1
|
Coll NS, Moreno-Risueno M, Strader LC, Goodnight AV, Sozzani R. Advancing our understanding of root development: Technologies and insights from diverse studies. PLANT PHYSIOLOGY 2025; 197:kiae605. [PMID: 39688896 DOI: 10.1093/plphys/kiae605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/17/2024] [Indexed: 12/18/2024]
Abstract
Understanding root development is critical for enhancing plant growth and health, and advanced technologies are essential for unraveling the complexities of these processes. In this review, we highlight select technological innovations in the study of root development, with a focus on the transformative impact of single-cell gene expression analysis. We provide a high-level overview of recent advancements, illustrating how single-cell RNA sequencing (scRNA-seq) has become a pivotal tool in plant biology. scRNA-seq has revolutionized root biology by enabling detailed, cell-specific analysis of gene expression. This has allowed researchers to create comprehensive root atlases, predict cell development, and map gene regulatory networks (GRNs) with unprecedented precision. Complementary technologies, such as multimodal profiling and bioinformatics, further enrich our understanding of cellular dynamics and gene interactions. Innovations in imaging and modeling, combined with genetic tools like CRISPR, continue to deepen our knowledge of root formation and function. Moreover, the integration of these technologies with advanced biosensors and microfluidic devices has advanced our ability to study plant-microbe interactions and phytohormone signaling at high resolution. These tools collectively provide a more comprehensive understanding of root system architecture and its regulation by environmental factors. As these technologies evolve, they promise to drive further breakthroughs in plant science, with substantial implications for agriculture and sustainability.
Collapse
Affiliation(s)
- Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra 08193, Barcelona, Spain
- Department of Genetics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Miguel Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas (Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-CSIC (INIA-CSIC)), 28223 Madrid, Spain
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Alexandra V Goodnight
- N.C. Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27607, USA
| | - Rosangela Sozzani
- N.C. Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27607, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
2
|
Jiang X, Peng Z, Zhang J. Starting with screening strains to construct synthetic microbial communities (SynComs) for traditional food fermentation. Food Res Int 2024; 190:114557. [PMID: 38945561 DOI: 10.1016/j.foodres.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
With the elucidation of community structures and assembly mechanisms in various fermented foods, core communities that significantly influence or guide fermentation have been pinpointed and used for exogenous restructuring into synthetic microbial communities (SynComs). These SynComs simulate ecological systems or function as adjuncts or substitutes in starters, and their efficacy has been widely verified. However, screening and assembly are still the main limiting factors for implementing theoretic SynComs, as desired strains cannot be effectively obtained and integrated. To expand strain screening methods suitable for SynComs in food fermentation, this review summarizes the recent research trends in using SynComs to study community evolution or interaction and improve the quality of food fermentation, as well as the specific process of constructing synthetic communities. The potential for novel screening modalities based on genes, enzymes and metabolites in food microbial screening is discussed, along with the emphasis on strategies to optimize assembly for facilitating the development of synthetic communities.
Collapse
Affiliation(s)
- Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Wang C, Qiu J, Liu M, Wang Y, Yu Y, Liu H, Zhang Y, Han L. Microfluidic Biochips for Single-Cell Isolation and Single-Cell Analysis of Multiomics and Exosomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401263. [PMID: 38767182 PMCID: PMC11267386 DOI: 10.1002/advs.202401263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Single-cell multiomic and exosome analyses are potent tools in various fields, such as cancer research, immunology, neuroscience, microbiology, and drug development. They facilitate the in-depth exploration of biological systems, providing insights into disease mechanisms and aiding in treatment. Single-cell isolation, which is crucial for single-cell analysis, ensures reliable cell isolation and quality control for further downstream analyses. Microfluidic chips are small lightweight systems that facilitate efficient and high-throughput single-cell isolation and real-time single-cell analysis on- or off-chip. Therefore, most current single-cell isolation and analysis technologies are based on the single-cell microfluidic technology. This review offers comprehensive guidance to researchers across different fields on the selection of appropriate microfluidic chip technologies for single-cell isolation and analysis. This review describes the design principles, separation mechanisms, chip characteristics, and cellular effects of various microfluidic chips available for single-cell isolation. Moreover, this review highlights the implications of using this technology for subsequent analyses, including single-cell multiomic and exosome analyses. Finally, the current challenges and future prospects of microfluidic chip technology are outlined for multiplex single-cell isolation and multiomic and exosome analyses.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Jiaoyan Qiu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Mengqi Liu
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yihe Wang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Yang Yu
- Department of PeriodontologySchool and Hospital of StomatologyCheeloo College of MedicineShandong UniversityJinan250100China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Yu Zhang
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
| | - Lin Han
- Institute of Marine Science and TechnologyShandong UniversityQingdao266237China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence ApplicationJinan250100China
| |
Collapse
|
4
|
Fang W, Liu X, Maiga M, Cao W, Mu Y, Yan Q, Zhu Q. Digital PCR for Single-Cell Analysis. BIOSENSORS 2024; 14:64. [PMID: 38391982 PMCID: PMC10886679 DOI: 10.3390/bios14020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Single-cell analysis provides an overwhelming strategy for revealing cellular heterogeneity and new perspectives for understanding the biological function and disease mechanism. Moreover, it promotes the basic and clinical research in many fields at a single-cell resolution. A digital polymerase chain reaction (dPCR) is an absolute quantitative analysis technology with high sensitivity and precision for DNA/RNA or protein. With the development of microfluidic technology, digital PCR has been used to achieve absolute quantification of single-cell gene expression and single-cell proteins. For single-cell specific-gene or -protein detection, digital PCR has shown great advantages. So, this review will introduce the significance and process of single-cell analysis, including single-cell isolation, single-cell lysis, and single-cell detection methods, mainly focusing on the microfluidic single-cell digital PCR technology and its biological application at a single-cell level. The challenges and opportunities for the development of single-cell digital PCR are also discussed.
Collapse
Affiliation(s)
- Weibo Fang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
| | - Xudong Liu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
| | - Mariam Maiga
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
| | - Wenjian Cao
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
| | - Qiang Yan
- Department of Hepatobiliary and Pancreatic Surgery, Huzhou Central Hospital, Huzhou Key Laboratory of Intelligent and Digital Precision Surgery, Department of General Surgery, Affiliated Huzhou Hospital, School of Medicine, Zhejiang University, Huzhou 313000, China
| | - Qiangyuan Zhu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China; (W.F.); (X.L.); (M.M.); (W.C.); (Y.M.)
- Huzhou Institute of Zhejiang University, Huzhou 313002, China
| |
Collapse
|
5
|
Madhu B, Miller BM, Levy M. Single-cell analysis and spatial resolution of the gut microbiome. Front Cell Infect Microbiol 2023; 13:1271092. [PMID: 37860069 PMCID: PMC10582963 DOI: 10.3389/fcimb.2023.1271092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
Over the past decade it has become clear that various aspects of host physiology, metabolism, and immunity are intimately associated with the microbiome and its interactions with the host. Specifically, the gut microbiome composition and function has been shown to play a critical role in the etiology of different intestinal and extra-intestinal diseases. While attempts to identify a common pattern of microbial dysbiosis linked with these diseases have failed, multiple studies show that bacterial communities in the gut are spatially organized and that disrupted spatial organization of the gut microbiome is often a common underlying feature of disease pathogenesis. As a result, focus over the last few years has shifted from analyzing the diversity of gut microbiome by sequencing of the entire microbial community, towards understanding the gut microbiome in spatial context. Defining the composition and spatial heterogeneity of the microbiome is critical to facilitate further understanding of the gut microbiome ecology. Development in single cell genomics approach has advanced our understanding of microbial community structure, however, limitations in approaches exist. Single cell genomics is a very powerful and rapidly growing field, primarily used to identify the genetic composition of microbes. A major challenge is to isolate single cells for genomic analyses. This review summarizes the different approaches to study microbial genomes at single-cell resolution. We will review new techniques for microbial single cell sequencing and summarize how these techniques can be applied broadly to answer many questions related to the microbiome composition and spatial heterogeneity. These methods can be used to fill the gaps in our understanding of microbial communities.
Collapse
Affiliation(s)
| | | | - Maayan Levy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Zhang L, Zhang D, Tang H, Zhu Y, Liu H, Yu R. Bacteria Wear ICG Clothes for Rapid Detection of Intracranial Infection in Patients After Neurosurgery and Photothermal Antibacterial Therapy Against Streptococcus Mutans. Front Bioeng Biotechnol 2022; 10:932915. [PMID: 35875493 PMCID: PMC9298881 DOI: 10.3389/fbioe.2022.932915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial infection is one of the most serious physiological conditions threatening human health. There is an increasing demand for more effective bacterial diagnosis and treatment through non-invasive approaches. Among current antibacterial strategies of non-invasive approaches, photothermal antibacterial therapy (PTAT) has pronounced advantages with properties of minor damage to normal tissue and little chance to trigger antimicrobial resistance. Therefore, we developed a fast and simple strategy that integrated the sensitive detection and photothermal therapy of bacteria by measuring adenosine triphosphate (ATP) bioluminescence following targeted photothermal lysis. First, 3-azido-d-alanine (d-AzAla) is selectively integrated into the cell walls of bacteria, photosensitizer dibenzocyclooctyne, and double sulfonic acid-modified indocyanine green (sulfo-DBCO-ICG) are subsequently designed to react with the modified bacteria through in vivo click chemistry. Next, the sulfo-DBCO-ICG modified bacteria under irradiation of 808 nm near-infrared laser was immediately detected by ATP bioluminescence following targeted photothermal lysis and even the number of bacteria on the infected tissue can be significantly reduced through PTAT. This method has demonstrated the ability to detect the presence of the bacteria for ATP value in 32 clinical samples. As a result, the ATP value over of 100 confirmed the presence of bacteria in clinical samples for 22 patients undergoing craniotomy and ten otitis media patients. Overall, this study paves a brand new avenue to facile diagnosis and a treatment platform for clinical bacterial infections.
Collapse
Affiliation(s)
- Long Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Deyun Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Hai Tang
- Epilepsy Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Tiwari N, Bansal M, Santhiya D, Sharma JG. Insights into microbial diversity on plastisphere by multi-omics. Arch Microbiol 2022; 204:216. [PMID: 35316402 DOI: 10.1007/s00203-022-02806-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Plastic pollution is a major concern in marine environment as it takes many years to degrade and is one of the greatest threats to marine life. Plastic surface, referred to as plastisphere, provides habitat for growth and proliferation of various microorganisms. The discovery of these microbes is necessary to identify significant genes, enzymes and bioactive compounds that could help in bioremediation and other commercial applications. Conventional culture techniques have been successful in identifying few microbes from these habitats, leaving majority of them yet to be explored. As such, to recognize the vivid genetic diversity of microbes residing in plastisphere, their structure and corresponding ecological roles within the ecosystem, an emerging technique, called metagenomics has been explored. The technique is expected to provide hitherto unknown information on microbes from the plastisphere. Metagenomics along with next generation sequencing provides comprehensive knowledge on microbes residing in plastisphere that identifies novel microbes for plastic bioremediation, bioactive compounds and other potential benefits. The following review summarizes the efficiency of metagenomics and next generation sequencing technology over conventionally used methods for culturing microbes. It attempts to illustrate the workflow mechanism of metagenomics to elucidate diverse microbial profiles. Further, importance of integrated multi-omics techniques has been highlighted in discovering microbial ecology residing on plastisphere for wider applications.
Collapse
Affiliation(s)
- Neha Tiwari
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
8
|
Hanišáková N, Vítězová M, Rittmann SKMR. The Historical Development of Cultivation Techniques for Methanogens and Other Strict Anaerobes and Their Application in Modern Microbiology. Microorganisms 2022; 10:412. [PMID: 35208865 PMCID: PMC8879435 DOI: 10.3390/microorganisms10020412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
The cultivation and investigation of strictly anaerobic microorganisms belong to the fields of anaerobic microbial physiology, microbiology, and biotechnology. Anaerobic cultivation methods differ from classic microbiological techniques in several aspects. The requirement for special instruments, which are designed to prevent the contact of the specimen with air/molecular oxygen by different means of manipulation, makes this field more challenging for general research compared to working with aerobic microorganisms. Anaerobic microbiological methods are required for many purposes, such as for the isolation and characterization of new species and their physiological examination, as well as for anaerobic biotechnological applications or medical indications. This review presents the historical development of methods for the cultivation of strictly anaerobic microorganisms focusing on methanogenic archaea, anaerobic cultivation methods that are still widely used today, novel methods for anaerobic cultivation, and almost forgotten, but still relevant, techniques.
Collapse
Affiliation(s)
- Nikola Hanišáková
- Laboratory of Anaerobic Microorganisms, Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Monika Vítězová
- Laboratory of Anaerobic Microorganisms, Section of Microbiology, Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | - Simon K. -M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, 1030 Wien, Austria
| |
Collapse
|
9
|
de Aquino NSM, Elias SDO, Tondo EC. Evaluation of PhageDX Salmonella Assay for Salmonella Detection in Hydroponic Curly Lettuce. Foods 2021; 10:1795. [PMID: 34441572 PMCID: PMC8394719 DOI: 10.3390/foods10081795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
Lettuce is one of the most consumed leafy vegetables worldwide and has been involved in multiple foodborne outbreaks. Salmonella is one of the most prevalent etiological agents of foodborne disease (FBD) in lettuces, and its detection may take several days depending on the chosen method. This study evaluates a new rapid method that uses recombinant bacteriophages to detect Salmonella in hydroponic curly lettuce. First, the ability of the assay to detect six Salmonella serovars at three different concentrations (1, 10, and 100 CFU/well) was tested. Second, the detection of Salmonella was tested in lettuces using a cocktail of the same Salmonella serovars and concentrations after a 7 h enrichment. The results of these experiments showed that the detection limit was dependent on the serovar tested. Most serovars were detected in only 2 h when the concentration was 100 CFU/well. Salmonella was detected in 9 h (7 h enrichment + 2 h bioluminescence assay) in all lettuce samples with 10 CFU/25 g or more. Salmonella detection was not influenced by natural microbiota of lettuces. This study demonstrated that the phage assay was sensitive and faster than other detection methods, indicating that it is a better alternative for Salmonella detection on lettuces.
Collapse
Affiliation(s)
- Nathanyelle Soraya Martins de Aquino
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul Campus do Vale-Agronomia (ICTA/UFRGS), Av. Bento Gonçalves 9500, Porto Alegre 91501-970, RS CEP, Brazil; (S.d.O.E.); (E.C.T.)
| | | | | |
Collapse
|
10
|
Eigenfeld M, Kerpes R, Becker T. Understanding the Impact of Industrial Stress Conditions on Replicative Aging in Saccharomyces cerevisiae. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:665490. [PMID: 37744109 PMCID: PMC10512339 DOI: 10.3389/ffunb.2021.665490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/30/2021] [Indexed: 09/26/2023]
Abstract
In yeast, aging is widely understood as the decline of physiological function and the decreasing ability to adapt to environmental changes. Saccharomyces cerevisiae has become an important model organism for the investigation of these processes. Yeast is used in industrial processes (beer and wine production), and several stress conditions can influence its intracellular aging processes. The aim of this review is to summarize the current knowledge on applied stress conditions, such as osmotic pressure, primary metabolites (e.g., ethanol), low pH, oxidative stress, heat on aging indicators, age-related physiological changes, and yeast longevity. There is clear evidence that yeast cells are exposed to many stressors influencing viability and vitality, leading to an age-related shift in age distribution. Currently, there is a lack of rapid, non-invasive methods allowing the investigation of aspects of yeast aging in real time on a single-cell basis using the high-throughput approach. Methods such as micromanipulation, centrifugal elutriator, or biotinylation do not provide real-time information on age distributions in industrial processes. In contrast, innovative approaches, such as non-invasive fluorescence coupled flow cytometry intended for high-throughput measurements, could be promising for determining the replicative age of yeast cells in fermentation and its impact on industrial stress conditions.
Collapse
Affiliation(s)
| | - Roland Kerpes
- Research Group Beverage and Cereal Biotechnology, Institute of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | | |
Collapse
|
11
|
Hacohen A, Jessel HR, Richter-Levin A, Shefi O. Patterning of Particles and Live Cells at Single Cell Resolution. MICROMACHINES 2020; 11:E505. [PMID: 32429308 PMCID: PMC7281171 DOI: 10.3390/mi11050505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/06/2023]
Abstract
The ability to manipulate and selectively position cells into patterns or distinct microenvironments is an important component of many single cell experimental methods and biological engineering applications. Although a variety of particles and cell patterning methods have been demonstrated, most of them deal with the patterning of cell populations, and are either not suitable or difficult to implement for the patterning of single cells. Here, we describe a bottom-up strategy for the micropatterning of cells and cell-sized particles. We have configured a micromanipulator system, in which a pneumatic microinjector is coupled to a holding pipette capable of physically isolating single particles and cells from different types, and positioning them with high accuracy in a predefined position, with a resolution smaller than 10 µm. Complementary DNA sequences were used to stabilize and hold the patterns together. The system is accurate, flexible, and easy-to-use, and can be automated for larger-scale tasks. Importantly, it maintains the viability of live cells. We provide quantitative measurements of the process and offer a file format for such assemblies.
Collapse
Affiliation(s)
- Adar Hacohen
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Hadass R. Jessel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel;
| | - Alon Richter-Levin
- The Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel; (A.R.-L.); (O.S.)
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Orit Shefi
- The Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel; (A.R.-L.); (O.S.)
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
12
|
Rai N, Singh AK, Singh SK, Gaurishankar B, Kamble SC, Mishra P, Kotiya D, Barik S, Atri N, Gautam V. Recent technological advancements in stem cell research for targeted therapeutics. Drug Deliv Transl Res 2020; 10:1147-1169. [DOI: 10.1007/s13346-020-00766-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Hernandez-Agreda A, Leggat W, Ainsworth TD. A place for taxonomic profiling in the study of the coral prokaryotic microbiome. FEMS Microbiol Lett 2020; 366:5426210. [PMID: 30939203 DOI: 10.1093/femsle/fnz063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 04/01/2019] [Indexed: 12/29/2022] Open
Abstract
The enormous variability in richness, abundance and diversity of unknown bacterial organisms inhabiting the coral microbiome have challenged our understanding of their functional contribution to coral health. Identifying the attributes of the healthy meta-organism is paramount for contemporary approaches aiming to manipulate dysbiotic stages of the coral microbiome. This review evaluates the current knowledge on the structure and mechanisms driving bacterial communities in the coral microbiome and discusses two topics requiring further research to define the healthy coral microbiome. (i) We examine the necessity to establish microbial baselines to understand the spatial and temporal dynamics of the healthy coral microbiome and summarise conceptual and logistic challenges to consider in the design of these baselines. (ii) We propose potential mechanical, physical and chemical mechanisms driving bacterial distribution within coral compartments and suggest experiments to test them. Finally, we highlight aspects of the use of 16S amplicon sequencing requiring standardization and discuss its contribution to other multi-omics approaches.
Collapse
Affiliation(s)
- Alejandra Hernandez-Agreda
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,Invertebrate Zoology and Geology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, California, 94118, USA
| | - William Leggat
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,The College of Public Health, Medical and Veterinary Sciences, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,School of Environmental and Life Sciences, The University of Newcastle, 10 Chittaway Road, Ourimbah, New South Wales, 2258, Australia
| | - Tracy D Ainsworth
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, 1 James Cook Dr, Townsville, Queensland, 4811, Australia.,School of Biological, Earth and Environmental Sciences, The University of New South Wales, Biological Sciences Building (D26), Randwick, New South Wales, 2052, Australia
| |
Collapse
|
14
|
Ma Q, Bücking H, Gonzalez Hernandez JL, Subramanian S. Single-Cell RNA Sequencing of Plant-Associated Bacterial Communities. Front Microbiol 2019; 10:2452. [PMID: 31736899 PMCID: PMC6828647 DOI: 10.3389/fmicb.2019.02452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/11/2019] [Indexed: 11/29/2022] Open
Abstract
Plants in soil are not solitary, hence continually interact with and obtain benefits from a community of microbes ("microbiome"). The meta-functional output from the microbiome results from complex interactions among the different community members with distinct taxonomic identities and metabolic capacities. Particularly, the bacterial communities of the root surface are spatially organized structures composed of root-attached biofilms and planktonic cells arranged in complex layers. With the distinct but coordinated roles among the different member cells, bacterial communities resemble properties of a multicellular organism. High throughput sequencing technologies have allowed rapid and large-scale analysis of taxonomic composition and metabolic capacities of bacterial communities. However, these methods are generally unable to reconstruct the assembly of these communities, or how the gene expression patterns in individual cells/species are coordinated within these communities. Single-cell transcriptomes of community members can identify how gene expression patterns vary among members of the community, including differences among different cells of the same species. This information can be used to classify cells based on functional gene expression patterns, and predict the spatial organization of the community. Here we discuss strategies for the isolation of single bacterial cells, mRNA enrichment, library construction, and analysis and interpretation of the resulting single-cell RNA-Seq datasets. Unraveling regulatory and metabolic processes at the single cell level is expected to yield an unprecedented discovery of mechanisms involved in bacterial recruitment, attachment, assembly, organization of the community, or in the specific interactions among the different members of these communities.
Collapse
Affiliation(s)
- Qin Ma
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| | - Jose L. Gonzalez Hernandez
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| | - Senthil Subramanian
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
- Biology and Microbiology Department, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
15
|
Liu Y, Yao J, Walther-Antonio M. Whole genome amplification of single epithelial cells dissociated from snap-frozen tissue samples in microfluidic platform. BIOMICROFLUIDICS 2019; 13:034109. [PMID: 31149320 PMCID: PMC6520095 DOI: 10.1063/1.5090235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/28/2019] [Indexed: 05/04/2023]
Abstract
Single cell sequencing is a technology capable of analyzing the genome of a single cell within a population. This technology is mostly integrated with microfluidics for precise cell manipulation and fluid handling. So far, most of the microfluidic-based single cell genomic studies have been focused on lab-cultured species or cell lines that are relatively easy to handle following standard microfluidic-based protocols without additional adjustments. The major challenges for performing single cell sequencing on clinical samples is the complex nature of the samples which requires additional sample processing steps to obtain intact single cells of interest without using amplification-inhibitive agents. Fluorescent-activated cell sorting is a common option to obtain single cells from clinical samples for single cell applications but requires >100 000 viable cells in suspension and the need for specialized laboratory and personnel. In this work, we present a protocol that can be used to obtain intact epithelial cells from snap-frozen postsurgical human endometrial tissues for single cell whole genome amplification. Our protocol includes sample thawing, cell dissociation, and labeling for genome amplification of targeted cells. Between 80% and 100% of single cell replicates lead to >25 ng of DNA after amplification with no measurable contamination, sufficient for downstream sequencing.
Collapse
|