1
|
Raju NP, Ansari A, Patil G, Sheeraz MS, Kukade S, Kumar S, Kapley A, Qureshi A. Antibiotic Resistance Dissemination and Mapping in the Environment Through Surveillance of Wastewater. J Basic Microbiol 2025; 65:e2400330. [PMID: 39676299 DOI: 10.1002/jobm.202400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/17/2024]
Abstract
Antibiotic resistance is one of the major health threat for humans, animals, and the environment, according to the World Health Organization (WHO) and the Global Antibiotic-Resistance Surveillance System (GLASS). In the last several years, wastewater/sewage has been identified as potential hotspots for the dissemination of antibiotic resistance and transfer of resistance genes. However, systematic approaches for mapping the antibiotic resistance situation in sewage are limited and underdeveloped. The present review has highlighted all possible perspectives by which the dynamics of ARBs/ARGs in the environment may be tracked, quantified and assessed spatio-temporally through surveillance of wastewater. Moreover, application of advanced methods like wastewater metagenomics for determining the community distribution of resistance at large has appeared to be promising. In addition, monitoring wastewater for antibiotic pollution at various levels, may serve as an early warning system and enable policymakers to take timely measures and build infrastructure to mitigate health crises. Thus, by understanding the alarming presence of antibiotic resistance in wastewater, effective action plans may be developed to address this global health challenge and its associated environmental risks.
Collapse
Affiliation(s)
- Neenu P Raju
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Aamir Ansari
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Gandhali Patil
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Mohammed Shahique Sheeraz
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Sushrut Kukade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Shailendra Kumar
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Atya Kapley
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, India
| |
Collapse
|
2
|
Siddique MH, Sadia M, Muzammil S, Saqalein M, Ashraf A, Hayat S, Saba S, Khan AM, Hashem A, Avila-Qezada GD, Abd-Allah EF. Biofabrication of copper oxide nanoparticles using Dalbergia sisso leaf extract for antibacterial, antibiofilm and antioxidant activities. Sci Rep 2024; 14:31867. [PMID: 39738430 PMCID: PMC11685889 DOI: 10.1038/s41598-024-83199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
One of the biggest challenges encountered by the current generation is the evolution of antibiotic resistant bacteria as a result of excessive and inappropriate use of antibiotics. This problem has led to the development of alternative approaches to treat the diseases caused by these multidrug resistant bacteria (MDR). One of the most promising and novel approaches to combat these pathogens is utilization of nanomaterials as antimicrobial agents. In the current investigation, copper oxide nanoparticles (CuO NPs) were fabricated by green method using Dalbergia sissoo leaf extract. The fabricated nanoparticles were characterized through various techniques like UV-visible spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The UV-visible spectroscopy revealed an absorption peak at 290 nm. SEM micrograph revealed only few spherical nanoparticles (with average diameter of < 100 nm), whereas most of the CuO NPs were agglomerated and formed large clusters. FTIR indicated presence of different functional groups that were used as reducing and capping agents while XRD analysis showed crystalline phase structure for the nanoparticles. These nanoparticles exhibited significant growth inhibition in terms of maximum inhibitory zones of 24 mm with minimum inhibitory concentrations (MIC) ranging from 62.5 to 125 µg/ml against MDR bacteria such as Acinetobacter baumannii, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. The effect of different concentrations of nanoparticles on cell membrane disruption was also investigated and a significant increase (p < 0.05) in the leakage of cellular content such as DNA, proteins and reducing sugar was measured. These nanoparticles also showed antibiofilm potential and a significant increase (p < 0.05) in biofilm inhibition was observed by increasing the concentration of nanoparticles. It was noted that percentage of inhibition of biofilm was found to be 68.4-75.8% at the highest tested concentration. The combined effects of antibiotics and nanoparticles revealed a synergistic interaction between them against tested bacteria. In vitro antioxidant activity of fabricated nanoparticles revealed significant antioxidant potential (p < 0.05) by quenching free radicals such as DPPH (73.6%), ABTS (68%) and H2O2 (63%) in a dose-dependent manner.
Collapse
Affiliation(s)
- Muhammad Hussnain Siddique
- Department of Bioinformatics and Biotechnology, Government College University, GCU, Faisalabad, Pakistan
| | - Maimona Sadia
- Institute of Microbiology, Government College University, GCU, Faisalabad, Pakistan
| | - Saima Muzammil
- Institute of Microbiology, Government College University, GCU, Faisalabad, Pakistan
| | - Muhammad Saqalein
- Institute of Microbiology, Government College University, GCU, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, GCU, Faisalabad, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, GCU, Faisalabad, Pakistan.
| | - Saba Saba
- Department of Microbiology and Molecular Genetics, The Women University, Multan, Pakistan
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| | | | - Elsayed Fathi Abd-Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Dabhi M, Prajapati J, Panchal J, Kapadiya B, Saraf M, Rawal RM, Goswami D. Antimicrobial Resistance Surveillance in Human Pathogens in Ahmedabad: A One-Year Prospective Study. Indian J Microbiol 2024; 64:1769-1786. [PMID: 39678984 PMCID: PMC11645344 DOI: 10.1007/s12088-024-01233-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 02/13/2024] [Indexed: 12/17/2024] Open
Abstract
Antimicrobial resistance (AMR) is an escalating global concern, particularly in developing countries like India. A 1-year prospective study was conducted on AMR in human pathogens from Ahmedabad, India. The study aimed to generate an evidence-based database on the AMR profile of pathogens in this region. The study analysed 2204 organisms isolated from various clinical specimens. WHONET software, a specialized tool for AMR data management and interpretation, was used for data management and analysis. The most frequently isolated pathogens were Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus. These pathogens demonstrated varying resistance rates to different antibiotics. E. coli shows a high prevalence of MDR (57%), with 22% indicating possible XDR and 13% showing possible PDR. K. pneumoniae showed even higher rates of MDR (80%), with 57% indicating possible XDR and 54% possible PDR. S. aureus showed MDR in 51% of the isolates, with 11% showing possible XDR and 1% showing possible PDR. The study also identified some priority pathogens according to the World Health Organization (WHO) criteria based on their resistance to specific antibiotics. The study highlighted the significant prevalence of AMR, particularly MDR, among human pathogens in Ahmedabad, emphasizing the need for effective strategies to combat AMR in clinical settings and public health policies. The study has significant implications for understanding the epidemiology and transmission of AMR in this region, as well as for informing the development of guidelines and interventions for rational antibiotic use and infection control.
Collapse
Affiliation(s)
- Milan Dabhi
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Jignesh Prajapati
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Janki Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Bhavin Kapadiya
- Speciality Microtech Lab, Navrangpura, Ahmedabad, Gujarat 380009 India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Rakesh M. Rawal
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
- Department of Life Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat 380009 India
| |
Collapse
|
4
|
Cedeño-Muñoz JS, Aransiola SA, Reddy KV, Ranjit P, Victor-Ekwebelem MO, Oyedele OJ, Pérez-Almeida IB, Maddela NR, Rodríguez-Díaz JM. Antibiotic resistant bacteria and antibiotic resistance genes as contaminants of emerging concern: Occurrences, impacts, mitigations and future guidelines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175906. [PMID: 39226958 DOI: 10.1016/j.scitotenv.2024.175906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Antibiotic resistance, driven by the proliferation of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARBs), has emerged as a pressing global health concern. Antimicrobial resistance is exacerbated by the widespread use of antibiotics in agriculture, aquaculture, and human medicine, leading to their accumulation in various environmental compartments such as soil, water, and sediments. The presence of ARGs in the environment, particularly in municipal water, animal husbandry, and hospital environments, poses significant risks to human health, as they can be transferred to potential human pathogens. Current remediation strategies, including the use of pyroligneous acid, coagulants, advanced oxidation, and bioelectrochemical systems, have shown promising results in reducing ARGs and ARBs from soil and water. However, these methods come with their own set of challenges, such as the need for elevated base levels in UV-activated persulfate and the long residence period required for photocatalysts. The future of combating antibiotic resistance lies in the development of standardized monitoring techniques, global collaboration, and the exploration of innovative remediation methods. Emphasis on combination therapies, advanced oxidation processes, and monitoring horizontal gene transfer can pave the way for a comprehensive approach to mitigate the spread of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Jeffrey Saúl Cedeño-Muñoz
- Departamento de Procesos Químicos, Biotecnología y Alimentos, Facultad de Ingenierías y Ciencias Aplicadas, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Sesan Abiodun Aransiola
- Department of Microbiology, Faculty of Science, University of Abuja, PMB 117, Abuja, Nigeria
| | - Kondakindi Venkateswar Reddy
- Center for Biotechnology, University College of Engineering Science and Technology, Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| | - Pabbati Ranjit
- Center for Biotechnology, University College of Engineering Science and Technology, Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| | | | - Olusegun Julius Oyedele
- Bioresources Development Centre, National Biotechnology Development Agency, Ogbomoso, Nigeria
| | - Iris B Pérez-Almeida
- Center for Sustainable Development Studies (CEDS), Ecotec University, Samborondón, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Biotecnología y Alimentos, Facultad de Ingenierías y Ciencias Aplicadas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| |
Collapse
|
5
|
Ogundare ST, Fasina FO, Makumbi JP, van der Zel GA, Geertsma PF, Kock MM, Smith AM, Ehlers MM. Epidemiology and antimicrobial resistance profiles of pathogenic Escherichia coli from commercial swine and poultry abattoirs and farms in South Africa: A One Health approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175705. [PMID: 39181266 DOI: 10.1016/j.scitotenv.2024.175705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Pathogenic Escherichia coli (PEC) are important foodborne bacteria that can cause severe illness in humans. The PECs thrive within the intestines of humans as well as animals and may contaminate multiple ecosystems, including food and water, via faecal transmission. Abattoir and farm employees are at high risk of PEC exposure, which could translate to community risk through person-to-person contact. To determine the epidemiology and resistome of PECs in Gauteng and Limpopo provinces of South Africa, 198 swine faecal samples, 220 poultry cloacal swabs, 108 human hand swabs, 11 run-off water samples from abattoirs and farms were collected from four swine and five poultry commercial abattoirs and two swine farms. One effluent sample each was collected from four wastewater treatment plants (WWTP) and a tertiary hospital setting. Phenotypic and genotypic techniques were used including polymerase chain reaction, pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS). Results showed EHEC and EPEC prevalence was 4.1 % (22/542) and 20.8 % (113/542), respectively, with the O26 serogroup detected the most in PEC isolates. According to the PFGE dendrogram, isolates from poultry, human hand swabs and run-off water clustered together. Diverse virulence factors such as the novel stx2k subtype and eae genes were detected among the 36 representative PEC isolates according to WGS. The results showed that 66.7 % (24/36) of sequenced PECs presented with multi-drug resistance (MDR) to β-lactamase 13.9 % (5/36), aminoglycoside 61.1 % (22/36), tetracycline 41.7 % (15/36) and quinolones 38.9 % (14/36). No colistin nor carbapenem resistance was detected. Sequence types (STs) associated with MDR in this study were: ST752, ST189, ST206, ST10, ST48 and ST38. The findings highlight the threat of zoonotic pathogens to close human contacts and the need for enhanced surveillance to mitigate the spread of MDR foodborne PECs.
Collapse
Affiliation(s)
- Samuel T Ogundare
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Folorunso O Fasina
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa; Food and Agriculture Organisation of the United Nations, FAO Headquarters, Rome, Italy
| | - John-Paul Makumbi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Gerbrand A van der Zel
- Gauteng Department of Agriculture, Rural Development and Environment, Pretoria, South Africa
| | - Peter F Geertsma
- Gauteng Department of Agriculture, Rural Development and Environment, Pretoria, South Africa
| | - Marleen M Kock
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Department of Medical Microbiology, National Health Laboratory Service, Tshwane Academic Division, Pretoria, South Africa
| | - Anthony M Smith
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Department of Medical Microbiology, National Health Laboratory Service, Tshwane Academic Division, Pretoria, South Africa
| |
Collapse
|
6
|
Chopjitt P, Boueroy P, Morita M, Iida T, Akeda Y, Hamada S, Kerdsin A. Genetic characterization of multidrug-resistant Escherichia coli harboring colistin-resistant gene isolated from food animals in food supply chain. Front Cell Infect Microbiol 2024; 14:1289134. [PMID: 38384304 PMCID: PMC10880773 DOI: 10.3389/fcimb.2024.1289134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024] Open
Abstract
Colistin is widely used for the prophylaxis and treatment of infectious disease in humans and livestock. However, the global food chain may actively promote the dissemination of colistin-resistant bacteria in the world. Mobile colistin-resistant (mcr) genes have spread globally, in both communities and hospitals. This study sought to genomically characterize mcr-mediated colistin resistance in 16 Escherichia coli strains isolated from retail meat samples using whole genome sequencing with short-read and long-read platforms. To assess colistin resistance and the transferability of mcr genes, antimicrobial susceptibility testing and conjugation experiments were conducted. Among the 16 isolates, 11 contained mcr-1, whereas three carried mcr-3 and two contained mcr-1 and mcr-3. All isolates had minimum inhibitory concentration (MIC) for colistin in the range 1-64 μg/mL. Notably, 15 out of the 16 isolates demonstrated successful transfer of mcr genes via conjugation, indicative of their presence on plasmids. In contrast, the KK3 strain did not exhibit such transferability. Replicon types of mcr-1-containing plasmids included IncI2 and IncX4, while IncFIB, IncFII, and IncP1 contained mcr-3. Another single strain carried mcr-1.1 on IncX4 and mcr-3.5 on IncP1. Notably, one isolate contained mcr-1.1 located on a chromosome and carrying mcr-3.1 on the IncFIB plasmid. The chromosomal location of the mcr gene may ensure a steady spread of resistance in the absence of selective pressure. Retail meat products may act as critical reservoirs of plasmid-mediated colistin resistance that has been transmitted to humans.
Collapse
Affiliation(s)
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| | - Masatomo Morita
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Iida
- Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sihigeyuki Hamada
- Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Sakon Nakhon, Thailand
| |
Collapse
|
7
|
Mardourian M, Lyons H, Rhodes Brunner J, K. Edwards M, Lennox A, Mahadevaiah S, Chandrashekhar S, Prudhvi Raj S, Pradhan A, Kalyatanda G. Prevalence of antimicrobial resistance in urine, blood, and wound pathogens among rural patients in Karnataka, India. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e91. [PMID: 37228505 PMCID: PMC10204140 DOI: 10.1017/ash.2023.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
Background and objective Antimicrobial resistance (AMR) is increasing in tertiary-care hospitals across India, which consumes more antibiotics than any other country. Microorganisms with novel resistance mechanisms, initially isolated in India, are now recognized worldwide. Until now, most efforts to stem AMR in India have focused on the inpatient setting. Ministry of Health data now suggest that rural areas are playing a more significant role in the pathogenesis of AMR than was previously appreciated. Thus, we conducted this pilot study to ascertain whether AMR is common in pathogens causing infections acquired in the wider rural community. Methods We performed a retrospective prevalence survey of 100 urine, 102 wound, and 102 blood cultures obtained from patients who were admitted to a tertiary-care facility in Karnataka, India, with infections acquired in the community. The study population included patients >18 years of age who (1) were referred to the hospital by primary care doctors, (2) had a positive blood, urine, or wound culture, and (3) were not previously hospitalized. Bacterial identification and antimicrobial susceptibility testing (AST) were carried out on all isolates. Results Enterobacteriaceae were the most common pathogens isolated from urine and blood cultures. Significant resistance to quinolones, aminoglycosides, carbapenems, and cephalosporins was noted among pathogens isolated from all cultures. Specifically, high resistance rates (>45%) to quinolones, penicillin, and cephalosporins were evident among all 3 types of culture. Among blood and urinary pathogens, there were high resistance rates (>25%) to both aminoglycosides and carbapenems. Conclusion Efforts to stem AMR rates in India need to focus on rural populations. Such efforts will need to characterize antimicrobial overprescribing practices, healthcare-seeking behaviors, and antimicrobial use in agriculture in rural settings.
Collapse
Affiliation(s)
- Markos Mardourian
- University of Florida College of Medicine, Gainesville, Florida, United States
| | - Hannah Lyons
- University of Florida College of Medicine, Gainesville, Florida, United States
| | | | - Matthew K. Edwards
- Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| | - Archibald Lennox
- Malcolm Randall Department of Veterans’ Affairs Medical Center, Gainesville, Florida, United States
| | - Sumana Mahadevaiah
- Department of Microbiology, JSS Medical College, Mysore, Karnataka, India
| | | | - Suvvada Prudhvi Raj
- JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Anjali Pradhan
- JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Gautam Kalyatanda
- Division of Infectious Disease and Global Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
8
|
Bissong MEA, Mobey KN, Muma V, Mkong PB. Reduced susceptibility to carbapenems in Enterobacteriaceae and antimicrobial resistance profile of Escherichia coli strains isolated from clinical and zoonotic sources in the Bamenda Municipality, Cameroon. Pan Afr Med J 2023; 44:90. [PMID: 37193103 PMCID: PMC10182376 DOI: 10.11604/pamj.2023.44.90.31326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/17/2022] [Indexed: 05/18/2023] Open
Abstract
Introduction food-producing animals harbour pathogenic and antibiotic resistant bacteria which can be transmitted to humans. Resistance to carbapenems may complicate treatment resulting to debilitating consequences. This study aimed at determining the susceptibility of Enterobacteriaceae to carbapenems and to compare the resistant patterns of E. coli strains isolated from clinical and zoonotic sources. Methods this was a cross-sectional study involving patients presenting at the Bamenda Regional Hospital and abattoir samples. Clinical samples (faeces and urine) and zoonotic samples (cattle faeces) were cultured and isolates identified using API-20E. Enterobacteriaceae isolates were tested for their susceptibility to Carbapenems. The susceptibility of E. coli was tested against eight antibiotics on Mueller Hinton agar. Data was analysed using SPSS version 20. Results Enterobacteriaceae isolates from clinical specimen showed susceptibility of 93.3% to carbapenems. Out of 208 isolates 14 (6.7%) were Carbapenem-resistant Enterobacteriaceae (CRE) while 30 (14.4%) showed intermediate resistance and 164 (78.9%) were susceptible. The predominant CRE were Proteus (7/16, 43.8%), Providencia (3/15, 20.0%) and E. coli (4/60, 6.7%) with E. coli being the most clinically significant CRE. Multiple drug resistance (MDR) was observed in 83% of E. coli isolates, with the highest resistance being against vancomycin (90, 81.8%), azithromycin (69, 62.7%) and doxycycline (68, 61.8%). Clinical isolates were significantly (P<0.05) more resistant to azithromycin, trimethoprim-suphamethoxazole and gentamicin than zoonotic isolates. Conclusion CRE were detected among isolates and a high rate of multiple drug resistance was observed among E. coli isolates. Proper antibiotic policies and good hygiene/sanitation measures may curb the development/spread of CRE and MDR E. coli.
Collapse
Affiliation(s)
- Marie Ebob Agbortabot Bissong
- Department of Biomedical Sciences, University of Bamenda, P.O. Box 39, Bambili, Cameroon
- Corresponding author: Marie Ebob Agbortabot Bissong, Department of Biomedical Sciences, University of Bamenda, P.O. Box 39, Bambili, Cameroon.
| | - Kingsley Ngah Mobey
- Department of Medical Laboratory Science, University of Bamenda, P.O. Box 39, Bamenda, Cameroon
| | - Vernon Muma
- Department of Medical Laboratory Science, University of Bamenda, P.O. Box 39, Bamenda, Cameroon
| | - Philip Bainmbo Mkong
- Department of Medical Laboratory Science, University of Bamenda, P.O. Box 39, Bamenda, Cameroon
| |
Collapse
|
9
|
Khare S, Diwan V, Pathak A, Purohit MR, Stålsby Lundborg C. Correlation Between Individual Child-Level Antibiotic Consumption and Antibiotic-Resistant Among Commensal Escherichia coli: Results from a Cohort of Children Aged 1-3 Years in Rural Ujjain India. Infect Drug Resist 2022; 15:6255-6266. [PMID: 36329988 PMCID: PMC9624258 DOI: 10.2147/idr.s372093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022] Open
Abstract
Background The global expansion of antibiotic-resistant bacteria is a serious concern and is increasing worldwide in both pathogenic and commensal bacteria. The study determined the correlation between individual child-level antibiotic consumption and antibiotic resistance among the commensal Escherichia coli (E.coli) in a cohort of 125 children in rural Ujjain, India. Methods During a two-year period between August 2014 and September 2016, stool samples were collected at seven-time points from a cohort of 125 children; aged 1–3. A total of six colonies of E.coli per stool sample were collected for antibiotic susceptibility testing. Antibiotic consumption data was collected during the healthcare-seeking follow–up done during the same period. At each of the seven-time points correlation between antibiotic consumption (Defined Daily Dose-DDD/100 patient-days) and antibiotic resistance (number of resistant isolates) was analyzed independently using the Spearman correlation coefficient. Further, mixed-effects logistic regression models were built to study correlation between child-level consumption of penicillin with the number of E.coli isolates resistant to ampicillin, consumption of cephalosporin with resistance to cefotaxime and ceftazidime, consumption of fluoroquinolones with resistance to nalidixic acid and consumption of cotrimoxazole with resistance to cotrimoxazole. Results Out of 756 illness episodes reported in 125 children 42% were with antibiotic prescriptions and reported a total antibiotic consumption of 55DDD/100 patient-days. The most common antibiotics used were cefixime (J01DD08;72 DDD/100patient/days) followed by ofloxacin (J01MA01;51DDD/100patient-days), cefpodoxime (J01DD13;38DDD/100patient-days) and amoxicillin (J01CA04;28DDD/100patient-days). The highest percentage of resistance was found to the ampicillin (67%) followed by nalidixic acid (52%) and cefotaxime (44%) and when summarized, more than 90% were resistant to cefotaxime, ceftazidime, and co-trimoxazole in commensal E.coli isolates. The consumption of cephalosporins showed weak positive correlation with the resistance to cefotaxime (Coefficient±SE=0.13 ± 0.09,p<0.001). Conclusion Our findings showed no correlation between individual-level antibiotic consumption and resistance development in commensal E.coli in a rural community environment.
Collapse
Affiliation(s)
- Shweta Khare
- Health Systems and Policy (HSP): Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Stockholm, 171 77, Sweden,Department of Public Health and Environment, Ruxmaniben Deepchand Gardi Medical College, Ujjain, Madhya Pradesh, 456006, India,Correspondence: Shweta Khare, Health Systems and Policy (HSP): Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Stockholm, 171 77, Sweden, Tel +91 9893986241, Email
| | - Vishal Diwan
- Health Systems and Policy (HSP): Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Stockholm, 171 77, Sweden,Division of Environmental Monitoring and Exposure Assessment (Water and Soil), ICMR—National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462030, India
| | - Ashish Pathak
- Health Systems and Policy (HSP): Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Stockholm, 171 77, Sweden,Department of Pediatrics, Ruxmaniben Deepchand Gardi Medical College, Ujjain, Madhya Pradesh, 456006, India
| | - Manju Raj Purohit
- Health Systems and Policy (HSP): Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Stockholm, 171 77, Sweden,Department of Pathology, Ruxmaniben Deepchand Gardi Medical College, Ujjain, Madhya Pradesh, 456006, India
| | - Cecilia Stålsby Lundborg
- Health Systems and Policy (HSP): Medicines, Focusing Antibiotics, Department of Global Public Health, Karolinska Institutet, Stockholm, 171 77, Sweden
| |
Collapse
|
10
|
Hazarika P, Chattopadhyay I, Umpo M, Choudhury Y, Sharma I. Studies on antimicrobial stress with reference to biofilm formation of faecal microbial communities from Apatani tribe of Arunachal Pradesh. Indian J Med Microbiol 2022; 43:1-7. [PMID: 36244849 DOI: 10.1016/j.ijmmb.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE Antibiotic resistant bacteria have created serious health conditions worldwide, disseminating various infections to people and community along with direct clinical implications in therapeutic options. METHODS The present study analysed 20 samples from human faeces of Apatani tribe, Arunachal Pradesh, India. Biofilm assay, antimicrobial susceptibility tests and antimicrobial profiling were performed along with phylogenetic analysis. RESULTS Phenotypic screening indicated the presence of 21 aerobic isolates comprising Escherichia sp 42.8% (n = 9), Citrobacter sp 9.52% (n = 2), Klebsiella sp 23.8% (n = 5) and Enterococcus sp 23.8% (n = 5). Tetracycline, ciprofloxacin, ceftadizime, gentamicine, vancomycin and erythromycin were observed to highly dominate the biofilm producing bacteria. Antimicrobial activity of Escherichia sp, Citrobacter sp, Klebsiella sp, and Enterococcus sp inhibited the growth of at least one of the tested pathogens. Phylogenetic analysis revealed that antibiotic resistant Klebsiella sp belonged to Klebsiella pneumonia; Escherichia sp belonged to Escherichia fergusonii and Escherichia coli; Enterococcus sp belonged to Enterococcus faecium while Citrobacter sp belonged to Citrobacter freundii. CONCLUSION The present work shows that antibiotic resistant bacteria-Klebsiella sp, Enterococcus sp, Escherichia sp and Citrobacter sp were highly prevalent in the faecal microbial communities of Apatani tribe from Arunachal Pradesh. Presence of such antibiotic resistance and biofilm formation in faecal microbiota poses serious concerns regarding health and therapeutic options as this tribe mostly resides in remote vicinities of Arunachal Pradesh. Thus, exploring the mechanisms for dissemination of antibiotic resistance in this tribe helped us to identify key factors pertaining to the health of this tribe as well as their environment.
Collapse
Affiliation(s)
- Parijat Hazarika
- Department of Microbiology, Assam University, Silchar, 788011, India.
| | - Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610 101, India.
| | - Mika Umpo
- Department of Microbiology, Tomo Riba Institute of Health and Medical Sciences, Nahrlagun, 791110, Arunachal Pradesh, India.
| | - Yashmin Choudhury
- Department of Biotechnology, Assam University, Silchar, 788011, India.
| | - Indu Sharma
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
11
|
Ma J, Zhou W, Wu J, Liu X, Lin J, Ji X, Lin H, Wang J, Jiang H, Zhou Q, Zhao G, Yang H, Tang B. Large-Scale Studies on Antimicrobial Resistance and Molecular Characterization of Escherichia coli from Food Animals in Developed Areas of Eastern China. Microbiol Spectr 2022; 10:e0201522. [PMID: 35950758 PMCID: PMC9430128 DOI: 10.1128/spectrum.02015-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022] Open
Abstract
Widely distributed multidrug-resistant (MDR) bacteria threaten animals and human health. Nevertheless, few antimicrobial resistance (AMR) surveys of large-scale animal-derived bacteria have been explored. Here, 1,468 (97.54%) Escherichia coli strains were isolated from 1,505 pig (1,060) and chicken (445) anal swab samples from 11 cities in Zhejiang Province, China, in 2020. These isolates had a high resistance to tetracycline (92.92%), sulfisoxazole (93.05%), florfenicol (83.11%), and ampicillin (78.27%). More than 88.68% of the strains were MDR bacteria. A low AMR ratio to the "last-resort" antimicrobials tigecycline (0.75%), colistin (1.36%), and meropenem (0.75%) were found. The AMR of E. coli from pigs was higher than that of chickens. Eighteen strains among 31 MDR strains that were resistant to "last-resort" antimicrobials could transfer the AMR genes (mcr-1, tet(X), and blaNDM) to the recipient strain J53, which confer colistin, tigecycline, and carbapenem resistance, respectively. The homology among mcr-1-carrying isolates was relatively high, and the sequence types were mainly ST5529, ST101, and ST354, while the homology of isolates harboring tet(X4) and blaNDM-5 genes were different. The mcr-1, blaNDM-5, and tet(X4) genes in strains LS45, JH51, and TZ118 were identified on the Incl2, IncHI2, and IncX1 plasmids, respectively. Moreover, tet(A), sul2, floR, and blaTEM-1B were the most common ARGs in 31 strains. Additionally, the heavy metals copper and zinc had a significant correlation with amoxicillin/clavulanate and tetracycline resistance. Controlling the movement of animals between cities and reducing the use of antimicrobials are effective methods to reduce the threat of AMR bacteria. IMPORTANCE Pigs and chickens are the most common food animals that are the important vectors for spreading antimicrobial-resistant pathogens among animals and humans. Limited systematic AMR monitoring of these food animal origin bacteria had been reported, especially in developed areas of China. Our study provides a comprehensive and systematic study of AMR in Escherichia coli from eastern China. The AMR of E. coli strains among the animals or cities has statistically significant differences. Moreover, the mcr-1, tet(X4), and blaNDM-5 genes, considered resistant to the last line of AMR, were identified in part of farms. The transferability and the prevalence of these AMR strains were intensively studied. Our monitoring is comparable to human clinical research and has an essential reference for public health safety. These findings will provide early warning for AMR strains and guide the clinical use of antibiotics to control the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jiangang Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wei Zhou
- Zhejiang Provincial Center for Animal Disease Prevention and Control, Hangzhou Zhejiang, China
| | - Jing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jiahui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jianmei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Han Jiang
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, China Jiliang University, Hangzhou, Zhejiang, China
| | - Qianjin Zhou
- School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Bumbangi FN, Llarena AK, Skjerve E, Hang’ombe BM, Mpundu P, Mudenda S, Mutombo PB, Muma JB. Evidence of Community-Wide Spread of Multi-Drug Resistant Escherichia coli in Young Children in Lusaka and Ndola Districts, Zambia. Microorganisms 2022; 10:1684. [PMID: 36014101 PMCID: PMC9416312 DOI: 10.3390/microorganisms10081684] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
Increased antimicrobial resistance (AMR) has been reported for pathogenic and commensal Escherichia coli (E. coli), hampering the treatment, and increasing the burden of infectious diarrhoeal diseases in children in developing countries. This study focused on exploring the occurrence, patterns, and possible drivers of AMR E. coli isolated from children under-five years in Zambia. A hospital-based cross-sectional study was conducted in the Lusaka and Ndola districts. Rectal swabs were collected from 565 and 455 diarrhoeic and healthy children, respectively, from which 1020 E. coli were cultured and subjected to antibiotic susceptibility testing. Nearly all E. coli (96.9%) were resistant to at least one antimicrobial agent tested. Further, 700 isolates were Multi-Drug Resistant, 136 were possibly Extensively-Drug Resistant and nine were Pan-Drug-Resistant. Forty percent of the isolates were imipenem-resistant, mostly from healthy children. A questionnaire survey documented a complex pattern of associations between and within the subgroups of the levels of MDR and socio-demographic characteristics, antibiotic stewardship, and guardians' knowledge of AMR. This study has revealed the severity of AMR in children and the need for a community-specific-risk-based approach to implementing measures to curb the problem.
Collapse
Affiliation(s)
- Flavien Nsoni Bumbangi
- School of Medicine, Eden University, Lusaka P.O. Box 37727, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Ann-Katrin Llarena
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Eystein Skjerve
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Bernard Mudenda Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Prudence Mpundu
- Department of Environmental and Occupational Health, Levy Mwanawasa Medical University, Lusaka P.O. Box 33991, Zambia
| | - Steward Mudenda
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Paulin Beya Mutombo
- Kinshasa School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa 834, Congo
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| |
Collapse
|
13
|
The Resistance Patterns in E. coli Isolates among Apparently Healthy Adults and Local Drivers of Antimicrobial Resistance: A Mixed-Methods Study in a Suburban Area of Nepal. Trop Med Infect Dis 2022; 7:tropicalmed7070133. [PMID: 35878145 PMCID: PMC9324341 DOI: 10.3390/tropicalmed7070133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
Evidence-based decision-making to combat antimicrobial resistance (AMR) mandates a well-built community-based surveillance system for assessing resistance patterns among commensals and pathogenic organisms. As there is no such surveillance system in Nepal, we attempted to describe the antimicrobial resistance pattern in E. coli isolated from the fecal samples of apparently healthy individuals in Dhulikhel municipality and also explored the local drivers of AMR. We used a mixed-method design with a cross-sectional quantitative component and a descriptive qualitative component, with focus group discussion and key informant interviews as the data collection method. Fecal samples were collected from 424 individuals randomly selected for the study. E. coli was isolated from 85.9% of human fecal samples, of which 14% were resistant to ≥3 class of antimicrobials (multidrug resistant). Of the 368 isolates, resistance to ampicillin (40.0%), tetracycline (20.7%) and cefotaxime (15.5%) were most prevalent. The major drivers of AMR were: lack of awareness of AMR, weak regulations on sales of antimicrobials, poor adherence to prescribed medications, and incomplete dosage due to financial constraints. These findings indicate the need for strict implementation of a national drug act to limit the over-the-counter sales of antimicrobials. Additionally, awareness campaigns with a multimedia mix are essential for educating people on AMR.
Collapse
|
14
|
Alcedo K, Ruiz J, Ochoa TJ, Riveros M. High Prevalence of blaCTX-M in Fecal Commensal Escherichia coli from Healthy Children. Infect Chemother 2022; 54:59-69. [PMID: 35132833 PMCID: PMC8987167 DOI: 10.3947/ic.2021.0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/17/2021] [Indexed: 01/01/2023] Open
Abstract
Background Antibiotic-resistant Escherichia coli can colonize the intestinal tract of healthy children, causing concern when antibiotic resistance is related to the presence of transferable mechanisms, such as extended-spectrum β-lactamases (ESBLs). Materials and Methods Fecal samples from 41 healthy children from two villages of rural Peru were cultured on ceftriaxone-disks. ESBL production was confirmed with double disk synergy. In all ESBL-produced isolates, antibiotic susceptibility to 12 antibacterial agents was established by disk diffusion, while clonal relationships were determined by repetitive extragenic palindromic-polymerase chain reaction (REP-PCR). Presence of ST131 was determined using PCR. Results Ceftriaxone-resistant microorganisms were recovered from 39 samples belonging to 22 out of 41 children (53.7%). Of these, 80 ceftriaxone-resistant and two ceftriaxone-intermediate E. coli from inside ceftriaxone-halos were confirmed as ESBL-producers. All isolates were multidrug-resistant. In 79/80 (98.8%) ceftriaxone-resistant isolates, the presence of blaCTX-M was detected alone (58 isolates, or together with other β-lactamase (blaTEM, 17 isolates; blaOXA-1-like, 3 isolates; blaTEM + blaOXA-1-like, 1 isolate), while in one isolate no such ESBL was identified. The two ceftriaxone-intermediate isolates recovered from the same sample, carried a blaTEM and blaSHV respectively. Thirty-four different clones were identified, with 4 clones being recovered from different samples from the same child. Twelve clones were disseminated among different children, including 5 clones disseminated between both villages. Two clones, accounting for 3 isolates and both recovered from the same children, belonged to E. coli ST131. Conclusion This study demonstrates high prevalence of ESBL-carriers among healthy children living in a rural area of Peru, stressing the need for continuous surveillance and search for public health control measures.
Collapse
Affiliation(s)
- Katherine Alcedo
- Laboratorio de Infectología Pediátrica, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquim Ruiz
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Lima, Peru
| | - Theresa J. Ochoa
- Laboratorio de Infectología Pediátrica, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Department of Pediatrics University of Texas School of Public Health, Houston, Texas, USA
| | - Maribel Riveros
- Laboratorio de Infectología Pediátrica, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima, Peru
| |
Collapse
|
15
|
Goldman L, McAlister SA, Keith A, Bone N, McSwain JM, Klineline DN, Hagedorn Wonder A. Collecting Site-Level Data on Organisms Causing Surgical Site Infections to Guide Quality Improvement. AORN J 2021; 113:389-396. [PMID: 33788227 DOI: 10.1002/aorn.13356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 09/28/2020] [Indexed: 11/07/2022]
Abstract
Surgical site infections (SSIs) negatively affect patients and health care organizations. We conducted a descriptive, correlational study at two hospitals that provide care to rural patients in one Midwestern state. The study purposes were to describe: types of organisms causing reportable organ/space SSIs that occurred within 30 days of an open or a laparoscopic abdominal surgery (N = 20), and commonalities in patient- and care-related factors to provide baseline information for site-level prevention efforts for quality improvement. We identified Escherichia coli in almost half of the SSI cases (n = 9, 45%). Common patient-related factors included ethnicity, smoking, and dirty or contaminated wounds. Common care-related factors included longer surgery times (> 60 minutes), unplanned surgeries, and procedures that involved the colon or small bowel. Personnel can use site-level data to monitor prevalent types of organisms causing SSIs, enabling an evidence-based, interdisciplinary approach to develop and test methods to enhance prevention.
Collapse
|
16
|
Chandra P, Mk U, Ke V, Mukhopadhyay C, U DA, M SR, V R. Antimicrobial resistance and the post antibiotic era: better late than never effort. Expert Opin Drug Saf 2021; 20:1375-1390. [PMID: 33999733 DOI: 10.1080/14740338.2021.1928633] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Antimicrobial resistance (AMR) is a multi-layered problem with a calamitous impact on humans, livestock, the environment, and the biosphere. Initiatives and action plan to preclude AMR remain poorly implemented in India.Area covered: This review highlights essential factors contributing to AMR, epidemiology of the resistant bacteria, current treatment options, economic impact, and regulatory efforts initiated by the Indian government to tackle AMR.Expert opinion: Health-care professionals, hospitals, and the general public must understand and cooperatively implement the 'One Health approach,' which entails judicious use of antibiotics in humans, animals, and the environment. Neglecting the AMR problem predicts the expansion of the 'Post-antibiotic era' characterized by drying antibiotic discovery pipelines, overuse of 'Watch' and 'Reserve' groups, coupled with underuse of 'Access' antibiotics, increased daily defined doses, increased healthcare cost, rise in morbidity, mortality, and environmental degradation. The Indian case study elucidates a looming international crisis that demands global attention and commitment for envisaging and implementing locally relevant solutions.
Collapse
Affiliation(s)
- Prashant Chandra
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Unnikrishnan Mk
- Department of Pharmacy Practice, NGSM Institute of Pharmaceutical Sciences, Nitte University, Deralakatte, Mangaluru, Karnataka, India
| | - Vandana Ke
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Dinesh Acharya U
- Department of Computer Science & Engineering, Manipal Institute of Technology Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surulivel Rajan M
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajesh V
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
17
|
Kunhikannan S, Thomas CJ, Franks AE, Mahadevaiah S, Kumar S, Petrovski S. Environmental hotspots for antibiotic resistance genes. Microbiologyopen 2021; 10:e1197. [PMID: 34180594 PMCID: PMC8123917 DOI: 10.1002/mbo3.1197] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial resistance toward broad-spectrum antibiotics has become a major concern in recent years. The threat posed by the infectious bacteria and the pace with which resistance determinants are transmitted needs to be deciphered. Soil and water contain unique and diverse microbial communities as well as pools of naturally occurring antibiotics resistant genes. Overuse of antibiotics along with poor sanitary practices expose these indigenous microbial communities to antibiotic resistance genes from other bacteria and accelerate the process of acquisition and dissemination. Clinical settings, where most antibiotics are prescribed, are hypothesized to serve as a major hotspot. The predisposition of the surrounding environments to a pool of antibiotic-resistant bacteria facilitates rapid antibiotic resistance among the indigenous microbiota in the soil, water, and clinical environments via horizontal gene transfer. This provides favorable conditions for the development of more multidrug-resistant pathogens. Limitations in detecting gene transfer mechanisms have likely left us underestimating the role played by the surrounding environmental hotspots in the emergence of multidrug-resistant bacteria. This review aims to identify the major drivers responsible for the spread of antibiotic resistance and hotspots responsible for the acquisition of antibiotic resistance genes.
Collapse
Affiliation(s)
- Shalini Kunhikannan
- Department of Physiology, Anatomy and MicrobiologySchool of Life SciencesCollege of Science, Health and EngineeringLa Trobe UniversityBundooraVicAustralia
- Department of MicrobiologyJSS Medical College and HospitalMysuruIndia
| | - Colleen J. Thomas
- Department of Physiology, Anatomy and MicrobiologySchool of Life SciencesCollege of Science, Health and EngineeringLa Trobe UniversityBundooraVicAustralia
| | - Ashley E. Franks
- Department of Physiology, Anatomy and MicrobiologySchool of Life SciencesCollege of Science, Health and EngineeringLa Trobe UniversityBundooraVicAustralia
| | | | - Sumana Kumar
- Department of MicrobiologyFaculty of Life SciencesJSS Academy of Higher Education and ResearchMysuruIndia
| | - Steve Petrovski
- Department of Physiology, Anatomy and MicrobiologySchool of Life SciencesCollege of Science, Health and EngineeringLa Trobe UniversityBundooraVicAustralia
| |
Collapse
|
18
|
Intahphuak S, Apidechkul T, Kuipiaphum P. Antibiotic resistance among the Lahu hill tribe people, northern Thailand: a cross-sectional study. BMC Infect Dis 2021; 21:385. [PMID: 33902489 PMCID: PMC8077817 DOI: 10.1186/s12879-021-06087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Antibiotic resistance is often reported and great concerned as one of public health problems especially people living with poverty in developing countries including Thailand. The hill tribe people is defined as vulnerable population for antibiotic resistance in Thailand due to poor economic and education status particularly the Lahu people who is the second greatest group of the hill tribe people in Thailand. The study aimed to estimate the prevalence, factors associated with, and typing major species of bacteria with antibiotic drugs resistance among the Lahu hill tribe people in northern Thailand. METHODS A cross-sectional study was conducted to gather the information from the participants. A validated questionnaire was used for data collection. Participants who presented an illness related to infectious diseases were eligible to participate the study and were asked to obtain specific specimen; sputum, urine or stool. Antibiotic susceptibility was tested by Kirbey Bauer's disc diffusion test. Chi-square and logistic regression were used to detect the associations between variables at the significant level of α = 0.05. RESULTS A total of 240 participants were recruited into the study. The majority had urinary tract infection (67.9%) with two major pathogenic species of the infection; Escherichia coli (12.8%), and Enterobacter cloacae (8.0%). The prevalence of antibiotic resistance was 16.0%. Escherichia coli and Klebsiella pneumoniae species were found to have multidrug resistance that was greater than that of other species, while ampicillin was found to have the greatest drug resistance. It was found that those who had poor knowledge of antibiotic use had a 2.56-fold greater chance (95% CI = 1.09-5.32) of having antibiotic resistance than did those who had good knowledge of antibiotic use, and those who had poor antibiotic use behaviors had a 1.79-fold greater chance (95% CI = 1.06-4.80) of having antibiotic resistance than did those who had good antibiotic use behaviors. CONCLUSION Effective public health interventions are urgently needed to reduce antibiotic drug resistance among the Lahu people by improving their knowledge and skills regarding the proper use of antibiotics and eventually minimizing antibiotic resistance. Moreover, health care professionals should strictly follow the standard guideline to prescribe antibiotics.
Collapse
Affiliation(s)
| | - Tawatchai Apidechkul
- School of Health Science, Mae Fah Laung University, Chiang Rai, 57100, Thailand.
| | - Patita Kuipiaphum
- Mae Je Dee Mai Sub-District Health Promotion Hospital, Wiang Pa Pao, Chiang Rai, 57260, Thailand
| |
Collapse
|
19
|
Hazarika P, Chattopadhyay I, Umpo M, Choudhury Y, Sharma I. Phylogeny, Biofilm Production, and Antimicrobial Properties of Fecal Microbial Communities of Adi Tribes of Arunachal Pradesh, India. Appl Biochem Biotechnol 2021; 193:1675-1687. [PMID: 33660220 DOI: 10.1007/s12010-021-03535-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/26/2021] [Indexed: 12/01/2022]
Abstract
The fecal flora consists of trillions of bacteria influencing human health and several host factors. Such population-based fecal flora studies are critical to uplift the health status of ethnic tribes from Arunachal Pradesh. This study aimed to analyze the ethnic tribe's biofilm producing antibiotic resistant bacteria and their phyllogenetic analysis in 15 stool samples collected from Adi tribes of Arunachal Pradesh. Of the analyzed samples, 42.85% were Escherichia, 20% lactic acid bacteria, 20% Salmonella, and 17.14% Enterococcus. Escherichia coli, lactic acid bacteria, and Enterococcus sp. emerged as strong biofilm producers; however, Salmonella declined to exhibit characters for a strong biofilm producer. Tetracycline resistance dominated in all the gut bacterial profiles. The 16SrRNA amplified PCR product was used for sequencing, and a phylogenetic tree was constructed exhibiting the relationship between the isolates. The test sequences were compared with the non-redundant Gene bank collection of the database with the Basic Local Alignment Search Tool.
Collapse
Affiliation(s)
- Parijat Hazarika
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Indranil Chattopadhyay
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, 610 101, India
| | - Mika Umpo
- Department of Microbiology, Tomo Riba Institute of Health and Medical Sciences, Naharlagun, 791110, India
| | - Yashmin Choudhury
- Department of Biotechnology, Assam University, Silchar, 788011, India
| | - Indu Sharma
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
20
|
Singh NS, Singhal N, Kumar M, Virdi JS. High Prevalence of Drug Resistance and Class 1 Integrons in Escherichia coli Isolated From River Yamuna, India: A Serious Public Health Risk. Front Microbiol 2021; 12:621564. [PMID: 33633708 PMCID: PMC7899961 DOI: 10.3389/fmicb.2021.621564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/05/2021] [Indexed: 11/16/2022] Open
Abstract
Globally, urban water bodies have emerged as an environmental reservoir of antimicrobial resistance (AMR) genes because resistant bacteria residing here might easily disseminate these traits to other waterborne pathogens. In the present study, we have investigated the AMR phenotypes, prevalent plasmid-mediated AMR genes, and integrons in commensal strains of Escherichia coli, the predominant fecal indicator bacteria isolated from a major urban river of northern India Yamuna. The genetic environment of blaCTX–M–15 was also investigated. Our results indicated that 57.5% of the E. coli strains were resistant to at least two antibiotic classes and 20% strains were multidrug resistant, i.e., resistant to three or more antibiotic classes. The multiple antibiotic resistance index of about one-third of the E. coli strains was quite high (>0.2), reflecting high contamination of river Yamuna with antibiotics. With regard to plasmid-mediated AMR genes, blaTEM–1 was present in 95% of the strains, followed by qnrS1 and armA (17% each), blaCTX–M–15 (15%), strA-strB (12%), and tetA (7%). Contrary to the earlier reports where blaCTX–M–15 was mostly associated with pathogenic phylogroup B2, our study revealed that the CTX-M-15 type extended-spectrum β-lactamases (ESBLs) were present in the commensal phylogroups A and B1, also. The genetic organization of blaCTX–M–15 was similar to that reported for E. coli, isolated from other parts of the world; and ISEcp1 was present upstream of blaCTX–M–15. The integrons of classes 2 and 3 were absent, but class 1 integron gene intI1 was present in 75% of the isolates, denoting its high prevalence in E. coli of river Yamuna. These evidences indicate that due to high prevalence of plasmid-mediated AMR genes and intI1, commensal E. coli can become vehicles for widespread dissemination of AMR in the environment. Thus, regular surveillance and management of urban rivers is necessary to curtail the spread of AMR and associated health risks.
Collapse
Affiliation(s)
- Nambram Somendro Singh
- Department of Microbiology, University of Delhi South Campus, New Delhi, India.,Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
21
|
Kar B, Sharma M, Peter A, Chetia P, Neog B, Borah A, Pati S, Bhattacharya D. Prevalence and molecular characterization of β-lactamase producers and fluoroquinolone resistant clinical isolates from North East India. J Infect Public Health 2021; 14:628-637. [PMID: 33848892 DOI: 10.1016/j.jiph.2021.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/26/2021] [Accepted: 02/14/2021] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION The rapid emergence and variations of antibiotic resistance among common gram negative bacteria cause a significant concern specially in India and all over the world because of high mortality and morbidity rates. METHODS In our study, we screened 189 bacterial isolates from Assam Medical College & Hospital, Dibrugarh for antibiotic resistance pattern and tried to identify the resistant genes causing responsible for β-lactam and fluoroquinolones resistance. RESULTS More than 80% and 45% strains were resistant to all the 3rd generation cephalosporins, fluoroquinolones respectively. Among the 3rd generation cephalosporin resistant strains, 38% and 24% isolates were only ESBL and MBL producers respectively and 11% were reported to have both ESBL and MBL genes. The ESBL positive isolates have shown the dominance of CTX-M3 gene. VIM-1 gene was mostly reported in MBL producers. Our study probably for the first time reporting SIM-1 and SPM-1 MBL gene from India. Mutations in QRDR is found to be the primary cause of fluoroquinolone resistance along with efflux pump and PMQR presence. CONCLUSION The study represents the first detailed study on antibiotic resistance from NE India this could help to take control measures for the emerging antibiotic resistance in hospital and community based infections in North East India.
Collapse
Affiliation(s)
- Bipasa Kar
- Department of Bacteriology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India.
| | - Mohan Sharma
- Department of Life Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India.
| | - Annalisha Peter
- Department of Bacteriology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India.
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India.
| | - Bijoy Neog
- Department of Life Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India.
| | - Amrit Borah
- Department of Microbiology, Assam Medical College & Hospital, Dibrugarh 786002, Assam, India.
| | - Sanghamitra Pati
- Department of Bacteriology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India.
| | - Debdutta Bhattacharya
- Department of Bacteriology, ICMR-Regional Medical Research Centre (Dept. of Health Research, Ministry of Health & Family Welfare, Govt. of India), Chandrasekharpur, Bhubaneswar 751023, India.
| |
Collapse
|
22
|
Nji E, Kazibwe J, Hambridge T, Joko CA, Larbi AA, Damptey LAO, Nkansa-Gyamfi NA, Stålsby Lundborg C, Lien LTQ. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci Rep 2021; 11:3372. [PMID: 33564047 PMCID: PMC7873077 DOI: 10.1038/s41598-021-82693-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/21/2021] [Indexed: 01/30/2023] Open
Abstract
Antibiotic resistance is a global health crisis that requires urgent action to stop its spread. To counteract the spread of antibiotic resistance, we must improve our understanding of the origin and spread of resistant bacteria in both community and healthcare settings. Unfortunately, little attention is being given to contain the spread of antibiotic resistance in community settings (i.e., locations outside of a hospital inpatient, acute care setting, or a hospital clinic setting), despite some studies have consistently reported a high prevalence of antibiotic resistance in the community settings. This study aimed to investigate the prevalence of antibiotic resistance in commensal Escherichia coli isolates from healthy humans in community settings in LMICs. Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we synthesized studies conducted from 1989 to May 2020. A total of 9363 articles were obtained from the search and prevalence data were extracted from 33 articles and pooled together. This gave a pooled prevalence of antibiotic resistance (top ten antibiotics commonly prescribed in LMICs) in commensal E. coli isolates from human sources in community settings in LMICs of: ampicillin (72% of 13,531 isolates, 95% CI: 65-79), cefotaxime (27% of 6700 isolates, 95% CI: 12-44), chloramphenicol (45% of 7012 isolates, 95% CI: 35-53), ciprofloxacin (17% of 10,618 isolates, 95% CI: 11-25), co-trimoxazole (63% of 10,561 isolates, 95% CI: 52-73), nalidixic acid (30% of 9819 isolates, 95% CI: 21-40), oxytetracycline (78% of 1451 isolates, 95% CI: 65-88), streptomycin (58% of 3831 isolates, 95% CI: 44-72), tetracycline (67% of 11,847 isolates, 95% CI: 59-74), and trimethoprim (67% of 3265 isolates, 95% CI: 59-75). Here, we provided an appraisal of the evidence of the high prevalence of antibiotic resistance by commensal E. coli in community settings in LMICs. Our findings will have important ramifications for public health policy design to contain the spread of antibiotic resistance in community settings. Indeed, commensal E. coli is the main reservoir for spreading antibiotic resistance to other pathogenic enteric bacteria via mobile genetic elements.
Collapse
Affiliation(s)
- Emmanuel Nji
- BioStruct-Africa, Vårby, 143 43, Stockholm, Sweden.
| | - Joseph Kazibwe
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Thomas Hambridge
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Carolyn Alia Joko
- BioStruct-Africa, Vårby, 143 43, Stockholm, Sweden
- Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Amma Aboagyewa Larbi
- BioStruct-Africa, Vårby, 143 43, Stockholm, Sweden
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | | | | | - Cecilia Stålsby Lundborg
- Health Systems and Policy (HSP): Improving the Use of Medicines, Department of Global Public Health, Karolinska Institutet, Tomtebodavägen 18A, 17177, Stockholm, Sweden
| | - La Thi Quynh Lien
- Department of Pharmaceutical Management and Pharmaco-Economics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem District, Hanoi, 110403, Vietnam
| |
Collapse
|
23
|
Mahmoodi F, Rezatofighi SE, Akhoond MR. Antimicrobial resistance and metallo-beta-lactamase producing among commensal Escherichia coli isolates from healthy children of Khuzestan and Fars provinces; Iran. BMC Microbiol 2020; 20:366. [PMID: 33256594 PMCID: PMC7708168 DOI: 10.1186/s12866-020-02051-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background The emergence of metallo-β-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; therefore, early detection of these isolates, particularly their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies. The current study was designed to evaluate the frequency of antimicrobial resistance (AMR), MBL producers and identification of MBL resistance genes in Escherichia coli strains isolated from fecal samples of the healthy children under 3 years old. A total of 412 fecal E. coli isolates were collected from October 2017 to December 2018. The study population included healthy infants and children aged < 3 years who did not exhibit symptoms of any diseases, especially gastrointestinal diseases. E. coli isolates were assessed to determine the pattern of AMR. E. coli isolates were assessed to determine the pattern of AMR, the production of extended spectrum β-lactamase (ESBL) and MBL by phenotypic methods. Carbapenem-resistant isolates were investigated for the presence of MBL and carbapenemase genes, plasmid profiling, and the ability of conjugation. Results In sum, AMR, multi-drug resistance (MDR) and ESBL production were observed in more than 54.9, 36.2 and 11.7% of commensal E. coli isolates, respectively. Out of six isolates resistant to imipenem and meropenem, four isolates were phenotypically detected as MBL producers. Two and one E. coli strains carried the blaNDM-1 and blaVIM-2 genes, respectively and were able to transmit imipenem resistance through conjugation. Conclusion Our findings showed that children not exposed to antibiotics can be colonized by E. coli isolates resistant to the commonly used antimicrobial compounds and can be a good indicator for the occurrence and prevalence of AMR in the community. These bacteria can act as a potential reservoir of AMR genes including MBL genes of pathogenic bacteria and lead to the dissemination of resistance mechanisms to other bacteria.
Collapse
Affiliation(s)
- Fahimeh Mahmoodi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Postal code: 6135743135, Iran
| | - Seyedeh Elham Rezatofighi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Postal code: 6135743135, Iran.
| | - Mohammad Reza Akhoond
- Mathematical Sciences and Computer Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
24
|
Singh AK, Das S, Kumar S, Gajamer VR, Najar IN, Lepcha YD, Tiwari HK, Singh S. Distribution of Antibiotic-Resistant Enterobacteriaceae Pathogens in Potable Spring Water of Eastern Indian Himalayas: Emphasis on Virulence Gene and Antibiotic Resistance Genes in Escherichia coli. Front Microbiol 2020; 11:581072. [PMID: 33224119 PMCID: PMC7674312 DOI: 10.3389/fmicb.2020.581072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
Every year millions of people die due to fatal waterborne diseases around the world especially in developing countries like India. Sikkim, a northeastern state of India, greatly depends on natural water sources. About 80% of the population of Sikkim depends on natural spring water for domestic as well as agricultural use. Recent waterborne disease outbreaks in the state raises a concerning question on water quality. In this study, we analyzed water quality especially for the detection of Enterobacteriaceae members from four districts of the state. Isolation with selective culture media techniques and taxonomic characterization of Enterobacteriaceae bacteria with 16S rRNA gene showed the prevalence of Escherichia coli (37.50%), Escherichia fergusonii (29.41%), Klebsiella oxytoca (36.93%), Citrobacter freundii (37.92%), Citrobacter amalonaticus (43.82%), Enterobacter sp. (43.82%), Morganella morganii (43.82%), Hafnia alvei (32.42%), Hafnia paralvei (38.74%), and Shigella flexneri (30.47%) in the spring water of Sikkim. Antibiotic susceptibility test (AST) showed resistance of the isolates to common antibiotics like ampicillin, amoxicillin as well as to third generation antibiotics like ceftazidime and carbapenem. None of the isolates showed resistance to chloramphenicol. E. coli isolated from spring water of Sikkim showed presence of different virulence genes such as stx1 (81.81%), elt (86.66%), and eae (66.66%) along with resistance gene for ampicillin (CITM) (80%), quinolones (qnrB) (44.44%), tetracycline (tetO) (66.66%), and streptomycin (aadA1) (66.66%). The data indicates a high incidence rate of multiple antibiotic resistant enteric bacteria in the spring water of Sikkim. Additionally, the presence of enteric bacteria in the water samples indicates widespread fecal contamination of the spring water.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Saurav Das
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Santosh Kumar
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Varsha Rani Gajamer
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Yangchen D. Lepcha
- State Institute of Rural Development (SIRD), Government of Sikkim, Gangtok, India
| | - Hare Krishna Tiwari
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery (CEMS), Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Mfoutou Mapanguy CC, Adedoja A, Kecka LGV, Vouvoungui JC, Nguimbi E, Velavan TP, Ntoumi F. High prevalence of antibiotic-resistant Escherichia coli in Congolese students. Int J Infect Dis 2020; 103:119-123. [PMID: 33002618 DOI: 10.1016/j.ijid.2020.09.1441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is of growing concern worldwide, and the AMR status in sub-Saharan Africa (SSA), including the Republic of the Congo, is largely undetermined due to a lack of real-time monitoring. As the incidence of multi-resistant Escherichia coli has been increasing in recent years, an investigation was performed to determine the antibiotic resistance of E. coli isolated from stool samples of Congolese students. Furthermore, factors associated with the carriage of resistant bacteria were investigated. METHODS A total of 339 stool samples from 339 high school students living in the Madibou area of Brazzaville, Republic of Congo, were tested for E. coli. Isolates obtained were tested for susceptibility to 10 antibiotics that are widely used in the region. RESULTS One hundred and seventy-three (51%) individuals were E. coli-positive in stool, with 61% being female students. Antimicrobial resistance was highest for ceftazidime (65%), followed by amoxicillin (57%), piperacillin-tazobactam (51%), ofloxacin (11%), azithromycin (8%), ciprofloxacin (4%), nalidixic acid (2%), and amoxicillin-clavulanic acid (1%). Antibiotic procurement from non-legalized local vendors had a significant impact on E. coli positivity and antibiotic resistance when compared to procurement from state-licensed pharmacies (p < 0.05). CONCLUSIONS The high prevalence of resistant commensal E. coli in the community justifies further investigation and urges the need for routine monitoring of antimicrobial susceptibility testing in the region.
Collapse
Affiliation(s)
- Claujens Chastel Mfoutou Mapanguy
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Congo
| | - Ayodele Adedoja
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo
| | | | | | - Etienne Nguimbi
- Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Congo
| | - Thirumalaisamy P Velavan
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany; Faculty of Medicine, Duy Tan University, Da Nang, Viet Nam
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Faculty of Sciences and Technology, University Marien Ngouabi, Brazzaville, Congo; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Dang STT, Truong DTQ, Olsen JE, Tran NT, Truong GTH, Vu HTK, Dalsgaard A. Research note: Occurrence of mcr-encoded colistin resistance in Escherichia coli from pigs and pig farm workers in Vietnam. FEMS MICROBES 2020; 1:xtaa003. [PMID: 37333956 PMCID: PMC10117427 DOI: 10.1093/femsmc/xtaa003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/16/2020] [Indexed: 10/13/2023] Open
Abstract
WHO considers colistin as a highest priority critically important drug for human health, and occurrence of colistin-resistant bacteria in livestock is of health concern. The current study determined occurrence of colistin-resistant Escherichia coli in pigs and workers at pig farms in Vietnam, and investigated the genetic background for resistance. Colistin-resistant E. coli were detected from pigs in 53/116 (45.7%) farms, and from workers taking care of the pigs in 21/94 (22.3%) farms. Colistin-resistant isolates showed MIC to colistin between 4-16 mg/L, they were multidrug resistant (99%) and resistance was caused by the presence of mcr-1 genes in 97/102 (95.1%) E. coli from pigs and in 31/34 (91.1%) isolates from humans. mcr-1 is considered a plasmid-encoded gene, but this was not confirmed in the current investigation. In total, one pig isolate carried both mcr-1 and mcr-3 genes, whereas mcr-2, mcr-4 and mcr-5 genes were not detected. Shared resistance profiles between pig and human isolates on the same farm was only observed in four farms. The study showed that commensal E. coli from pigs in Vietnam constitute a reservoir for colistin-resitant E. coli, however, further studies are needed to confirm that mcr genes are associated with plasmids and their importance for human health.
Collapse
Affiliation(s)
- Son Thi Thanh Dang
- National Institute of Veterinary Research, 74 Truong Chinh, Phuong Dinh, Dong Da, Hanoi, Vietnam
| | - Duong Thi Quy Truong
- National Institute of Veterinary Research, 74 Truong Chinh, Phuong Dinh, Dong Da, Hanoi, Vietnam
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, Frederiksberg C 1870, Denmark
| | - Nhat Thi Tran
- National Institute of Veterinary Research, 74 Truong Chinh, Phuong Dinh, Dong Da, Hanoi, Vietnam
| | - Giang Thi Huong Truong
- National Institute of Veterinary Research, 74 Truong Chinh, Phuong Dinh, Dong Da, Hanoi, Vietnam
| | - Hue Thi Kim Vu
- National Institute of Veterinary Research, 74 Truong Chinh, Phuong Dinh, Dong Da, Hanoi, Vietnam
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigboejlen 4, Frederiksberg C 1870, Denmark
- School of Chemical and Biomedical Engineering Nanyang Technological University, 62 Nanyang Drive Singapore 637459
| |
Collapse
|
27
|
Gajamer VR, Bhattacharjee A, Paul D, Ingti B, Sarkar A, Kapil J, Singh AK, Pradhan N, Tiwari HK. High prevalence of carbapenemase, AmpC β-lactamase and aminoglycoside resistance genes in extended-spectrum β-lactamase-positive uropathogens from Northern India. J Glob Antimicrob Resist 2020; 20:197-203. [DOI: 10.1016/j.jgar.2019.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/13/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022] Open
|
28
|
Nkansa-Gyamfi NA, Kazibwe J, Traore DAK, Nji E. Prevalence of multidrug-, extensive drug-, and pandrug-resistant commensal Escherichia coli isolated from healthy humans in community settings in low- and middle-income countries: a systematic review and meta-analysis. Glob Health Action 2019; 12:1815272. [PMID: 32909519 PMCID: PMC7782630 DOI: 10.1080/16549716.2020.1815272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/23/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The majority of existing studies aimed at investigating the incidence and prevalence of multidrug-resistance by bacteria have been performed in healthcare settings. Relatively few studies have been conducted in community settings, but these have consistently shown a high prevalence of multidrug-resistant bacteria in low- and middle-income countries (LMICs). OBJECTIVES To provide an appraisal of the evidence on the high prevalence of multidrug-, extensive drug-, and pandrug-resistance in commensal Escherichia coli isolates from human sources in community settings in LMICs. METHODS Using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines, PubMed, EMBASE, MEDLINE, Web of Science, CINAHL, and Cochrane Library databases were systematically searched with the search string: 'Enterobacteriaceae', OR 'E. coli', OR 'Escherichia coli', AND 'antibiotic resistance', OR 'antimicrobial resistance', OR 'drug-resistance', AND 'prevalence', OR 'incidence', OR 'morbidity', OR 'odds ratio', OR 'risk ratio', OR 'confidence interval', OR 'p-value', OR 'rate'. Data were extracted and proportional meta-analysis was performed using the Freeman-Tukey transformation random effect model. RESULTS The prevalence of multidrug-, extensive drug- and pandrug-resistance were extracted from articles that met our inclusion criteria and pooled together after a systematic screening of 9,369 items. The prevalence of multidrug-resistance was 28% of 14,336 total cases of isolates tested, 95% CI: 23-32. Extensive drug-resistance was 24% of 8,686 total cases of isolates tested, 95% CI: 14-36. Lastly, pandrug-resistance was 5% of 5,670 total cases of isolates tested, 95% CI: 3-8. CONCLUSION This paper provides an appraisal of the evidence on the high prevalence of multidrug-, extensive drug- and pandrug-resistance by commensal E. coli in community settings in LMICs. Our results call for greater effort to be placed at the community level in the design of new and improved public health policies to counter the global threat of antibiotic-resistant infections and bacteria.
Collapse
Affiliation(s)
| | - Joseph Kazibwe
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Daouda A. K. Traore
- BioStruct-Africa, Vårby, Sweden
- Faculte ′ Des Sciences Et Techniques, Universite ′ Des Sciences, Des Techniques Et Des Technologies De Bamako (USTTB), Bamako, Mali
- Life Sciences Group, Institut Laue- Langevin, Grenoble, France
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Staffordshire, UK
| | | |
Collapse
|
29
|
Huttner A, Bielicki J, Clements MN, Frimodt-Møller N, Muller AE, Paccaud JP, Mouton JW. Oral amoxicillin and amoxicillin-clavulanic acid: properties, indications and usage. Clin Microbiol Infect 2019; 26:871-879. [PMID: 31811919 DOI: 10.1016/j.cmi.2019.11.028] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Amoxicillin has been in use since the 1970s; it is the most widely used penicillin both alone and in combination with the β-lactamase clavulanic acid. OBJECTIVES In this narrative review, we re-examine the properties of oral amoxicillin and clavulanic acid and provide guidance on their use, with emphasis on the preferred use of amoxicillin alone. SOURCES Published medical literature (MEDLINE database via Pubmed). CONTENT While amoxicillin and clavulanic acid have similar half-lives, clavulanic acid is more protein bound and even less heat stable than amoxicillin, with primarily hepatic metabolism. It is also more strongly associated with gastrointestinal side effects, including Clostridium difficile infection, and, thus, in oral combination formulations, limits the maximum daily dose of amoxicillin that can be given. The first ratio for an amoxicillin-clavulanic acid combination was set at 4:1 due to clavulanic acid's high affinity for β-lactamases; ratios of 2:1, 7:1, 14:1 and 16:1 are currently available in various regions. Comparative effectiveness data for the different ratios are scarce. Amoxicillin-clavulanic acid is often used as empiric therapy for many of the World Health Organization's Priority Infectious Syndromes in adults and children, leading to extensive consumption, when some of these syndromes could be handled with a delayed antibiotic prescription approach or amoxicillin alone. IMPLICATIONS Using available epidemiological and pharmacokinetic data, we provide guidance on indications for amoxicillin versus amoxicillin-clavulanic acid and on optimal oral administration, including choice of combination ratio. More data are needed, particularly on heat stability, pharmacodynamic effects and emergence of resistance in 'real-world' clinical settings.
Collapse
Affiliation(s)
- A Huttner
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland.
| | - J Bielicki
- University of Basel Children's Hospital, Paediatric Infectious Diseases, Basel, Switzerland; Paediatric Infectious Diseases Research Group, St. George's University of London, London, UK
| | - M N Clements
- MRC Clinical Trials Unit at UCL, UCL, London, UK
| | - N Frimodt-Møller
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - A E Muller
- Department of Medical Microbiology, Haaglanden Medical Centre, The Hague, the Netherlands; Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - J-P Paccaud
- Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | - J W Mouton
- Department of Medical Microbiology, Haaglanden Medical Centre, The Hague, the Netherlands
| |
Collapse
|
30
|
Hydrophilic Silver Nanoparticles Loaded into Niosomes: Physical-Chemical Characterization in View of Biological Applications. NANOMATERIALS 2019; 9:nano9081177. [PMID: 31426465 PMCID: PMC6724070 DOI: 10.3390/nano9081177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/02/2019] [Accepted: 08/15/2019] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used as antibacterial agents and anticancer drugs, but often their low stability limits their mass production and broad applications. The use of niosomes as a carrier to protect and envelop AgNPs gives a new perspective to solve these problems. In this study, AgNPs were functionalized with sodium 3-mercapto-1-propanesulfonate (3MPS) to induce hydrophilic behavior, improving loading in Tween 20 and Span 20 niosomes (NioTw20 and NioSp20, respectively). Entrapment efficiency was evaluated by UV analyses and is around 1–4%. Dimensions were investigated by means of dynamic light scattering (DLS) (<2RH> = 140 ± 4 nm and <2RH> = 251 ± 1 nm respectively for NioTw20 + AgNPs and NioSp20 + AgNPs) and were compared with those by atomic force microscopy (AFM) and small angle X ray scattering (SAXS) analyses. Stability was assessed in water up to 90 days, and both in bovine serum and human serum for up to 8 h. In order to characterize the local structure of niosomes, SAXS measurements have been performed on Tween 20 and Span 20 empty niosomes and loaded with AgNPs. The release profiles of hydrophilic probe calcein and lipophilic probe Nile Red were performed in HEPES buffer and in human serum. All these features contribute to conclude that the two systems, NioTw20 + AgNPs and NioSp20 + AgNPs, are suitable and promising in the field of biological applications.
Collapse
|
31
|
Singh AK, Das S, Singh S, Pradhan N, Gajamer VR, Kumar S, Lepcha YD, Tiwari HK. Physicochemical Parameters and Alarming Coliform Count of the Potable Water of Eastern Himalayan State Sikkim: An Indication of Severe Fecal Contamination and Immediate Health Risk. Front Public Health 2019; 7:174. [PMID: 31355173 PMCID: PMC6636254 DOI: 10.3389/fpubh.2019.00174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/10/2019] [Indexed: 02/05/2023] Open
Abstract
Continuous decline in potable water sources has raised serious concerns over human health. Developing countries are the most affected in this regard due to a lack of proper hygiene maintenance. Sikkim, an Eastern Himalayan state with mountains as the predominant topological features, harbors several perennial natural springs. Spring water is the primary source of potable water for the population in four districts of the state viz. East, West, North and South. Recent outbreaks of water-borne diseases and the relative lack of scientific studies on its potential correlation with the water quality of the area have educed this study. Physicochemical parameters of springs, community reservoirs, and household water were analyzed by ICP-MS and multi probe meter. Using the membrane filtration method, the microbial quality of the water samples during different seasons was assessed, primarily evaluating the presence of fecal indicators viz. Escherichia coli, total coliform and Enterococcus. The seasonal risk category of the water sources was also determined. Most of the physicochemical parameters of the spring water were within the permissible limits of WHO standards. However, water from four districts was recorded with traces of toxic heavy metals like mercury (0.001-0.007 mg/l), lead (0.001-0.007 mg/l), and selenium (0.526-0.644 mg/l), which are above the permissible limits of WHO. All the spring water samples were categorized as Mg-HCO 3 - type and can be predicted as shallow fresh ground water based on the piper analysis. Microbial confirmatory testing indicated severe fecal contamination of water sources with high counts of total coliform (TC), Escherichia coli (EC) and Enterococcus (EN). The highest level of TC was recorded from West Sikkim (37.26 cfu/100 ml) and the lowest in North Sikkim (22.13 cfu/100 ml). The highest level of contamination of E. coli and Enterococcus was found in East Sikkim (EC = 8.7 cfu/100 ml; EN = 2.08 cfu/100 ml) followed by South Sikkim (EC = 8.4 cfu/100 ml; EN = 2.05 cfu/100 ml). There was a significant positive correlation between the contamination levels of the spring water and the community reservoir tank. As far as the seasonal variation is concerned, the rainy season showed the most contamination with coliform correlating with a high incidence of different water-borne diseases (East = 86%; West = 100%; South = 100%; North = 80%).
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Saurav Das
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Samer Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
- Centre of Experimental Medicine & Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilu Pradhan
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Varsha Rani Gajamer
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Santosh Kumar
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| | - Yangchen D. Lepcha
- State Institute of Rural Development, Government of Sikkim, Gangtok, India
| | - Hare K. Tiwari
- Department of Microbiology, School of Life Sciences, Sikkim University, Gangtok, India
| |
Collapse
|
32
|
Contributions and Challenges of High Throughput qPCR for Determining Antimicrobial Resistance in the Environment: A Critical Review. Molecules 2019; 24:molecules24010163. [PMID: 30609875 PMCID: PMC6337382 DOI: 10.3390/molecules24010163] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 12/12/2022] Open
Abstract
Expansion in whole genome sequencing and subsequent increase in antibiotic resistance targets have paved the way of high throughput qPCR (HT-qPCR) for analyzing hundreds of antimicrobial resistance genes (ARGs) in a single run. A meta-analysis of 51 selected studies is performed to evaluate ARGs abundance trends over the last 7 years. WaferGenTM SmartChip is found to be the most widely used HT-qPCR platform among others for evaluating ARGs. Up till now around 1000 environmental samples (excluding biological replicates) from different parts of the world have been analyzed on HT-qPCR. Calculated detection frequency and normalized ARGs abundance (ARGs/16S rRNA gene) reported in gut microbiome studies have shown a trend of low ARGs as compared to other environmental matrices. Disparities in the HT-qPCR data analysis which are causing difficulties to researchers in precise interpretation of results have been highlighted and a possible way forward for resolving them is also suggested. The potential of other amplification technologies and point of care or field deployable devices for analyzing ARGs have also been discussed in the review. Our review has focused on updated information regarding the role, current status and future perspectives of HT-qPCR in the field of antimicrobial resistance.
Collapse
|