 0.009, score-6: 0.02 vs 0.01, p-value <0.001). CONCLUSION CHA2DS2-VASc score is an easy-to-use tool that predicts poorer outcomes, higher readmission, longer LOS, higher HAC, not just in patients with AF/AFL undergoing CABG, but also in those without AF/AFL.
Collapse
Affiliation(s)
- Syed Emir Irfan Wafa
- Department of Cardiology, Russell's Hall Hospital, Dudley Group NHS Foundation Trust, UK
| | - Hiroyuki Sawatari
- Department of Perioperative and Critical Care Management, Graduate School of Biomedical and Health Sciences, Hiroshima University (JP), Japan
| | - Raheel Ahmed
- Department of Cardiology, Royal Brompton Hospital and Harefield Hospitals, London, UK
| | - Saurabh Deshpande
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, India
| | - Hassan Khan
- Norton Heart Specialists, Norton Healthcare, Louisville, KY, USA
| | - Rui Providencia
- Department of Cardiology, Newham University Hospital, Barts Health NHS Trust, UK; Institute of Health Informatics Research, Univestity College London, London, UK; Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, UK
| | - Deepak Padmanabhan
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, India; Division of Cardiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Virend K Somers
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | | | - Wael Awad
- Department of Cardiothoracic Surgery, Barts Health NHS Trust, UK
| | - C Anwar A Chahal
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, UK; Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA; Centre for Inherited Cardiovascular Diseases, WellSpan Health, York, PA, USA; NIHR Barts Cardiovascular Biomedical Research Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University, UK
| | - Mohammed Y Khanji
- Department of Cardiology, Newham University Hospital, Barts Health NHS Trust, UK; Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, UK; NIHR Barts Cardiovascular Biomedical Research Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University, UK.
| |
Collapse
|
4
|
Srivastava PK, Klomhaus AM, Rafique A, Desai PS, Daniels LB, Yancy CW, Yang EH, Fonarow GC, Parikh RV. Guideline-directed medical therapy prescribing patterns and in-hospital outcomes among heart failure patients during COVID-19. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 45:100440. [PMID: 39220717 PMCID: PMC11363726 DOI: 10.1016/j.ahjo.2024.100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Study objective The association of prior to admission guideline-directed medical therapy (GDMT) use in patients hospitalized with Heart Failure with Reduced Ejection Fraction (HFrEF, ejection fraction ≤40 %) and Coronavirus Disease 2019 (COVID-19) with in-hospital outcomes has not been well studied. Design/setting/participants/interventions/outcome measures Using the American Heart Association's Get With The Guidelines Heart Failure Registry, we identified HFrEF patients presenting with acute decompensated heart failure (ADHF) and compared rates of GDMT prescription between those presenting prior to and during the pandemic. In a subgroup of patients with a concomitant COVID-19 diagnosis, we evaluated the association of prior to admission GDMT use with in-hospital mortality and severe COVID-19. Results 23,899 patients were admitted with HFrEF during the pandemic (2/16/20-3/24/21) and 26,459 patients were admitted in the year prior (2/16/19-2/15/20). In this overall cohort, prior to admission ACEI/ARB/ARNI (45.6 % vs 48.1 %, p < 0.0001) and BB (56.9 % vs 62.4 %, p < 0.0001) use was lower among admitted HFrEF patients during the pandemic when compared to the year prior. Rates of ACEI/ARB/ARNI, MRA, and triple therapy (ACE/ARB/ARNI + BB + MRA) prescription at discharge were higher during the pandemic compared to the year prior. Among a subgroup of those with HFrEF and COVID-19 (n = 333), prior to admission GDMT use was not associated with in-hospital mortality or severe COVID-19. Conclusion We found no association between prior to admission GDMT use and in-hospital mortality or severe COVID-19 among HFrEF patients admitted with ADHF and COVID-19. GDMT prescription at discharge for HFrEF patients overall has remained either similar or improved during the pandemic.
Collapse
Affiliation(s)
- Pratyaksh K. Srivastava
- Division of Cardiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States of America
| | - Alexandra M. Klomhaus
- Department of Medicine, Statistics Core, UCLA, Los Angeles, CA, United States of America
| | - Asim Rafique
- Division of Cardiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States of America
| | - Pooja S. Desai
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Lori B. Daniels
- Division of Cardiovascular Medicine, UC San Diego, La Jolla, CA, United States of America
| | - Clyde W. Yancy
- Division of Cardiology, Northwestern University School of Medicine, Chicago, IL, United States of America
| | - Eric H. Yang
- Division of Cardiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States of America
| | - Gregg C. Fonarow
- Division of Cardiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States of America
| | - Rushi V. Parikh
- Division of Cardiology, Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States of America
| |
Collapse
|
5
|
Ryabov V, Dil S, Vyshlov E, Mochula O, Kercheva M, Baev A, Gergert E, Maslov L. Efficiency and Safety of Intracoronary Epinephrine Administration in Patients With ST-Elevation Myocardial Infarction With Refractory Coronary No-Reflow. Am J Cardiol 2024; 226:118-127. [PMID: 39025195 DOI: 10.1016/j.amjcard.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Studies assessing the treatment of refractory no-reflow in patients with ST-elevation myocardial infarction (STEMI) are limited to clinical cases and pilot studies. This study aimed to evaluate the efficacy and safety of intracoronary adrenaline administration in such patients. Ninety consecutive patients with refractory coronary no-reflow during percutaneous coronary intervention (PCI) were prospectively included after the initial failure of conventional treatment. They were randomized into 2 groups: 45 patients in Group 1 received adrenaline, and 45 patients in Group 2 (control) received conventional treatments alone. After intracoronary drug administration, the adrenaline group demonstrated significantly higher rates of coronary flow restoration in the infarct-related artery to the level of thrombolysis in myocardial infarction grade 3 (56% vs 29% [p = 0.01]) and resolution of STEMI >50% after PCI (78% vs 36% [p <0.001]). Additionally, the adrenaline group showed a lower indexed microvascular obstruction (MVO) volume compared with the control group (0.9 [0.3; 3.1] % vs 1.9 [0.6; 7.9] % [p = 0.048]). A significant improvement in ejection fraction (EF) was observed in the adrenaline group (p = 0.025). Intracoronary adrenaline administration during PCI in patients with STEMI with refractory no-reflow is more effective compared with conventional treatments. This approach improves coronary flow in the infarct-related artery, facilitates a faster resolution of STEMI, enhances EF, and reduces MVO volume. Intracoronary adrenaline administration demonstrates a comparable safety profile to conventional treatment strategies in terms of life-threatening arrhythmias occurrence. The study suggests that intracoronary adrenaline administration during PCI could be an effective treatment strategy for patients with STEMI with refractory no-reflow.
Collapse
Affiliation(s)
- Vyacheslav Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Stanislav Dil
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation.
| | - Evgeny Vyshlov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Olga Mochula
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Maria Kercheva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Andrey Baev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Egor Gergert
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Leonid Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| |
Collapse
|
6
|
Xue J, Shi M, Xu Q, Wang A, Jiang X, Lin J, Meng X, Li H, Zheng L, Wang Y, Xu J. Plasma Soluble Angiotensin-Converting Enzyme 2 and Risk of Recurrent Stroke: A Nested Case-Control Analysis. Cerebrovasc Dis 2024; 54:105-111. [PMID: 38471482 PMCID: PMC11793094 DOI: 10.1159/000538245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
INTRODUCTION The angiotensin-converting enzyme 2 (ACE-2) and its shedding product (soluble ACE-2 [sACE-2]) are implicated in adverse cardiovascular outcomes. However, the relationship between sACE-2 and stroke recurrence is unknown. Herein, we examined the relationship of sACE-2 with stroke recurrence in patients with ischemic stroke or transient ischemic attack. METHODS Data were obtained from the Third China National Stroke Registry (CNSR-III). Eligible cases consisted of 494 patients who developed recurrent stroke within 1-year follow-up, and 494 controls were selected using age- and sex-matched with a 1:1 case-control ratio. Conditional logistic regressions were used to evaluate the association between sACE-2 and recurrent stroke. The main outcomes were recurrent stroke within 1 year. RESULTS Among 988 patients included in this study, the median (interquartile range) of sACE-2 was 25.17 (12.29-45.56) ng/mL. After adjustment for conventional confounding factors, the odds ratio (OR) with 95% confidence interval (CI) in the highest quartile versus the lowest quartile was 1.68 (1.12-2.53) for recurrent stroke within 1-year follow-up. Subgroup analysis showed that the association between elevated plasma level of sACE-2 and stroke recurrence was significant in patients with higher systemic inflammation, as indicated by high-sensitivity C-reactive protein ≥ 2 mg/L (adjusted OR: 2.33 [95% CI, 1.15-4.72]) and neutrophil counts ≥ median (adjusted OR: 2.66 [95% CI, 1.35-5.23]) but not significant in patients with lower systemic inflammation. DISCUSSION/CONCLUSION Elevated plasma sACE-2 concentration was associated with increased risk of recurrent stroke. INTRODUCTION The angiotensin-converting enzyme 2 (ACE-2) and its shedding product (soluble ACE-2 [sACE-2]) are implicated in adverse cardiovascular outcomes. However, the relationship between sACE-2 and stroke recurrence is unknown. Herein, we examined the relationship of sACE-2 with stroke recurrence in patients with ischemic stroke or transient ischemic attack. METHODS Data were obtained from the Third China National Stroke Registry (CNSR-III). Eligible cases consisted of 494 patients who developed recurrent stroke within 1-year follow-up, and 494 controls were selected using age- and sex-matched with a 1:1 case-control ratio. Conditional logistic regressions were used to evaluate the association between sACE-2 and recurrent stroke. The main outcomes were recurrent stroke within 1 year. RESULTS Among 988 patients included in this study, the median (interquartile range) of sACE-2 was 25.17 (12.29-45.56) ng/mL. After adjustment for conventional confounding factors, the odds ratio (OR) with 95% confidence interval (CI) in the highest quartile versus the lowest quartile was 1.68 (1.12-2.53) for recurrent stroke within 1-year follow-up. Subgroup analysis showed that the association between elevated plasma level of sACE-2 and stroke recurrence was significant in patients with higher systemic inflammation, as indicated by high-sensitivity C-reactive protein ≥ 2 mg/L (adjusted OR: 2.33 [95% CI, 1.15-4.72]) and neutrophil counts ≥ median (adjusted OR: 2.66 [95% CI, 1.35-5.23]) but not significant in patients with lower systemic inflammation. DISCUSSION/CONCLUSION Elevated plasma sACE-2 concentration was associated with increased risk of recurrent stroke.
Collapse
Affiliation(s)
- Jing Xue
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mingming Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qin Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
| | - Xue Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jinxi Lin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lemin Zheng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China
| | - Jie Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Siratavičiūtė V, Pangonytė D, Utkienė L, Jusienė L, Marcinkevičienė J, Stanionienė Z, Radikė R. Myocardial Angiotensin-Converting Enzyme 2 Protein Expression in Ischemic Heart Failure. Int J Mol Sci 2023; 24:17145. [PMID: 38138974 PMCID: PMC10743033 DOI: 10.3390/ijms242417145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas receptor axis plays a significant role in regulating myocardial remodeling and the development of heart failure (HF), with ACE2 being the primary focus. However, contemporary understanding of the membrane-bound form of the human ACE2 protein remains insufficient. The purpose of this study was to determine the expression of ACE2 protein in different cells of the left ventricular myocardium in non-diseased hearts and at various stages of ischemic HF. A total of 103 myocardial tissue samples from the left ventricle underwent quantitative and semi-quantitative immunohistochemical analysis. Upon assessing ACE2 immunostaining in all myocardial cells through unselective digital image analysis, there was no change in the stage A HF group. Nevertheless, the expression of ACE2 membrane protein in cardiomyocytes showed a tendency to increase, while non-cardiomyocyte ACE2 expression decreased significantly (p < 0.001). In the stage B HF group, the intensity of ACE2 immunostaining continued to increase with rising cardiomyocyte ACE2 expression (p < 0.001). Non-cardiomyocyte expression, in contrast, remained similar to that observed in the stage A HF group. In the stages C/D HF group, ACE2 expression reached its highest level in cardiomyocytes (p < 0.001), while ACE2 expression in non-cardiomyocytes was the lowest (p < 0.001). These changes in ACE2 protein levels are associated with left ventricular remodeling in ischemic HF.
Collapse
Affiliation(s)
| | - Dalia Pangonytė
- Laboratory of Cardiac Pathology, Institute of Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.S.); (L.U.); (L.J.); (J.M.); (Z.S.); (R.R.)
| | | | | | | | | | | |
Collapse
|
8
|
Montezano AC, Camargo LL, Mary S, Neves KB, Rios FJ, Stein R, Lopes RA, Beattie W, Thomson J, Herder V, Szemiel AM, McFarlane S, Palmarini M, Touyz RM. SARS-CoV-2 spike protein induces endothelial inflammation via ACE2 independently of viral replication. Sci Rep 2023; 13:14086. [PMID: 37640791 PMCID: PMC10462711 DOI: 10.1038/s41598-023-41115-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
COVID-19, caused by SARS-CoV-2, is a respiratory disease associated with inflammation and endotheliitis. Mechanisms underling inflammatory processes are unclear, but angiotensin converting enzyme 2 (ACE2), the receptor which binds the spike protein of SARS-CoV-2 may be important. Here we investigated whether spike protein binding to ACE2 induces inflammation in endothelial cells and determined the role of ACE2 in this process. Human endothelial cells were exposed to SARS-CoV-2 spike protein, S1 subunit (rS1p) and pro-inflammatory signaling and inflammatory mediators assessed. ACE2 was modulated pharmacologically and by siRNA. Endothelial cells were also exposed to SARS-CoV-2. rSP1 increased production of IL-6, MCP-1, ICAM-1 and PAI-1, and induced NFkB activation via ACE2 in endothelial cells. rS1p increased microparticle formation, a functional marker of endothelial injury. ACE2 interacting proteins involved in inflammation and RNA biology were identified in rS1p-treated cells. Neither ACE2 expression nor ACE2 enzymatic function were affected by rSP1. Endothelial cells exposed to SARS-CoV-2 virus did not exhibit viral replication. We demonstrate that rSP1 induces endothelial inflammation via ACE2 through processes that are independent of ACE2 enzymatic activity and viral replication. We define a novel role for ACE2 in COVID-19- associated endotheliitis.
Collapse
Affiliation(s)
- Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Karla B Neves
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada
| | - Ross Stein
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Rheure A Lopes
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Wendy Beattie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Jacqueline Thomson
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Vanessa Herder
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Steven McFarlane
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | | | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Site Glen-Block E-Office: E01.3362, 1001, Boul. Decarie, Montreal, QC, H4A3J1, Canada.
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK.
- McGill University, Montreal, Canada.
| |
Collapse
|
9
|
Wang X, Ma J, Lin D, Dong X, Wu J, Bai Y, Zhang D, Gao J. The risk factors of postoperative hypoxemia in patients with Stanford type A acute aortic dissection. Medicine (Baltimore) 2023; 102:e34704. [PMID: 37603505 PMCID: PMC10443739 DOI: 10.1097/md.0000000000034704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023] Open
Abstract
Hypoxemia is one of the most common complications in patients after Stanford type A acute aortic dissection surgery. The aim of this study was to investigate the association of circulating ANG II level with postoperative hypoxemia and to identify the risk factors for postoperative hypoxemia in Stanford type A acute aortic dissection patients. In this study, 88 patients who underwent Stanford type A acute aortic dissection surgery were enrolled. Postoperative hypoxemia is defined by the oxygenation index (OI). Perioperative clinical data were collected and the serum ANG II and sACE2 levels were measured. The differences in the basic characteristics, intraoperative details, biochemical parameters, laboratory test data and clinical outcomes were compared between the hypoxemia group and the non-hypoxemia group by univariate analysis. Multivariate logistic regression analysis was performed on the variables with P < .1 in univariate analysis or that were considered clinically important to identify risk factors for postoperative hypoxemia. Twenty-five patients (28.4%) were considered to have postoperative hypoxemia (OI ≤ 200 mm Hg). The ANG II concentration remained a risk factor associated with postoperative hypoxemia [OR = 1.018, 95% CI (1.003-1.034), P = .022]. The other risk factors remaining in the logistic regression model were BMI [OR = 1.417, 95% CI (1.159-1.733), P = .001] and cTnI [OR = 1.003, 95% CI (1.000-1.005), P = .032]. Elevated levels of ANG II, BMI and cTnI are risk factors for postoperative hypoxemia in patients with Stanford type A acute aortic dissection.
Collapse
Affiliation(s)
- Xu’an Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiuhua Dong
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junwei Gao
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Benedetti S, Sisti D, Vandini D, Barocci S, Sudano M, Carlotti E, Teng JLL, Zamai L. Circulating ACE2 level and zinc/albumin ratio as potential biomarkers for a precision medicine approach to COVID-19. Adv Biol Regul 2023; 89:100973. [PMID: 37257289 PMCID: PMC10202900 DOI: 10.1016/j.jbior.2023.100973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Highly mutable influenza is successfully countered based on individual susceptibility and similar precision-like medicine approach should be effective against SARS-COV-2. Among predictive markers to bring precision medicine to COVID-19, circulating ACE2 has potential features being upregulated in both severe COVID-19 and predisposing comorbidities. Spike SARS-CoVs were shown to induce ADAM17-mediated shedding of enzymatic active ACE2, thus accounting for its increased activity that has also been suggested to induce positive feedback loops leading to COVID-19-like manifestations. For this reason, pre-existing ACE2 activity and inhibition of ACE2/ADAM17 zinc-metalloproteases through zinc chelating agents have been proposed to predict COVID-19 outcome before infection and to protect from COVID-19, respectively. Since most diagnostic laboratories are not equipped for enzymatic activity determination, other potential predictive markers of disease progression exploitable by diagnostic laboratories were explored. Concentrations of circulating albumin, zinc, ACE2 protein and its activity were investigated in healthy, diabetic (COVID-19-susceptible) and SARS-CoV-2-negative COVID-19 individuals. ACE2 both protein levels and activity significantly increased in COVID-19 and diabetic patients. Abnormal high levels of ACE2 characterised a subgroup (16-19%) of diabetics, while COVID-19 patients were characterised by significantly higher zinc/albumin ratios, pointing to a relative increase of albumin-unbound zinc species, such as free zinc ones. Data on circulating ACE2 levels are in line with the hypothesis that they can drive susceptibility to COVID-19 and elevated zinc/albumin ratios support the therapeutic use of zinc chelating inhibitors of ACE2/ADAM17 zinc-metalloproteases in a targeted therapy for COVID-19.
Collapse
Affiliation(s)
- Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy
| | - Daniela Vandini
- Department of Clinical Pathology, ASUR Marche AV1, Urbino, PU, Italy
| | - Simone Barocci
- Department of Clinical Pathology, ASUR Marche AV1, Urbino, PU, Italy
| | - Maurizio Sudano
- Diabetology and Endocrinology Unit, ASUR Marche AV1, Urbino, PU, Italy
| | | | - Jade Lee Lee Teng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Loris Zamai
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, Italy; INFN-Gran Sasso National Laboratory, Assergi, 67100, L'Aquila, Italy.
| |
Collapse
|
11
|
Abstract
The current epidemic of corona virus disease (COVID-19) has resulted in an immense health burden that became the third leading cause of death and potentially contributed to a decline in life expectancy in the United States. The severe acute respiratory syndrome-related coronavirus-2 binds to the surface-bound peptidase angiotensin-converting enzyme 2 (ACE2, EC 3.4.17.23) leading to tissue infection and viral replication. ACE2 is an important enzymatic component of the renin-angiotensin system (RAS) expressed in the lung and other organs. The peptidase regulates the levels of the peptide hormones Ang II and Ang-(1-7), which have distinct and opposing actions to one another, as well as other cardiovascular peptides. A potential consequence of severe acute respiratory syndrome-related coronavirus-2 infection is reduced ACE2 activity by internalization of the viral-ACE2 complex and subsequent activation of the RAS (higher ratio of Ang II:Ang-[1-7]) that may exacerbate the acute inflammatory events in COVID-19 patients and possibly contribute to the effects of long COVID-19. Moreover, COVID-19 patients present with an array of autoantibodies to various components of the RAS including the peptide Ang II, the enzyme ACE2, and the AT1 AT2 and Mas receptors. Greater disease severity is also evident in male COVID-19 patients, which may reflect underlying sex differences in the regulation of the 2 distinct functional arms of the RAS. The current review provides a critical evaluation of the evidence for an activated RAS in COVID-19 subjects and whether this system contributes to the greater severity of severe acute respiratory syndrome-related coronavirus-2 infection in males as compared with females.
Collapse
Affiliation(s)
- Mark C. Chappell
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
12
|
Kim K, Moon JH, Ahn CH, Lim S. Effect of olmesartan and amlodipine on serum angiotensin-(1-7) levels and kidney and vascular function in patients with type 2 diabetes and hypertension. Diabetol Metab Syndr 2023; 15:43. [PMID: 36899369 PMCID: PMC10005920 DOI: 10.1186/s13098-023-00987-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/27/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Recent studies suggest that angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1-7) [Ang-(1-7)] might have beneficial effects on the cardiovascular system. We investigated the effects of olmesartan on the changes in serum ACE2 and Ang-(1-7) levels as well as kidney and vascular function in patients with type 2 diabetes and hypertension. METHODS This was a prospective, randomized, active comparator-controlled trial. Eighty participants with type 2 diabetes and hypertension were randomized to receive 20 mg of olmesartan (N = 40) or 5 mg of amlodipine (N = 40) once daily. The primary endpoint was changes of serum Ang-(1-7) from baseline to week 24. RESULTS Both olmesartan and amlodipine treatment for 24 weeks decreased systolic and diastolic blood pressures significantly by > 18 mmHg and > 8 mmHg, respectively. Serum Ang-(1-7) levels were more significantly increased by olmesartan treatment (25.8 ± 34.5 pg/mL → 46.2 ± 59.4 pg/mL) than by amlodipine treatment (29.2 ± 38.9 pg/mL → 31.7 ± 26.0 pg/mL), resulting in significant between-group differences (P = 0.01). Serum ACE2 levels showed a similar pattern (6.31 ± 0.42 ng/mL → 6.74 ± 0.39 ng/mL by olmesartan treatment vs. 6.43 ± 0.23 ng/mL → 6.61 ± 0.42 ng/mL by amlodipine treatment; P < 0.05). The reduction in albuminuria was significantly associated with the increases in ACE2 and Ang-(1-7) levels (r = - 0.252 and r = - 0.299, respectively). The change in Ang-(1-7) levels was positively associated with improved microvascular function (r = 0.241, P < 0.05). Multivariate regression analyses showed that increases in serum Ang-(1-7) levels were an independent predictor of a reduction in albuminuria. CONCLUSIONS These findings suggest that the beneficial effects of olmesartan on albuminuria may be mediated by increased ACE2 and Ang-(1-7) levels. These novel biomarkers may be therapeutic targets for the prevention and treatment of diabetic kidney disease. TRIAL REGISTRATION ClinicalTrials.gov NCT05189015.
Collapse
Affiliation(s)
- Kyuho Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707, South Korea
| | - Ji Hye Moon
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707, South Korea
| | - Chang Ho Ahn
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707, South Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam, 463-707, South Korea.
| |
Collapse
|
13
|
Zhou G, Liu J. Prognostic value of elevated plasma angiotensin-converting enzyme 2 in cardiometabolic diseases: A review. Medicine (Baltimore) 2023; 102:e33251. [PMID: 36897667 PMCID: PMC9997766 DOI: 10.1097/md.0000000000033251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Angiotensin-converting enzyme 2, as an internal anti regulator of the renin-angiotensin hormone cascade reaction, plays a protective role in vasodilation, inhibition of fibrosis, and initiation of anti-inflammatory and antioxidative stress by degrading angiotensin II and generating angiotensin (1-7). Multiple studies have shown that plasma angiotensin-converting enzyme 2 activity is low in healthy populations without significant cardiometabolic disease, and elevated plasma angiotensin-converting enzyme 2 levels can be used as a novel biomarker of abnormal myocardial structure and/or adverse events in cardiometabolic diseases. This article aims to elaborate the determinants of plasma angiotensin-converting enzyme 2 concentration, the relevance between angiotensin-converting enzyme 2 and cardiometabolic disease risk markers, and its relative importance compared with known cardiovascular disease risk factors. Confronted with the known cardiovascular risk factors, plasma angiotensin-converting enzyme 2 (ACE2) concentration uniformly emerged as a firm predictor of abnormal myocardial structure and/or adverse events in cardiometabolic diseases and may improve the risk prediction of cardiometabolic diseases when combined with other conventional risk factors. Cardiovascular disease is the leading cause of death worldwide, while the renin-angiotensin system is the main hormone cascade system involved in the pathophysiology of cardiovascular disease. A multi-ancestry global cohort study from the general population by Narula et al revealed that plasma ACE2 concentration was strongly associated with cardiometabolic disease and might be an easily measurable indicator of renin-angiotensin system disorder. The association between this atypical hormone disorder marker and cardiometabolic disease is isolated from conventional cardiac risk factors and brain natriuretic peptide, suggesting that a clearer comprehending of the changes in plasma ACE2 concentration and activity may help us to improve the risk prediction of cardiometabolic disease, guide early diagnosis and feasible therapies, and develop and test new therapeutic targets.
Collapse
Affiliation(s)
- Gang Zhou
- Department of First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingchen Liu
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Oudit GY, Wang K, Viveiros A, Kellner MJ, Penninger JM. Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic. Cell 2023; 186:906-922. [PMID: 36787743 PMCID: PMC9892333 DOI: 10.1016/j.cell.2023.01.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance; as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by co-morbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Max J Kellner
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
16
|
Zamai L. Hypothesis: Efficacy of early treatments with some NSAIDs in COVID-19: Might it also depend on their direct and/or indirect zinc chelating ability? Br J Pharmacol 2023; 180:279-286. [PMID: 36482040 PMCID: PMC9877557 DOI: 10.1111/bph.15989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
The present work argues for the involvement of the zinc chelating ability of some non-steroidal anti-inflammatory drugs as an additive mechanism able to increase their efficacy against COVID-19.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly,National Institute for Nuclear Physics (INFN)—Gran Sasso National Laboratory (LNGS)L'AquilaItaly
| |
Collapse
|
17
|
Kamthe DD, Sarangkar SD, Dalvi MS, Gosavi NA, Nikam VS. Angiotensin converting enzyme 2 level and its significance in COVID-19 and other diseases patients. Eur J Clin Invest 2023; 53:e13891. [PMID: 36222740 PMCID: PMC9874405 DOI: 10.1111/eci.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Angiotensin-converting enzyme 2 (ACE2) expressions and its modulation are of great interest as being a key receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) and the protective arm of the rennin-angiotensin axis, maintaining cardiovascular homeostasis. However, ACE2 expressions and their modulation in the healthy and disease background are yet to be explored. METHOD We performed a meta-analysis, extracting the data for ACE2 expression in human subjects with various diseases, including SARS-CoV2 infection without or with co-morbidity. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. Out of 203 studies, 39 met the inclusion criteria with SARS-CoV2 patients without co-morbidity, SARS-CoV2 patients with co-morbidity, cardiovascular (CVD) patients, diabetes patients, kidney disorders patients, pulmonary disease patients, and other viral infections patients. RESULTS Angiotensin-converting enzyme 2 expression was significantly increased in all diseases. There was an elevated level of ACE2, especially membrane-bound ACE2, in COVID-19 patients compared to healthy controls. A statistically significant increase in ACE2 expression was observed in CVD patients and patients with other viral diseases compared to healthy subjects. Moreover, subgroup analysis of ACE2 expression as soluble and membrane-bound ACE2 revealed a remarkable increase in membrane-bound ACE2 in CVD patients, patients with viral infection compared to soluble ACE2 and pooled standard mean difference (SMD) with the random-effects model was 0.37 and 2.23 respectively. CONCLUSION It was observed that utilizing the ACE2 by SARS-CoV2 for its entry and its consequence leads to several complications. So there is a need to investigate the underlying mechanism along with novel therapeutic strategies.
Collapse
Affiliation(s)
- Dipanjali Dhananjay Kamthe
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Swapnil Dilip Sarangkar
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Manali Suresh Dalvi
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Netra Arun Gosavi
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| | - Vandana Sandeep Nikam
- Department of Pharmacology, STES's, Smt. Kashibai Navale College of PharmacySavitribai Phule Pune UniversityPuneIndia
| |
Collapse
|
18
|
Plasma Angiotensin Converting Enzyme 2 (ACE2) Activity in Healthy Controls and Patients with Cardiovascular Risk Factors and/or Disease. J Pers Med 2022; 12:jpm12091495. [PMID: 36143280 PMCID: PMC9501250 DOI: 10.3390/jpm12091495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is an endogenous negative regulator of the renin-angiotensin system, a key factor in the development of cardiovascular disease (CVD). ACE2 is also used by SARS-CoV-2 for host cell entry. Given that COVID-19 is associated with hypercoagulability, it is timely to explore the potential relationship between plasma ACE2 activity and the coagulation profile. In this cross-sectional study, ACE2 activity and global coagulation assays (GCA) including thromboelastography, thrombin, and fibrin generation were measured in adult healthy controls (n = 123; mean age 41 ± 17 years; 35% male) and in patients with cardiovascular risk factors and/or disease (n = 258; mean age 65 ± 14 years; 55% male). ACE2 activity was significantly lower in controls compared to patients with cardiovascular risk factors and/or disease (median 0.10 (0.02, 3.33) vs. 5.99 (1.95, 10.37) pmol/mL/min, p < 0.001). Of the healthy controls, 48% had undetectable ACE2 activity. Controls with detectable ACE2 had lower maximum amplitude (p < 0.001). In patients with cardiovascular risk factors and/or disease, those in the 3rd tertile were older and male (p = 0.002), with a higher Framingham grade and increased number of cardiovascular risk factors (p < 0.001). In conclusion, plasma ACE2 activity is undetectable to very low in young healthy controls with minimal clinically relevant associations to GCA. Patients with cardiovascular risk factors and/or disease have increased plasma ACE2 activity, suggesting that it may be an important biomarker of endothelial dysfunction and atherosclerosis.
Collapse
|
19
|
Daniell H, Nair SK, Shi Y, Wang P, Montone KT, Shaw PA, Choi GH, Ghani D, Weaver J, Rader DJ, Margulies KB, Collman RG, Laudanski K, Bar KJ. Decrease in Angiotensin-Converting Enzyme activity but not concentration in plasma/lungs in COVID-19 patients offers clues for diagnosis/treatment. Mol Ther Methods Clin Dev 2022; 26:266-278. [PMID: 35818571 PMCID: PMC9258412 DOI: 10.1016/j.omtm.2022.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/03/2022] [Indexed: 12/12/2022]
Abstract
Although several therapeutics are used to treat coronavirus disease 2019 (COVID-19) patients, there is still no definitive metabolic marker to evaluate disease severity and recovery or a quantitative test to end quarantine. Because severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects human cells via the angiotensin-converting-enzyme 2 (ACE2) receptor and COVID-19 is associated with renin-angiotensin system dysregulation, we evaluated soluble ACE2 (sACE2) activity in the plasma/saliva of 80 hospitalized COVID-19 patients and 27 non-COVID-19 volunteers, and levels of ACE2/Ang (1-7) in plasma or membrane (mACE2) in lung autopsy samples. sACE2 activity was markedly reduced (p < 0.0001) in COVID-19 plasma (n = 59) compared with controls (n = 27). Nadir sACE2 activity in early hospitalization was restored during disease recovery, irrespective of patient age, demographic variations, or comorbidity; in convalescent plasma-administered patients (n = 45), restoration was statistically higher than matched controls (n = 22, p = 0.0021). ACE2 activity was also substantially reduced in the saliva of COVID-19 patients compared with controls (p = 0.0065). There is a strong inverse correlation between sACE2 concentration and sACE2 activity and Ang (1-7) levels in participant plasmas. However, there were no difference in membrane ACE2 levels in lungs of autopsy tissues of COVID-19 (n = 800) versus other conditions (n = 300). These clinical observations suggest sACE2 activity as a potential biomarker and therapeutic target for COVID-19.
Collapse
Affiliation(s)
- Henry Daniell
- W. D. Miller Professor & Director of Translational Research, Vice Chair, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, 547 Levy Building, Philadelphia, PA 19104-6030, USA
| | - Smruti K. Nair
- W. D. Miller Professor & Director of Translational Research, Vice Chair, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, 547 Levy Building, Philadelphia, PA 19104-6030, USA
| | - Yao Shi
- W. D. Miller Professor & Director of Translational Research, Vice Chair, Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, 547 Levy Building, Philadelphia, PA 19104-6030, USA
| | - Ping Wang
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen T. Montone
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pamela A. Shaw
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Kaiser Permanente Washington Health Research Group, Seattle, WA, USA
| | - Grace H. Choi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danyal Ghani
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - JoEllen Weaver
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth B. Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronald G. Collman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Krzysztof Laudanski
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katharine J. Bar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Nath D, Shivasekar M. Role of Cigarette Smoking on Serum Angiotensin-Converting Enzyme and Its Association With Inflammation and Lipid Peroxidation. Cureus 2022; 14:e27857. [PMID: 36110446 PMCID: PMC9462588 DOI: 10.7759/cureus.27857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Cigarette smoking promotes angiotensin-converting enzyme (ACE) production and causes a substantial change in inflammation and oxidative stress, resulting in an increase in antioxidant activity and lipid peroxidation. Objective The study's goal is to determine the role of cigarette smoking on serum ACE and its relation with inflammatory markers and lipid peroxidation. Methods The cross-sectional study consists of three groups. The study participants are all men between the age group of 20 to 55 years. Group 1 includes 120 healthy controls as nonsmokers, Group 2 consists of 120 active smokers with coronary heart disease (CHD) and Group 3 includes 120 active smokers with diabetic CHD patients attending the SRM Medical College Hospital in Tamil Nadu for cardiology and medical Outpatient. Measurements of serum ACE, oxidized low-density lipoprotein (oxLDL), high-sensitivity C-reactive protein (hsCRP), and matrix metalloprotease-9 (MMP-9) were performed using the ELISA method (enzyme-linked immunosorbent assay). Using a spectrophotometric approach, the total antioxidant capacity and lipid peroxidation, particularly Malondialdehyde (MDA), were assessed. Results The mean serum ACE (92.35±10.28), oxLDL (48.59±8.56), hs-CRP (5.87±1.62), MMP-9 (89.20±30.19), and MDA (1.146±0.198) levels were significantly (p-value <0.0001) higher in smokers with CHD and diabetes (group 3) when compared to group 1 and group 2. On the other hand, the total antioxidant capacity (0.413±0.097) of smokers of group 3 was found to be (p<0.0001) significantly lower than those of group 1 and group 2. The study also demonstrated a significant correlation between ACE with MDA, ox-LDL, total antioxidant capacity, hs-CRP, MMP-9, smoking load, and smoking intensity in smokers. Conclusion The study concludes a substantial correlation exists in smokers owing to ACE modification, which results in inflammation and lipid peroxidation activation. This is strongly associated with an increased risk of major cardiovascular events.
Collapse
Affiliation(s)
- Dinesh Nath
- Biochemistry, Sri Ramaswamy Memorial (SRM) Medical College Hospital, Chennai, IND
| | - Meera Shivasekar
- Biochemistry, Sri Ramaswamy Memorial (SRM) Medical College Hospital and Research Center, Sri Ramaswamy Memorial Institute of Science and Technology (SRMIST), Chennai, IND
| |
Collapse
|
21
|
Lim HY, Burrell LM, Brook R, Nandurkar HH, Donnan G, Ho P. The Need for Individualized Risk Assessment in Cardiovascular Disease. J Pers Med 2022; 12:jpm12071140. [PMID: 35887637 PMCID: PMC9323107 DOI: 10.3390/jpm12071140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death in the era of modern medicine despite major advancements in this field. Current available clinical surrogate markers and blood tests do not adequately predict individual risk of cardiovascular disease. A more precise and sophisticated tool that can reliably predict the thrombosis and bleeding risks at an individual level is required in order for clinicians to confidently recommend early interventions with a favorable risk–benefit profile. Critical to the development of this tool is the assessment and understanding of Virchow’s triad and its complex interactions between hypercoagulability, endothelial dysfunction and vessel flow, a fundamental concept to the development of thrombosis. This review explores the pathophysiology of cardiovascular disease stemming from the triad of factors and how individualized risk assessment can be improved through the multimodal use of tools such as global coagulation assays, endothelial biomarkers and vessel flow assessment.
Collapse
Affiliation(s)
- Hui Yin Lim
- Northern Pathology Victoria, Northern Health, Epping, Melbourne, VIC 3076, Australia; (H.Y.L.); (R.B.)
- Department of Hematology, Northern Health, Epping, Melbourne, VIC 3076, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia;
- Department of Medicine, Northern Health, University of Melbourne, Epping, Melbourne, VIC 3076, Australia
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Melbourne, VIC 3084, Australia;
| | - Louise M. Burrell
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Melbourne, VIC 3084, Australia;
| | - Rowena Brook
- Northern Pathology Victoria, Northern Health, Epping, Melbourne, VIC 3076, Australia; (H.Y.L.); (R.B.)
- Department of Hematology, Northern Health, Epping, Melbourne, VIC 3076, Australia
| | - Harshal H. Nandurkar
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia;
| | - Geoffrey Donnan
- The Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia;
| | - Prahlad Ho
- Northern Pathology Victoria, Northern Health, Epping, Melbourne, VIC 3076, Australia; (H.Y.L.); (R.B.)
- Department of Hematology, Northern Health, Epping, Melbourne, VIC 3076, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia;
- Department of Medicine, Northern Health, University of Melbourne, Epping, Melbourne, VIC 3076, Australia
- Correspondence: ; Tel.: +613-8405-8480
| |
Collapse
|
22
|
Rasmi Y, Hatamkhani S, Naderi R, Shokati A, Nayeb Zadeh V, Hosseinzadeh F, Farnamian Y, Jalali L. Molecular signaling pathways, pathophysiological features in various organs, and treatment strategies in SARS-CoV2 infection. Acta Histochem 2022; 124:151908. [PMID: 35662001 PMCID: PMC9130726 DOI: 10.1016/j.acthis.2022.151908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/19/2022] [Indexed: 01/08/2023]
Abstract
Cytokine storms and extra-activated cytokine signaling pathways can lead to severe tissue damage and patient death. Activation of inflammatory signaling pathways during Cytokine storms are an important factor in the development of acute respiratory syndrome (SARS-CoV-2), which is the major health problem today, causing systemic and local inflammation. Cytokine storms attract many inflammatory cells that attack the lungs and other organs and cause tissue damage. Angiotensin-converting enzyme 2 (ACE2) are expressed in a different type of tissues. inhibition of ACE2 activity impairs renin-angiotensin (RAS) function, which is related to the severity of symptoms and mortality rate in COVID-19 patients. Different signaling cascades are activated, affecting various organs during SARS-CoV-2 infection. Nowadays, there is no specific treatment for COVID-19, but scientists have recognized and proposed several treatment alternatives, including applying cytokine inhibitors, immunomodulators, and plasma therapy. Herein, we have provided the detailed mechanism of SARS-CoV-2 induced cytokine signaling and its connection with pathophysiological features in different organs. Possible treatment options to cope with the severe clinical manifestations of COVID-19 are also discussed.
Collapse
Affiliation(s)
- Yousef Rasmi
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shima Hatamkhani
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Pharmacy, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Neurophysiology Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, school of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Ameneh Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | - Faezeh Hosseinzadeh
- Department of Tissue Engineering, Qom University of Medical Sciences, Qom, Iran
| | - Yeganeh Farnamian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Ladan Jalali
- Cellular and Molecular Research Center,Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
23
|
The Effect of Renin-Angiotensin Blockers on COVID-19 Related Mortality: A Tertiary Center's Experience. COR ET VASA 2022. [DOI: 10.33678/cor.2021.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
A Elrayess M, T Zedan H, A Alattar R, Abusriwil H, Al-Ruweidi MKAA, Almuraikhy S, Parengal J, Alhariri B, Yassine HM, A Hssain A, Nair A, Al Samawi M, Abdelmajid A, Al Suwaidi J, Omar Saad M, Al-Maslamani M, Omrani AS, Yalcin HC. Soluble ACE2 and angiotensin II levels are modulated in hypertensive COVID-19 patients treated with different antihypertension drugs. Blood Press 2022; 31:80-90. [PMID: 35548940 DOI: 10.1080/08037051.2022.2055530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PURPOSE This study examines the effect of antihypertensive drugs on ACE2 and Angiotensin II levels in hypertensive COVID-19 patients. INTRODUCTION Hypertension is a common comorbidity among severe COVID-19 patients. ACE2 expression can be modulated by antihypertensive drugs such as ACEis and ARBs, which may affect COVID-19's prognosis. BB and CCB reduce mortality, according to some evidence. Their effect on circulating levels of ACE2 and angiotensin II, as well as the severity of COVID-19, is less well studied. MATERIALS AND METHODS The clinical data were collected from 200 patients in four different antihypertensive medication classes (ACEi, ARB, BB, and CCB). Angiotensin II and ACE2 levels were determined using standard ELISA kits. ACE2, angiotensin II, and other clinical indices were evaluated by linear regression models. RESULTS Patients on ACEi (n = 57), ARB (n = 68), BB (n = 15), or CCB (n = 30) in this study had mild (n = 76), moderate (n = 76), or severe (n = 52) COVID-19. ACE2 levels were higher in COVID-19 patients with severe disease (p = 0.04) than mild (p = 0.07) and moderate (p = 0.007). The length of hospital stay is correlated with ACE2 levels (r = 0.3, p = 0.003). Angiotensin II levels decreased with severity (p = 0.04). Higher ACE2 levels are associated with higher CRP and D-dimer levels. Elevated Angiotensin II was associated with low levels of CRP, D-dimer, and troponin. ACE2 levels increase with disease severity in patients taking an ARB (p = 0.01), patients taking ACEi, the degree of disease severity was associated with a decrease in angiotensin II. BB patients had the lowest disease severity. CONCLUSION We found different levels of soluble ACE2, and angiotensin II are observed among COVID-19 patients taking different antihypertensive medications and exhibiting varying levels of disease severity. COVID-19 severity increases with elevated ACE2 levels and lower angiotensin II levels indicating that BB treatment reduces severity regardless of levels of ACE2 and angiotensin II.
Collapse
Affiliation(s)
| | - Hadeel T Zedan
- Biomedical Research Center, Qatar University, Doha, Qatar.,Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Rand A Alattar
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar
| | - Hatem Abusriwil
- Department of Internal Medicine, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Jabeed Parengal
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Bassem Alhariri
- Department of Internal Medicine, Hazm Mebaireek General Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Ali A Hssain
- Medical Intensive Care Unit, Hamad Medical Corporation, Doha, Qatar
| | - Arun Nair
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Musaed Al Samawi
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Alaaeldin Abdelmajid
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Muna Al-Maslamani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Ali S Omrani
- Communicable Diseases Center, Hamad Medical Corporation, Doha, Qatar.,Division of Infectious Diseases, Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | | |
Collapse
|
25
|
Kassif Lerner R, Stein Yeshurun M, Hemi R, Zada N, Asraf K, Doolman R, Benoit SW, Santos de Oliveira MH, Lippi G, Henry BM, Pessach IM, Pode Shakked N. The Predictive Value of Serum ACE2 and TMPRSS2 Concentrations in Patients with COVID-19-A Prospective Pilot Study. J Pers Med 2022; 12:jpm12040622. [PMID: 35455738 PMCID: PMC9032089 DOI: 10.3390/jpm12040622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
One of the major challenges for healthcare systems during the Coronavirus-2019 (COVID-19) pandemic was the inability to successfully predict which patients would require mechanical ventilation (MV). Angiotensin-Converting Enzyme 2 (ACE2) and TransMembrane Protease Serine S1 member 2 (TMPRSS2) are enzymes that play crucial roles in SARS-CoV-2 entry into human host cells. However, their predictive value as biomarkers for risk stratification for respiratory deterioration requiring MV has not yet been evaluated. We aimed to evaluate whether serum ACE2 and TMPRSS2 levels are associated with adverse outcomes in COVID-19, and specifically the need for MV. COVID-19 patients admitted to an Israeli tertiary medical center between March--November 2020, were included. Serum samples were obtained shortly after admission (day 0) and again following one week of admission (day 7). ACE2 and TMPRSS2 concentrations were measured with ELISA. Of 72 patients included, 30 (41.6%) ultimately required MV. Serum ACE2 concentrations >7.8 ng/mL at admission were significantly associated with the need for MV (p = 0.036), inotropic support, and renal replacement therapy. In multivariate logistic regression analysis, elevated ACE2 at admission was associated with the need for MV (OR = 7.49; p = 0.014). To conclude, elevated serum ACE2 concentration early in COVID-19 illness correlates with respiratory failure necessitating mechanical ventilation. We suggest that measuring serum ACE2 at admission may be useful for predicting the risk of severe disease.
Collapse
Affiliation(s)
- Reut Kassif Lerner
- Department of Pediatric Intensive Care, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; (R.K.L.); (I.M.P.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
| | - Michal Stein Yeshurun
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Rina Hemi
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
- Division of Endocrinology and Metabolism, Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Nahid Zada
- Division of Endocrinology and Metabolism, Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Keren Asraf
- The Dworman Automated-Mega Laboratory, Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Ram Doolman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
- The Dworman Automated-Mega Laboratory, Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Stefanie W. Benoit
- Division of Pediatric Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.W.B.); (B.M.H.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, 37134 Verona, Italy;
| | - Brandon Michael Henry
- Division of Pediatric Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.W.B.); (B.M.H.)
| | - Itai M. Pessach
- Department of Pediatric Intensive Care, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; (R.K.L.); (I.M.P.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
| | - Naomi Pode Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel
- Division of Pediatric Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.W.B.); (B.M.H.)
- Correspondence:
| |
Collapse
|
26
|
Cook JR, Ausiello J. Functional ACE2 deficiency leading to angiotensin imbalance in the pathophysiology of COVID-19. Rev Endocr Metab Disord 2022; 23:151-170. [PMID: 34195965 PMCID: PMC8245275 DOI: 10.1007/s11154-021-09663-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, the virus responsible for COVID-19, uses angiotensin converting enzyme 2 (ACE2) as its primary cell-surface receptor. ACE2 is a key enzyme in the counter-regulatory pathway of the broader renin-angiotensin system (RAS) that has been implicated in a broad array of human pathology. The RAS is composed of two competing pathways that work in opposition to each other: the "conventional" arm involving angiotensin converting enzyme (ACE) generating angiotensin-2 and the more recently identified ACE2 pathway that generates angiotensin (1-7). Following the original SARS pandemic, additional studies suggested that coronaviral binding to ACE2 resulted in downregulation of the membrane-bound enzyme. Given the similarities between the two viruses, many have posited a similar process with SARS-CoV-2. Proponents of this ACE2 deficiency model argue that downregulation of ACE2 limits its enzymatic function, thereby skewing the delicate balance between the two competing arms of the RAS. In this review we critically examine this model. The available data remain incomplete but are consistent with the possibility that the broad multisystem dysfunction of COVID-19 is due in large part to functional ACE2 deficiency leading to angiotensin imbalance with consequent immune dysregulation and endothelial cell dysfunction.
Collapse
Affiliation(s)
- Joshua R Cook
- New York-Presbyterian Hospital and the Columbia University Irving Medical Center, New York, NY, USA
| | - John Ausiello
- New York-Presbyterian Hospital and the Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
27
|
Zhang Q, Ling S, Hu K, Liu J, Xu JW. Role of the renin-angiotensin system in NETosis in the coronavirus disease 2019 (COVID-19). Pharmacotherapy 2022; 148:112718. [PMID: 35176710 PMCID: PMC8841219 DOI: 10.1016/j.biopha.2022.112718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/20/2022]
Abstract
Myocardial infarction and stroke are the leading causes of death in the world. Numerous evidence has confirmed that hypertension promotes thrombosis and induces myocardial infarction and stroke. Recent findings reveal that neutrophil extracellular traps (NETs) are involved in the induction of myocardial infarction and stroke. Meanwhile, patients with severe COVID-19 suffer from complications such as myocardial infarction and stroke with pathological signs of NETs. Due to the extremely low amount of virus detected in the blood and remote organs (e.g., heart, brain and kidney) in a few cases, it is difficult to explain the mechanism by which the virus triggers NETosis, and there may be a different mechanism than in the lung. A large number of studies have found that the renin-angiotensin system regulates the NETosis at multiple levels in patients with COVID-19, such as endocytosis of SARS-COV-2, abnormal angiotensin II levels, neutrophil activation and procoagulant function at multiple levels, which may contribute to the formation of reticular structure and thrombosis. The treatment of angiotensin-converting enzyme inhibitors (ACEI), angiotensin II type 1 receptor blockers (ARBs) and neutrophil recruitment and active antagonists helps to regulate blood pressure and reduce the risk of net and thrombosis. The review will explore the possible role of the angiotensin system in the formation of NETs in severe COVID-19.
Collapse
|
28
|
Zhang G, Brown JS, Quartararo AJ, Li C, Tan X, Hanna S, Antilla S, Cowfer AE, Loas A, Pentelute BL. Rapid de novo discovery of peptidomimetic affinity reagents for human angiotensin converting enzyme 2. Commun Chem 2022; 5:8. [PMID: 36697587 PMCID: PMC9814530 DOI: 10.1038/s42004-022-00625-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/23/2021] [Indexed: 01/28/2023] Open
Abstract
Rapid discovery and development of serum-stable, selective, and high affinity peptide-based binders to protein targets are challenging. Angiotensin converting enzyme 2 (ACE2) has recently been identified as a cardiovascular disease biomarker and the primary receptor utilized by the severe acute respiratory syndrome coronavirus 2. In this study, we report the discovery of high affinity peptidomimetic binders to ACE2 via affinity selection-mass spectrometry (AS-MS). Multiple high affinity ACE2-binding peptides (ABP) were identified by selection from canonical and noncanonical peptidomimetic libraries containing 200 million members (dissociation constant, KD = 19-123 nM). The most potent noncanonical ACE2 peptide binder, ABP N1 (KD = 19 nM), showed enhanced serum stability in comparison with the most potent canonical binder, ABP C7 (KD = 26 nM). Picomolar to low nanomolar ACE2 concentrations in human serum were detected selectively using ABP N1 in an enzyme-linked immunosorbent assay. The discovery of serum-stable noncanonical peptidomimetics like ABP N1 from a single-pass selection demonstrates the utility of advanced AS-MS for accelerated development of affinity reagents to protein targets.
Collapse
Affiliation(s)
- Genwei Zhang
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Joseph S. Brown
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Anthony J. Quartararo
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,Present Address: FogPharma, 30 Acorn Park Dr, Cambridge, MA 02140 USA
| | - Chengxi Li
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Xuyu Tan
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Stephanie Hanna
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Sarah Antilla
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Amanda E. Cowfer
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Andrei Loas
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Bradley L. Pentelute
- grid.116068.80000 0001 2341 2786Massachusetts Institute of Technology, Department of Chemistry, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142 USA ,grid.116068.80000 0001 2341 2786Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA ,grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| |
Collapse
|
29
|
Wang J, Zhao H, An Y. ACE2 Shedding and the Role in COVID-19. Front Cell Infect Microbiol 2022; 11:789180. [PMID: 35096642 PMCID: PMC8795668 DOI: 10.3389/fcimb.2021.789180] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2), a transmembrane glycoprotein, is an important part of the renin-angiotensin system (RAS). In the COVID-19 epidemic, it was found to be the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). ACE2 maintains homeostasis by inhibiting the Ang II-AT1R axis and activating the Ang I (1-7)-MasR axis, protecting against lung, heart and kidney injury. In addition, ACE2 helps transport amino acids across the membrane. ACE2 sheds from the membrane, producing soluble ACE2 (sACE2). Previous studies have pointed out that sACE2 plays a role in the pathology of the disease, but the underlying mechanism is not yet clear. Recent studies have confirmed that sACE2 can also act as the receptor of SARS-COV-2, mediating viral entry into the cell and then spreading to the infective area. Elevated concentrations of sACE2 are more related to disease. Recombinant human ACE2, an exogenous soluble ACE2, can be used to supplement endogenous ACE2. It may represent a potent COVID-19 treatment in the future. However, the specific administration concentration needs to be further investigated.
Collapse
Affiliation(s)
| | | | - Youzhong An
- *Correspondence: Huiying Zhao, ; Youzhong An,
| |
Collapse
|
30
|
Katsi V, Pavlidis G, Charalambous G, Tousoulis D, Toutouzas K. COVID-19, Angiotensin-Converting Enzyme 2 and Renin-Angiotensin System Inhibition: Implications for Practice. Curr Hypertens Rev 2022; 18:3-10. [PMID: 33475077 DOI: 10.2174/1573402117666210121100201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies suggested that patients with coronavirus disease 2019 (COVID-19) who use renin-angiotensin system (RAS) inhibitors have an increased risk of respiratory failure and death. The hypothesis was that angiotensin-converting enzyme inhibitor (ACEIs) or angiotensin receptor blocker (ARBs) might up-regulate ACE2 expression that is used as a receptor for viral entry into cells. OBJECTIVE The purpose of this review is to discuss the existing evidence on the interaction between COVID-19 infection, ACE2 and ACEIs or ARBs and to examine the main implications for clinical practice. In addition, novel therapeutic strategies for blocking ACE2-mediated COVID-19 infection will be displayed. METHODS We performed a comprehensive review of the literature to identify data from clinical and experimental studies for the association between COVID-19 infection, ACE2 and RAS inhibition. RESULTS The current clinical and experimental evidence for ACEIs or ARBs to facilitate severe acute respiratory distress syndrome-coronavirus-2 (SARS-CoV-2) is insufficient to suggest discontinuing these drugs. Several observational studies arrive at the conclusion that the continued use of RAS inhibitors is unlikely to be harmful in COVID-19-positive patients. CONCLUSIONS Further randomized trials are needed to answer the question of whether RAS inhibitors are harmful or beneficial to patients with COVID-19.
Collapse
Affiliation(s)
- Vasiliki Katsi
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - George Pavlidis
- Emergency Department, 'Hippokration' General Hospital, Athens, Greece
| | | | - Dimitrios Tousoulis
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Konstantinos Toutouzas
- 1st Department of Cardiology, 'Hippokration' General Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| |
Collapse
|
31
|
Hussain M, Collier P, Moudgil R. Cardiovascular Complications in Major 21st Century Viral Epidemics and Pandemics: an Insight into COVID-19. Curr Cardiol Rev 2021; 17:e051121192897. [PMID: 33874873 PMCID: PMC8950501 DOI: 10.2174/1573403x17666210419113037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/23/2021] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
There have many major history-defining epidemics and pandemics in the 21st century. It is well known that acute infections can cause cardiovascular (CV) complications, especially in those with underlying cardiac disease. The variation in rates and types of CVD complications in major 21st century epidemics and pandemics varies greatly. The coronavirus disease 2019 (COVID-19) pandemic has caused the turmoil of the century and has COVID-19 has resulted in substantial human and economic loss. The novelty of COVID-19 and emerging CV effects is a new entity. In this review, we discuss the major epidemics and pandemics of the 21st century and associated CVD complications.
Collapse
Affiliation(s)
- Muzna Hussain
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA,Address correspondence to this author at the Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA; Tel: (216) 445-6546, Fax: (216) 445- 6159; E-mail:
| | - Patrick Collier
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Rohit Moudgil
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
32
|
Rizk JG, Wenziger C, Tran D, Hashemi L, Moradi H, Streja E, Ahluwalia A. Angiotensin-Converting Enzyme Inhibitor and Angiotensin Receptor Blocker Use Associated with Reduced Mortality and Other Disease Outcomes in US Veterans with COVID-19. Drugs 2021; 82:43-54. [PMID: 34914085 PMCID: PMC8675115 DOI: 10.1007/s40265-021-01639-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/29/2022]
Abstract
Objective To determine the association between angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) use and coronavirus disease 2019 (COVID-19) severity and outcomes in US veterans. Patients and Methods We retrospectively examined 27,556 adult US veterans who tested positive for COVID-19 between March to November 2020. Logistic regression and Cox proportional hazards models using propensity score (PS) for weight, adjustment, and matching were used to examine the odds of an event within 60 days following a COVID-19–positive case date and time to death, respectively, according to ACEI and/or ARB prescription within 6 months prior to the COVID-19–positive case date. Results The overlap PS weighted logistic regression model showed lower odds of an intensive care unit (ICU) admission (odds ratio [OR] 95% CI 0.77, 0.61–0.98) and death within 60 days (0.87, 0.79–0.97) with an ACEI or ARB prescription. Veterans with an ARB-only prescription also had lower odds of an ICU admission (0.64, 0.44–0.92). The overlap PS weighted model similarly showed a lower risk of time to all-cause mortality in veterans with an ACEI or ARB prescription (HR [95% CI]: 0.87, 0.79–0.97) and an ARB only prescription (0.78, 0.67–0.91). Veterans with an ACEI prescription had higher odds of experiencing a septic event within 60 days after the COVID-19–positive case date (1.22, 1.02–1.46). Conclusion In this study of a national cohort of US veterans, we found that the use of an ACEI/ARB in patients with COVID-19 was not associated with increased mortality and other worse outcomes. Future studies should examine underlying pathways and further confirm the relationship of ACEI prescription with sepsis. Supplementary Information The online version contains supplementary material available at 10.1007/s40265-021-01639-2.
Collapse
Affiliation(s)
- John G Rizk
- Arizona State University, Edson College, Phoenix, AZ, USA.,Department of Pharmaceutical Health Services Research, University of Maryland, Baltimore, MD, USA
| | - Cachet Wenziger
- Research, Tibor Rubin VA Medical Center, VA Long Beach Healthcare System, 5901 East 7th Street, Long Beach, CA, 90822, USA.,Division of Nephrology and Hypertension, Harold Simmons Center for Kidney Disease Research and Epidemiology, School of Medicine, University of California Irvine, Orange, CA, USA
| | - Diana Tran
- Research, Tibor Rubin VA Medical Center, VA Long Beach Healthcare System, 5901 East 7th Street, Long Beach, CA, 90822, USA.,Division of Nephrology and Hypertension, Harold Simmons Center for Kidney Disease Research and Epidemiology, School of Medicine, University of California Irvine, Orange, CA, USA
| | - Leila Hashemi
- Greater Los Angeles VA Medical Center, Los Angeles, CA, USA.,UCLA Geffen School of Medicine, Los Angeles, CA, USA
| | - Hamid Moradi
- Research, Tibor Rubin VA Medical Center, VA Long Beach Healthcare System, 5901 East 7th Street, Long Beach, CA, 90822, USA.,Division of Nephrology and Hypertension, Harold Simmons Center for Kidney Disease Research and Epidemiology, School of Medicine, University of California Irvine, Orange, CA, USA
| | - Elani Streja
- Research, Tibor Rubin VA Medical Center, VA Long Beach Healthcare System, 5901 East 7th Street, Long Beach, CA, 90822, USA. .,Division of Nephrology and Hypertension, Harold Simmons Center for Kidney Disease Research and Epidemiology, School of Medicine, University of California Irvine, Orange, CA, USA.
| | - Amrita Ahluwalia
- Research, Tibor Rubin VA Medical Center, VA Long Beach Healthcare System, 5901 East 7th Street, Long Beach, CA, 90822, USA.
| |
Collapse
|
33
|
Rabbani G, Ahn SN. Review: Roles of human serum albumin in prediction, diagnoses and treatment of COVID-19. Int J Biol Macromol 2021; 193:948-955. [PMID: 34673106 PMCID: PMC8520831 DOI: 10.1016/j.ijbiomac.2021.10.095] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022]
Abstract
The severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) keeps on destroying normal social integrity worldwide, bringing about extraordinary medical services, cultural and financial interruption. Individuals with diabetes have been demonstrated to be at higher risk of complications and even death when exposed to SARS-CoV-2. Regardless of pandemic scale infection, there is presently limited comprehension on the potential impact of SARS-CoV-2 on individuals with diabetes. Human serum albumin (HSA) is the most abundant circulating plasma protein in human serum and attracted more interest from researchers because most susceptible to non-enzymatic glycation reactions. Albumin down-regulates the expression of ACE2 that is the target receptor of COVID-19. Hypoalbuminemia, coagulopathy, and vascular disease have been connected in COVID-19 and appear to predict outcomes independent of age and morbidity. This review discusses the most recent evidence that the ACE/ACE2 ratio could influence by human serum albumin both the susceptibility of individuals to SARS-CoV-2 infection and the outcome of the COVID-19 disease.
Collapse
Affiliation(s)
- Gulam Rabbani
- Nano Diagnostics & Devices (NDD), B-312 IT-Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea.
| | - Saeyoung Nate Ahn
- Nano Diagnostics & Devices (NDD), B-312 IT-Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk 39253, Republic of Korea; Fuzbien Technology Institute, 13 Taft Court, Rockville, MD 20850, USA.
| |
Collapse
|
34
|
Almengló C, Couselo-Seijas M, Agra RM, Varela-Román A, García-Acuña JM, González-Peteiro M, González-Juanatey JR, Eiras S, Álvarez E. Soluble angiotensin-converting enzyme levels in heart failure or acute coronary syndrome: revisiting its modulation and prognosis value. J Mol Med (Berl) 2021; 99:1741-1753. [PMID: 34529122 PMCID: PMC8443916 DOI: 10.1007/s00109-021-02129-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 11/30/2022]
Abstract
The main objective was to compare the meaning of soluble angiotensin-converting enzyme-2 (sACE2) plasma levels modulation on the prognosis of two cohorts of heart failure (HF) and acute coronary syndrome (ACS). We conducted an observational clinical study where sACE2 was measured in two cohorts of HF or ACS (102 patients each), matched by age and gender. The primary endpoint (cardiac death) and the secondary endpoints (non-fatal myocardial infarction or HF readmission) were registered during a 5-year follow-up period. Association with pharmacotherapy was studied, and the effects of cardiovascular drugs on ACE isoforms expression were analysed in human umbilical vein endothelial cells (HUVEC) in vitro. The levels of sACE2 were significantly higher in the HF than ACS cohort. sACE2 was inversely related with the leukocytes number and directly with urea levels. In the ACS cohort, sACE2 was associated with age and glycaemic parameters, but in the HF cohort, the association was with N-terminal pro-B-type natriuretic peptide. The levels of sACE2 were related to long-term prognosis and confirmed as a non-independent predictor in the HF cohort. Soluble ACE2 was higher in patients treated with angiotensin receptors blockers and β-blockers, accordingly with losartan and metoprolol upregulation of ACE1 and ACE2 in HUVECs. Plasma levels of sACE2 were higher in HF than in ACS, independently of age and gender, and were related to long-term cardiac death in the HF cohort. Losartan and metoprolol, but not enalapril, upregulated ACE expression in endothelial cells, accordingly with higher levels of sACE2 in patients using these drugs.
Collapse
Affiliation(s)
- Cristina Almengló
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Marinela Couselo-Seijas
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Rosa M Agra
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
- CIBERCV, Madrid, Spain
- Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Alfonso Varela-Román
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
- CIBERCV, Madrid, Spain
- Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - José M García-Acuña
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
- CIBERCV, Madrid, Spain
- Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Mercedes González-Peteiro
- Departamento de Enfermería, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - José R González-Juanatey
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
- CIBERCV, Madrid, Spain
- Servicio de Cardiología y Unidad de Hemodinámica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
| | - Sonia Eiras
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain
- CIBERCV, Madrid, Spain
| | - Ezequiel Álvarez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Travesía da Choupana S/N, 15706, Santiago de Compostela, A Coruña, Spain.
- CIBERCV, Madrid, Spain.
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
35
|
Wang K, Gheblawi M, Nikhanj A, Munan M, MacIntyre E, O'Neil C, Poglitsch M, Colombo D, Del Nonno F, Kassiri Z, Sligl W, Oudit GY. Dysregulation of ACE (Angiotensin-Converting Enzyme)-2 and Renin-Angiotensin Peptides in SARS-CoV-2 Mediated Mortality and End-Organ Injuries. Hypertension 2021; 79:365-378. [PMID: 34844421 DOI: 10.1161/hypertensionaha.121.18295] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ACE (angiotensin-converting enzyme)-2 as the target for SARS-CoV-2 also negatively regulates the renin-angiotensin system. Pathological activation of ADAM17 (A disintegrin and metalloproteinase-17) may potentiate inflammation and diminish ACE2-mediated tissue protection through proteolytic shedding, contributing to SARS-CoV-2 pathogenesis. We aim to examine plasma soluble ACE2 and angiotensin profiles in relation to outcomes by enrolling consecutive patients admitted for COVID-19 with baseline blood collection at admission and repeated sampling at 7 days. The primary outcome was 90-day mortality, and secondary outcomes were the incidence of end-organ injuries. Overall, 242 patients were included, the median age was 63 (52-74) years, 155 (64.0%) were men, and 57 (23.6%) patients reached the primary end point. Baseline soluble ACE2 was elevated in COVID-19 but was not associated with disease severity or mortality. In contrast, an upward trajectory of soluble ACE2 at repeat sampling was independently associated with an elevated risk of mortality and incidence of acute myocardial injury and circulatory shock. Similarly, an increase in soluble tumor necrosis factor receptor levels was also associated with adverse outcomes. Plasma Ang I, Ang 1-7 (angiotensin 1-7) levels, and the Ang 1-7/Ang II (angiotensin II) ratio were elevated during SARS-CoV-2 infection related to downregulation of ACE activity at baseline. Moreover, patients having an upward trajectory of soluble ACE2 were characterized by an imbalance in the Ang 1-7/Ang II ratio. The observed dysregulation of ACE2 and angiotensin peptides with disease progression suggest a potential role of ADAM17 inhibition and enhancing the beneficial Ang 1-7/Mas axis to improve outcomes against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.)
| | - Mahmoud Gheblawi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.).,Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| | - Anish Nikhanj
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.)
| | - Matt Munan
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.)
| | - Erika MacIntyre
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.).,Division of Respirology, Department of Medicine, University of Alberta, Edmonton, Canada. (E.M.)
| | - Conar O'Neil
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada. (C.O., W.S.)
| | | | - Daniele Colombo
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani," IRCCS, Rome, Italy (D.C., F.D.N.)
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani," IRCCS, Rome, Italy (D.C., F.D.N.)
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, Canada. (M.M., E.M., W.S.).,Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Canada. (C.O., W.S.)
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada.(K.W., A.N., G.Y.O.).,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada. (K.W., M.G., A.N., G.Y.O.).,Department of Physiology, University of Alberta, Edmonton, Canada. (M.G., Z.K., G.Y.O.)
| |
Collapse
|
36
|
Rajtik T, Galis P, Bartosova L, Paulis L, Goncalvesova E, Klimas J. Alternative RAS in Various Hypoxic Conditions: From Myocardial Infarction to COVID-19. Int J Mol Sci 2021; 22:ijms222312800. [PMID: 34884604 PMCID: PMC8657827 DOI: 10.3390/ijms222312800] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Alternative branches of the classical renin–angiotensin–aldosterone system (RAS) represent an important cascade in which angiotensin 2 (AngII) undergoes cleavage via the action of the angiotensin-converting enzyme 2 (ACE2) with subsequent production of Ang(1-7) and other related metabolites eliciting its effects via Mas receptor activation. Generally, this branch of the RAS system is described as its non-canonical alternative arm with counterbalancing actions to the classical RAS, conveying vasodilation, anti-inflammatory, anti-remodeling and anti-proliferative effects. The implication of this branch was proposed for many different diseases, ranging from acute cardiovascular conditions, through chronic respiratory diseases to cancer, nonetheless, hypoxia is one of the most prominent common factors discussed in conjugation with the changes in the activity of alternative RAS branches. The aim of this review is to bring complex insights into the mechanisms behind the various forms of hypoxic insults on the activity of alternative RAS branches based on the different duration of stimuli and causes (acute vs. intermittent vs. chronic), localization and tissue (heart vs. vessels vs. lungs) and clinical relevance of studied phenomenon (experimental vs. clinical condition). Moreover, we provide novel insights into the future strategies utilizing the alternative RAS as a diagnostic tool as well as a promising pharmacological target in serious hypoxia-associated cardiovascular and cardiopulmonary diseases.
Collapse
Affiliation(s)
- Tomas Rajtik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
- Correspondence: ; Tel.: +42-12-501-17-391
| | - Peter Galis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Linda Bartosova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| | - Ludovit Paulis
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
| | - Eva Goncalvesova
- Department of Heart Failure, Clinic of Cardiology, National Institute of Cardiovascular Diseases, 831 01 Bratislava, Slovakia;
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia; (P.G.); (L.B.); (J.K.)
| |
Collapse
|
37
|
Pucci F, Annoni F, dos Santos RAS, Taccone FS, Rooman M. Quantifying Renin-Angiotensin-System Alterations in COVID-19. Cells 2021; 10:2755. [PMID: 34685735 PMCID: PMC8535134 DOI: 10.3390/cells10102755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
The renin-angiotensin system (RAS) plays a pivotal role in a wide series of physiological processes, among which inflammation and blood pressure regulation. One of its key components, the angiotensin-converting enzyme 2, has been identified as the entry point of the SARS-CoV-2 virus into the host cells, and therefore a lot of research has been devoted to study RAS dysregulation in COVID-19. Here we discuss the alterations of the regulatory RAS axes due to SARS-CoV-2 infection on the basis of a series of recent clinical investigations and experimental analyzes quantifying, e.g., the levels and activity of RAS components. We performed a comprehensive meta-analysis of these data in view of disentangling the links between the impaired RAS functioning and the pathophysiological characteristics of COVID-19. We also review the effects of several RAS-targeting drugs and how they could potentially help restore the normal RAS functionality and minimize the COVID-19 severity. Finally, we discuss the conflicting evidence found in the literature and the open questions on RAS dysregulation in SARS-CoV-2 infection whose resolution would improve our understanding of COVID-19.
Collapse
Affiliation(s)
- Fabrizio Pucci
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (F.A.); (F.S.T.)
| | | | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium; (F.A.); (F.S.T.)
| | - Marianne Rooman
- 3BIO—Computational Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
- (IB)—Interuniversity Institute of Bioinformatics in Brussels, 1050 Brussels, Belgium
| |
Collapse
|
38
|
Suleiman A, Rafaa T, Alrawi A, Dawood M. The impact of ACE2 genetic polymorphisms (rs2106809 and rs2074192) on gender susceptibility to COVID-19 infection and recovery: A systematic review. BAGHDAD JOURNAL OF BIOCHEMISTRY AND APPLIED BIOLOGICAL SCIENCES 2021. [DOI: 10.47419/bjbabs.v2i03.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background: Epidemiological studies revealed there is a difference in susceptibility to infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) because of differences in gender with age and males being more inflicted. There is a clear indication that deaths caused by coronavirus disease 2019 (COVID-19) in males appeared at a higher rate than females across 35 nations. The implication of associated disease-risk genes, involved in the susceptibility of COVID-19 such as the angiotensin-converting enzyme 2 (ACE2), has recently received considerable attention due to their role in severe injury of lung and mediated SARS-CoV-2 entry as a host receptor.
Objectives: Herein, we aimed to systematically review how two main genetic polymorphisms of ACE2 (rs2106809 and rs2074192) can affect the gender susceptibility to SARS-CoV-2 infection.
Methods: To conduct this systematic review, a literature search in PubMed, Google Scholar, ScienceDirect, and Nature was made for the period 2004 to 2020. We searched for the impact of ACE2 genetic polymorphisms (rs2106809 and rs2074192) on gender susceptibility.
Results: We noticed that there was a differential genotype distribution between males and females in various global populations whereas mutant variants were common in males compared to wild-type variants among females, which may reflect differences in gender susceptibility to infection with SARS-CoV-2. Females are less susceptible to coronavirus as compare to males because of the expression of ACE2 receptor. It has a double role in favour of COVID-19 and against COVID-19.
Conclusions: Male mortality is greater than female mortality, which might be attributed to the ACE2 deficiency in women. Epidemiological studies have shown that the differences in sex and age have different susceptibility to SARS-CoV-2 infection.
Collapse
|
39
|
Amin MS, Wozniak M, Barbaric L, Pickard S, Yerrabelli RS, Christensen A, Coiado OC. Experimental Technologies in the Diagnosis and Treatment of COVID-19 in Patients with Comorbidities. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2021; 6:48-71. [PMID: 34541448 PMCID: PMC8442516 DOI: 10.1007/s41666-021-00106-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has impacted the whole world and raised concerns about its effects on different human organ systems. Early detection of COVID-19 may significantly increase the rate of survival; thus, it is critical that the disease is detected early. Emerging technologies have been used to prevent, diagnose, and manage COVID-19 among the populace in the USA and globally. Numerous studies have revealed the growing implementation of novel engineered systems during the intervention at various points of the disease’s pathogenesis, especially as it relates to comorbidities and complications related to cardiovascular and respiratory organ systems. In this review, we provide a succinct, but extensive, review of the pathogenesis of COVID-19, particularly as it relates to angiotensin-converting enzyme 2 (ACE2) as a viral entry point. This is followed by a comprehensive analysis of cardiovascular and respiratory comorbidities of COVID-19 and novel technologies that are used to diagnose and manage hospitalized patients. Continuous cardiorespiratory monitoring systems, novel machine learning algorithms for rapidly triaging patients, various imaging modalities, wearable immunosensors, hotspot tracking systems, and other emerging technologies are reviewed. COVID-19 effects on the immune system, associated inflammatory biomarkers, and innovative therapies are also assessed. Finally, with emphasis on the impact of wearable and non-wearable systems, this review highlights future technologies that could help diagnose, monitor, and mitigate disease progression. Technologies that account for an individual’s health conditions, comorbidities, and even socioeconomic factors can drastically reduce the high mortality seen among many COVID-19 patients, primarily via disease prevention, early detection, and pertinent management.
Collapse
Affiliation(s)
- Md Shahnoor Amin
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801 USA.,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Lidija Barbaric
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Shanel Pickard
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Rahul S Yerrabelli
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Anton Christensen
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Olivia C Coiado
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA.,Department of Bioengineering, University of Illinois At Urbana-Champaign, Urbana, IL 61801 USA.,Carle Illinois College of Medicine, 1406 W. Green St, Urbana, IL 61801 USA
| |
Collapse
|
40
|
Which ones, when and why should renin-angiotensin system inhibitors work against COVID-19? Adv Biol Regul 2021; 81:100820. [PMID: 34419773 PMCID: PMC8359569 DOI: 10.1016/j.jbior.2021.100820] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022]
Abstract
The article describes the possible pathophysiological origin of COVID-19 and the crucial role of renin-angiotensin system (RAS), providing several “converging” evidence in support of this hypothesis. SARS-CoV-2 has been shown to initially upregulate ACE2 systemic activity (early phase), which can subsequently induce compensatory responses leading to upregulation of both arms of the RAS (late phase) and consequently to critical, advanced and untreatable stages of COVID-19 disease. The main and initial actors of the process are ACE2 and ADAM17 zinc-metalloproteases, which, initially triggered by SARS-CoV-2 spike proteins, work together in increasing circulating Ang 1–7 and Ang 1–9 peptides and downstream (Mas and Angiotensin type 2 receptors) pathways with anti-inflammatory, hypotensive and antithrombotic activities. During the late phase of severe COVID-19, compensatory secretion of renin and ACE enzymes are subsequently upregulated, leading to inflammation, hypertension and thrombosis, which further sustain ACE2 and ADAM17 upregulation. Based on this hypothesis, COVID-19-phase-specific inhibition of different RAS enzymes is proposed as a pharmacological strategy against COVID-19 and vaccine-induced adverse effects. The aim is to prevent the establishment of positive feedback-loops, which can sustain hyperactivity of both arms of the RAS independently of viral trigger and, in some cases, may lead to Long-COVID syndrome.
Collapse
|
41
|
Tsukamoto S, Wakui H, Azushima K, Yamaji T, Urate S, Suzuki T, Abe E, Tanaka S, Taguchi S, Yamada T, Kinguchi S, Kamimura D, Yamashita A, Sano D, Nakano M, Hashimoto T, Tamura K. Tissue-specific expression of the SARS-CoV-2 receptor, angiotensin-converting enzyme 2, in mouse models of chronic kidney disease. Sci Rep 2021; 11:16843. [PMID: 34413390 PMCID: PMC8377123 DOI: 10.1038/s41598-021-96294-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Elevated angiotensin-converting enzyme 2 (ACE2) expression in organs that are potential targets of severe acute respiratory syndrome coronavirus 2 may increase the risk of coronavirus disease 2019 (COVID-19) infection. Previous reports show that ACE2 alter its tissue-specific expression patterns under various pathological conditions, including renal diseases. Here, we examined changes in pulmonary ACE2 expression in two mouse chronic kidney disease (CKD) models: adenine-induced (adenine mice) and aristolochic acid-induced (AA mice). We also investigated changes in pulmonary ACE2 expression due to renin-angiotensin system (RAS) blocker (olmesartan) treatment in these mice. Adenine mice showed significant renal functional decline and elevated blood pressure, compared with controls. AA mice also showed significant renal functional decline, compared with vehicles; blood pressure did not differ between groups. Renal ACE2 expression was significantly reduced in adenine mice and AA mice; pulmonary expression was unaffected. Olmesartan attenuated urinary albumin excretion in adenine mice, but did not affect renal or pulmonary ACE2 expression levels. The results suggest that the risk of COVID-19 infection may not be elevated in patients with CKD because of their stable pulmonary ACE2 expression. Moreover, RAS blockers can be used safely in treatment of COVID-19 patients with CKD.
Collapse
Affiliation(s)
- Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takahiro Yamaji
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Shingo Urate
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Toru Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Takayuki Yamada
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Medicine, Mount Sinai Beth Israel, New York, NY, USA
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Daisuke Kamimura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Daisuke Sano
- Department of Otorhinolaryngology, Head and Neck Surgery, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Masayuki Nakano
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Tatsuo Hashimoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Internal Medicine, Kanagawa Dental University, Yokosuka, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
42
|
Chen Z, Xu W, Ma W, Shi X, Li S, Hao M, Fang Y, Zhang L. Clinical laboratory evaluation of COVID-19. Clin Chim Acta 2021; 519:172-182. [PMID: 33939954 PMCID: PMC8086377 DOI: 10.1016/j.cca.2021.04.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is a highly infectious disease, and clinical laboratory detection has played important roles in its diagnosis and in evaluating progression of the disease. Nucleic acid amplification testing or gene sequencing can serve as pathogenic evidence of COVID-19 diagnosing for clinically suspected cases, and dynamic monitoring of specific antibodies (IgM, IgA, and IgG) is an effective complement for false-negative detection of SARS-CoV-2 nucleic acid. Antigen tests to identify SARS-CoV-2 are recommended in the first week of infection, which is associated with high viral loads. Additionally, many clinical laboratory indicators are abnormal as the disease evolves. For example, from moderate to severe and critical cases, leukocytes, neutrophils, and the neutrophil-lymphocyte ratio increase; conversely, lymphocytes decrease progressively but are over activated. LDH, AST, ALT, CK, high-sensitivity troponin I, and urea also increase progressively, and increased D-dimer is an indicator of severe disease and an independent risk factor for death. Severe infection leads to aggravation of inflammation. Inflammatory biomarkers and cytokines, such as CRP, SAA, ferritin, IL-6, and TNF-α, increase gradually. High-risk COVID-19 patients with severe disease, such as the elderly and those with underlying diseases (cardiovascular disease, diabetes, chronic respiratory disease, hypertension, obesity, and cancer), should be monitored dynamically, which will be helpful as an early warning of serious diseases.
Collapse
Affiliation(s)
- Zhufeng Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Wanju Xu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Xiaohong Shi
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Shuomin Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Mingju Hao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China
| | - Yuanxun Fang
- Rural Vitalization Research Institute of Qilu, Shandong Agriculture and Engineering University, Jinan, PR China
| | - Li Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, PR China.
| |
Collapse
|
43
|
Gupta VK, Murthy MK, Patil S. Can Host Cell Proteins Like ACE2, ADAM17, TMPRSS2, Androgen Receptor be the Efficient Targets in SARS-CoV-2 Infection? Curr Drug Targets 2021; 22:1149-1157. [PMID: 33243116 DOI: 10.2174/1389450121999201125201112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
A novel betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV- -2), which caused a large disease outbreak in Wuhan, China in December 2019, is currently spreading across the world. Along with binding of the virus spike with the host cell receptor, fusion of the viral envelope with host cell membranes is a critical step in establishing successful infection of SARS-CoV-2. In this entry process, a diversity of host cell proteases and androgen receptor play a very important role directly or indirectly. These features of SARS-CoV-2 entry contribute to its rapid spread and severe symptoms, high fatality rates among infected patients. This review is based on the latest published literature including review articles, research articles, hypothetical manuscript, preprint articles and official documents. The literature search was made from various published papers on physiological aspects relevant to SARS-CoV and SARS-CoV-2. In this report, we focus on the role of host cell proteases (ACE2, ADAM17, TMPRSS2) and androgen receptor (AR) in SARS-CoV-2 infection. The hypotheses put forth by us are based on the role played by the proteases ACE2, ADAM17, TMPRSS2 and AR in SARS-CoV-2 infection, which were deduced based on various studies. We have also summarized how these host proteins increase the pathology and the infective ability of SARS-CoV-2 and we posit that their inhibition may be a therapeutic option for preventing SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Vivek K Gupta
- Department of Biochemistry, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra-282004, India
| | - Madhan K Murthy
- Department of Immunology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra-282004, India
| | - Shripad Patil
- Department of Immunology, ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra-282004, India
| |
Collapse
|
44
|
Impact of Smoking-Related Chronic Obstruction Pulmonary Disease on Mortality of Invasive Ductal Carcinoma Patients Receiving Standard Treatments: Propensity Score-Matched, Nationwide, Population-Based Cohort Study. Cancers (Basel) 2021; 13:cancers13153654. [PMID: 34359556 PMCID: PMC8345139 DOI: 10.3390/cancers13153654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary This study is the first to estimate the impact of smoking-related chronic obstructive pulmonary disease (COPD) on invasive ductal carcinoma (IDC) patients receiving standard treatments. Smoking-related COPD was not a significant independent risk factor for all-cause mortality in women with stage I–III IDC receiving standard treatments. The frequency of hospitalization for COPD with at least one acute exacerbation within one year before breast surgery was highly associated with high mortality for women with IDC receiving standard treatments. Abstract Purpose: the survival effect of smoking-related chronic obstructive pulmonary disease (COPD) and COPD with acute exacerbation (COPDAE) is unclear for patients with invasive ductal carcinoma (IDC) receiving standard treatments. Methods: we recruited women with clinical stage I–III IDC from the Taiwan Cancer Registry Database who had received standard treatments between 1 January 2009 and 31 December 2018. The time-dependent Cox proportional hazards model was used to analyze all-cause mortality. To reduce the effects of potential confounders when all-cause mortality between Groups 1 and 2 were compared, 1:2 propensity score matching (PSM) was performed. We categorized the patients into two groups based on COPD status to compare overall survival outcomes: Group 1 (current smokers with COPD) and Group 2 (nonsmokers without COPD group). Results: PSM yielded 2319 patients with stage I–III IDC (773 and 1546 in Groups 1 and 2, respectively) eligible for further analysis. In the multivariate time-dependent Cox regression analyses, the adjusted hazard ratio (aHR; 95% confidence interval (CI)) of all-cause mortality for Group 1 compared with Group 2 was 1.04 (0.83–1.22). The aHRs (95% CIs) of all-cause mortality for ≥1 hospitalization for COPDAE within one year before breast surgery was 1.51 (1.18–2.36) compared with no COPDAE. Conclusion: smoking-related COPD was not a significant independent risk factor for all-cause mortality in women with stage I–III IDC receiving standard treatments. Being hospitalized at least once for COPDAE within one year before breast surgery is highly associated with high mortality for women with IDC receiving standard treatments. The severity of smoking-related COPD before treatments for breast cancer might be an important prognostic factor of survival. Thus, the information of the severity of COPD before treatment for breast cancer might be valuable for increasing the survival rate in treatment of breast cancer, especially in the prevention of progress from COPD to COPDAE.
Collapse
|
45
|
Veluswamy P, Wacker M, Stavridis D, Reichel T, Schmidt H, Scherner M, Wippermann J, Michels G. The SARS-CoV-2/Receptor Axis in Heart and Blood Vessels: A Crisp Update on COVID-19 Disease with Cardiovascular Complications. Viruses 2021; 13:1346. [PMID: 34372552 PMCID: PMC8310117 DOI: 10.3390/v13071346] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.
Collapse
Affiliation(s)
- Priya Veluswamy
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Max Wacker
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Dimitrios Stavridis
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Thomas Reichel
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Hendrik Schmidt
- Department of Cardiology, Diabetology and Infectiology, Klinikum Magdeburg, 39130 Magdeburg, Germany; (T.R.); (H.S.)
| | - Maximilian Scherner
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Jens Wippermann
- Heart Surgery Research, Department of Cardiothoracic Surgery, Faculty of Medicine, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.W.); (D.S.); (M.S.); (J.W.)
| | - Guido Michels
- Department of Acute and Emergency Care, Sankt Antonius-Hospital Eschweiler, 52249 Eschweiler, Germany;
| |
Collapse
|
46
|
Kaur G, Yogeswaran S, Muthumalage T, Rahman I. Persistently Increased Systemic ACE2 Activity Is Associated With an Increased Inflammatory Response in Smokers With COVID-19. Front Physiol 2021; 12:653045. [PMID: 34122129 PMCID: PMC8194708 DOI: 10.3389/fphys.2021.653045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Tobacco smoking is known to be involved in the pathogenesis of several cardiopulmonary diseases. Additionally, smokers are highly susceptible to infectious agents due to weakened immunity. However, the progression of lung injury based on SARS-CoV-2-mediated COVID-19 pathogenesis amongst smokers and those with pre-existing pulmonary diseases is not known. We determined the systemic levels and activity of COVID-19 associated proteins, cytokine/chemokines, and lipid mediators (lipidomics) amongst COVID-19 patients with and without a history of smoking to understand the underlying susceptible factor in the pathogenesis of COVID-19. Methods: We obtained serum from healthy (CoV−), COVID-19 positive (CoV+), and COVID-19 recovered (CoV Rec) subjects with and without a history of smoking. We conducted a Luminex multiplex assay (cytokine levels), LC/MS (eicosanoids or oxylipin panel), and ACE2 enzymatic activity assays on the serum samples to determine the systemic changes in COVID-19 patients. Results: On comparing the levels of serum ACE2 amongst COVID-19 (positive and recovered) patients and healthy controls, we found a pronounced increase in serum ACE2 levels in patients with COVID-19 infection. Furthermore, ACE2 enzyme activity was significantly increased amongst COVID-19 patients with a smoking history. Also, we analyzed the levels of Angiotensin 1–7 (Ang1–7) peptide, the product of enzymatic action of ACE2, in the serum samples. We found significantly high levels of Ang1–7 in the serum of both CoV+ and CoV Rec patients. Our data further demonstrated a smoking-induced increase in serum furin and inflammatory cytokine [IFNγ(p = 0.0836), Eotaxin (p < 0.05), MCP-1 (p < 0.05), and IL-9 (p = 0.0991)] levels in COVID-19 patients as compared to non-smoking controls. Overall, our results show that smoking adversely affects the levels of systemic inflammatory markers and COVID-19 associated proteins, thus suggesting that COVID-19 infection may have severe outcomes amongst smokers.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Shaiesh Yogeswaran
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
47
|
Kim KH, Choi BG, Rha SW, Choi CU, Jeong MH. Impact of renin angiotensin system inhibitor on 3-year clinical outcomes in acute myocardial infarction patients with preserved left ventricular systolic function: a prospective cohort study from Korea Acute Myocardial Infarction Registry (KAMIR). BMC Cardiovasc Disord 2021; 21:251. [PMID: 34020593 PMCID: PMC8140424 DOI: 10.1186/s12872-021-02070-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Patients with acute myocardial infarction (AMI) are usually treated with angiotensin-converting enzyme inhibitors (ACEIs), or angiotensin receptor blockers (ARBs) if ACEIs are not tolerated. However, there is no data regarding the impact of switching from ACEIs to ARBs on long-term clinical outcomes in AMI patients with preserved left ventricular (LV) systolic function especially beyond 1 year. To investigate the effectiveness of treatment with ACEIs or ARBs on clinical outcomes over 3 years in AMI patients with preserved LV systolic function following percutaneous coronary intervention. METHOD It is a prospective cohort study using data from a nationwide large scale registry with 53 hospitals involved in treatment of acute myocardial infarction (AMI) in Korea. Between March 2011 and September 2015, we enrolled 6236 patients with AMI who underwent primary percutaneous coronary intervention and had a left ventricular ejection fraction ≥ 50%. Main outcome measures composite of total death or recurrent AMI over 3 years after AMI. Patients were divided into an ACEI group (n = 2945), ARB group (n = 2197), or no renin-angiotensin system inhibitor (RASI) treatment (n = 1094). We analyzed patients who changed treatment. Inverse probability of treatment weighting (IPTW) analysis was also performed. RESULTS After the adjustment with inverse probability weighting, the primary endpoints at 1 year, AMI patients receiving ACEIs showed overall better outcomes than ARBs [ARBs hazard ratio (HR) compared with ACEIs 1.384, 95% confidence interval (CI) 1.15-1.71; P = 0.003]. However, 33% of patients receiving ACEIs switched to ARBs during the first year, while only about 1.5% switched from ARBs to ACEIs. When landmark analysis was performed from 1 year to the end of the study, RASI group showed a 31% adjusted reduction in primary endpoint compared to patients with no RASI group (HR, 0.74; 95% CI 0.56-0.97; P = 0.012). CONCLUSIONS This result suggests that certain patients got benefit from treatment with ACEIs in the first year if tolerated, but switching to ARBs beyond the first year produced similar outcomes. RASI beyond the first year reduced death or recurrent AMI in AMI patients with preserved LV systolic function. CRIS Registration number: KCT0004990.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Cardiovascular Center, Incheon Sejong Hospital, Incheon, South Korea
| | - Byoung Geol Choi
- Cardiovascular Research Institute, University, Seoul, South Korea
| | - Seung-Woon Rha
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 08308, South Korea.
| | - Cheol Ung Choi
- Cardiovascular Center, Korea University Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 08308, South Korea
| | - Myung-Ho Jeong
- Division of Cardiology, Department of Medicine, Chonnam National University Hospital, Gwangju, South Korea
| |
Collapse
|
48
|
Patel SK, Juno JA, Lee WS, Wragg KM, Hogarth PM, Kent SJ, Burrell LM. Plasma ACE2 activity is persistently elevated following SARS-CoV-2 infection: implications for COVID-19 pathogenesis and consequences. Eur Respir J 2021; 57:13993003.03730-2020. [PMID: 33479113 PMCID: PMC7830336 DOI: 10.1183/13993003.03730-2020] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/03/2021] [Indexed: 12/02/2022]
Abstract
Coronavirus disease 2019 (COVID-19) causes persistent endothelial inflammation, lung, cardiovascular, kidney and neurological complications, and thromboembolic phenomena of unclear pathogenesis [1]. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) utilises the catalytic site of full-length membrane-bound angiotensin converting enzyme 2 (ACE2) for host cell entry [2], which is thought to downregulate membrane-bound ACE2, and thus contribute to ongoing inflammation due to loss of a degradative pathway for angiotensin II. In healthy individuals, ACE2 exists primarily in its membrane-bound form with very low levels of the catalytically active ectodomain of ACE2 present in the circulation [3]. However, in patients with cardiovascular disease, there is increased “shedding” of ACE2, and higher circulating levels are associated with downregulation of membrane-bound ACE2 [4]. Plasma ACE2 activity is persistently elevated in patients after COVID-19 infection. Larger studies are needed to determine if this identifies people at risk of prolonged illness following COVID-19.https://bit.ly/2XQlrYF
Collapse
Affiliation(s)
- Sheila K Patel
- Dept of Medicine, Austin Health, University of Melbourne, Melbourne, Australia.,Contributed equally
| | - Jennifer A Juno
- Dept of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Contributed equally
| | - Wen Shi Lee
- Dept of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kathleen M Wragg
- Dept of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, Australia
| | - Stephen J Kent
- Dept of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,S.J. Kent and L.M. Burrell contributed equally to this article as lead authors and supervised the work
| | - Louise M Burrell
- Dept of Medicine, Austin Health, University of Melbourne, Melbourne, Australia .,S.J. Kent and L.M. Burrell contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
49
|
COVID-19 in Patients with Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:243-261. [PMID: 33973183 DOI: 10.1007/978-3-030-63761-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hypertension has been listed in several case series and retrospective cohorts as a potential risk factor for the incidence and severity of the new coronavirus (SARS-CoV-2)-associated disease (COVID-19). The debate is noteworthy because almost one billion people around the globe are estimated to have hypertensive diseases, according to the Global Burden of Disease study. Considering the SARS-CoV-2's high infectivity rates, a possible interaction between COVID-19 and hypertension is worrisome. Additionally, antihypertensive drugs, especially the renin-angiotensin-aldosterone system (RAAS) inhibitors, could also influence the natural course of COVID-19 infection. Not only can these associations hold from an epidemiologic standpoint, a mechanistic scenario possibly exists. Hypertension and antihypertensive drugs can increase the expression of transmembrane angiotensin-converting enzyme (ACE)-2 receptors, the entry target of the viruses, thus facilitating infectivity. On the other hand, an increase in ACE-2 could be protective considering the anti-inflammatory, antithrombotic effects of the ACE-2-angiotensin 1-7/Mas pathway. So far, little is known about the whole picture. Observational studies appear to indicate at least a twofold increased risk of mortality for hypertensive patients with COVID-19; however, the previous and continued use of RAAS inhibitors may be protective in this subgroup of patients. The scarcity of randomized clinical trials precludes evidence-based decision-making. At least one randomized study in a non-specified sub-analysis demonstrated no relationship between an angiotensin-converting enzyme inhibitor and incidence or severity of the disease. It is reflected mainly by observational studies and, therefore, by international cardiology societies' guidelines, which state that antihypertensive drugs, particularly RAAS inhibitors, should not be discontinued unless necessary on a case-by-case basis.
Collapse
|
50
|
Hsien HC, Casarini DE, Carvalhaes JTDA, Ronchi FA, Oliveira LCGD, Braga JAP. Levels of angiotensin-converting enzyme 1 and 2 in serum and urine of children with Sickle Cell Disease. ACTA ACUST UNITED AC 2021; 43:303-310. [PMID: 33973994 PMCID: PMC8428630 DOI: 10.1590/2175-8239-jbn-2020-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/11/2021] [Indexed: 11/21/2022]
Abstract
Introduction: Sickle cell nephropathy begins in childhood and presents early increases in
glomerular filtration, which, over the long term, can lead to chronic renal
failure. Several diseases have increased circulating and urinary
angiotensin-converting enzyme (ACE) activity, but there is little
information about changes in ACEs activity in children with sickle cell
disease (SCD). Objective: We examined circulating and urinary ACE 1 activity in children with SCD. Methods: This cross-sectional study compared children who were carriers of SCD with
children who comprised a control group (CG). Serum and urinary activities of
ACE were evaluated, as were biochemical factors, urinary album/creatinine
rates, and estimated glomerular filtration rate. Results: Urinary ACE activity was significantly higher in patients with SCD than in
healthy children (median 0.01; range 0.00-0.07 vs median 0.00; range
0.00-0.01 mU/mL·creatinine, p < 0.001. No significant difference in serum
ACE activities between the SCD and CG groups was observed (median 32.25;
range 16.2-59.3 vs median 40.9; range 18.0-53.4) mU/m`L·creatinine, p <
0.05. Conclusion: Our data revealed a high urinary ACE 1 activity, different than plasmatic
level, in SCD patients suggesting a dissociation between the intrarenal and
systemic RAAS. The increase of urinary ACE 1 activity in SCD patients
suggests higher levels of Ang II with a predominance of classical RAAS axis,
that can induce kidney damage.
Collapse
Affiliation(s)
- Ho Chi Hsien
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Disciplina de Nefrologia, São Paulo, SP, Brasil
| | - Dulce Elena Casarini
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina, Disciplina de Nefrologia, São Paulo, SP, Brasil
| | - João Tomas de Abreu Carvalhaes
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Disciplina de Nefrologia, São Paulo, SP, Brasil
| | - Fernanda Aparecida Ronchi
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Pediatria, Disciplina de Nefrologia, São Paulo, SP, Brasil
| | | | | |
Collapse
|