1
|
Targońska-Karasek M, Polkowska I, Krukowski H. Is Pseudomonas aeruginosa a possible aetiological agent of periodontitis in dogs? J Vet Res 2025; 69:35-40. [PMID: 40144062 PMCID: PMC11936081 DOI: 10.2478/jvetres-2025-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Periodontal diseases are the most frequently diagnosed problem in small animal veterinary medicine. Although their exact cause is not fully understood, bacteria play an important role in their development. Pseudomonas aeruginosa is a Gram-negative, rod-shaped, non-spore-forming bacterium. The living environment of this bacterium may be soil and water; however, it can also be found in humans and animals. Antibiotic treatment of periodontitis may be complicated by the carbapenem resistance of some P. aeruginosa strains, if these bacteria are found to be an aetiological agent. The aim of the study was to identify all bacterial strains isolated from dog with periodontitis. Material and Methods After a clinical examination of a Schnauzer dog in the Department and Clinic of Animal Surgery in the University of Life Sciences in Lublin Faculty of Veterinary Medicine, periodontitis was diagnosed. A swab was taken from the diseased tissue and submitted for microbiological tests. Microorganisms were initially identified by colony morphology, haemolytic pattern and Gram staining, and subsequently by sensitivity tests, VITEK 2 and matrix-assisted laser desorption/ionisation-time-of-flight. Results Pseudomonas aeruginosa was isolated and identified as a probable aetiological factor of periodontitis in dogs. Conclusion In our opinion, attention should be paid to Pseudomonas aeruginosa as a possible aetiological factor of periodontal diseases in dogs.
Collapse
Affiliation(s)
- Małgorzata Targońska-Karasek
- Department of Animal Hygiene and Environmental Hazards, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612Lublin, Poland
| | - Henryk Krukowski
- Department of Animal Hygiene and Environmental Hazards, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950Lublin, Poland
| |
Collapse
|
2
|
Mukasa P, Ogwang PE, Owor RO, Lejju JB, Gumisiriza H, Ntulume I, Adaku C. Antibiotic Susceptibility of Zoonotic Bacteria Isolated From Oral Cavities of Indigenous Dogs From Semi-Urban Areas in Uganda. Vet Med Sci 2025; 11:e70169. [PMID: 39688521 DOI: 10.1002/vms3.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Dog bites are a source of zoonotic infections to humans, such as pasteurellosis and meningitis. Zoonotic bacterial identification and their antibiotic susceptibility assessment are key towards the successful management of such infections. This study isolated and identified zoonotic bacterial species from the oral cavities of indigenous dogs and also determined their antibiotic susceptibility profile. Oral swab samples collected from 54 indigenous dogs (domestic [36] and stray [18]) were cultured on agar media, and then on selective-differential media. The colony morphology and conventional biochemical tests were used to identify the bacterial isolates. Antibiotic susceptibility was evaluated using the Kirby-Bauer disk diffusion method. A total of 232 bacterial isolates were obtained, from which 29 bacteria species (18 Gram-negative and 11 Gram-positive) belonging to 19 genera and 13 families were identified. Aerobic and anaerobic bacteria species constituted 69% and 31%, respectively. The most prevalent bacteria species was Staphylococcus aureus (10.8%) followed by Escherichia coli (9.5%), while Yersinia enterocolitica (0.4%) was the least common. Most bacteria species belonged to family Enterobacteriaceae (11) followed by Vibrionaceae (04). All the sampled dogs had a number of multi-drug-resistant superbugs in their oral cavities. However, all the tested bacterial isolates were only susceptible to imipenem and chloramphenicol. All the identified bacteria species were resistant to metronidazole, amoxicillin-clavulanic acid and ceftazidime. Therefore, antibiotics such as imipenem and chloramphenicol could be of better choice for managing dog bite infections compared to the antibiotics recommended by Uganda Clinical Guidelines, such as metronidazole and amoxicillin-clavulanic acid.
Collapse
Affiliation(s)
- Paul Mukasa
- Department of Chemistry, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Department of Pharmacy, Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Julius B Lejju
- Department of Biology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Hannington Gumisiriza
- Department of Chemistry, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ibrahim Ntulume
- School of Biosecurity, Biotechnology and Laboratory Sciences, Makerere University, Kampala, Uganda
| | - Christopher Adaku
- Department of Chemistry, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
3
|
Alessandri G, Fontana F, Mancabelli L, Tarracchini C, Lugli GA, Argentini C, Longhi G, Rizzo SM, Vergna LM, Anzalone R, Viappiani A, Turroni F, Ossiprandi MC, Milani C, Ventura M. Species-level characterization of saliva and dental plaque microbiota reveals putative bacterial and functional biomarkers of periodontal diseases in dogs. FEMS Microbiol Ecol 2024; 100:fiae082. [PMID: 38782729 PMCID: PMC11165276 DOI: 10.1093/femsec/fiae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024] Open
Abstract
Periodontal diseases are among the most common bacterial-related pathologies affecting the oral cavity of dogs. Nevertheless, the canine oral ecosystem and its correlations with oral disease development are still far from being fully characterized. In this study, the species-level taxonomic composition of saliva and dental plaque microbiota of 30 healthy dogs was investigated through a shallow shotgun metagenomics approach. The obtained data allowed not only to define the most abundant and prevalent bacterial species of the oral microbiota in healthy dogs, including members of the genera Corynebacterium and Porphyromonas, but also to identify the presence of distinct compositional motifs in the two oral microniches as well as taxonomical differences between dental plaques collected from anterior and posterior teeth. Subsequently, the salivary and dental plaque microbiota of 18 dogs affected by chronic gingival inflammation and 18 dogs with periodontitis were compared to those obtained from the healthy dogs. This analysis allowed the identification of bacterial and metabolic biomarkers correlated with a specific clinical status, including members of the genera Porphyromonas and Fusobacterium as microbial biomarkers of a healthy and diseased oral status, respectively, and genes predicted to encode for metabolites with anti-inflammatory properties as metabolic biomarkers of a healthy status.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, 43125 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | | | | | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Maria Cristina Ossiprandi
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Department of Veterinary Medical Science, University of Parma, Via Del Taglio 10, 43126 Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy
| |
Collapse
|
4
|
Jurburg SD, Blowes SA, Shade A, Eisenhauer N, Chase JM. Synthesis of recovery patterns in microbial communities across environments. MICROBIOME 2024; 12:79. [PMID: 38711157 DOI: 10.1186/s40168-024-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/25/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Disturbances alter the diversity and composition of microbial communities. Yet a generalized empirical assessment of microbiome responses to disturbance across different environments is needed to understand the factors driving microbiome recovery, and the role of the environment in driving these patterns. RESULTS To this end, we combined null models with Bayesian generalized linear models to examine 86 time series of disturbed mammalian, aquatic, and soil microbiomes up to 50 days following disturbance. Overall, disturbances had the strongest effect on mammalian microbiomes, which lost taxa and later recovered their richness, but not their composition. In contrast, following disturbance, aquatic microbiomes tended away from their pre-disturbance composition over time. Surprisingly, across all environments, we found no evidence of increased compositional dispersion (i.e., variance) following disturbance, in contrast to the expectations of the Anna Karenina Principle. CONCLUSIONS This is the first study to systematically compare secondary successional dynamics across disturbed microbiomes, using a consistent temporal scale and modeling approach. Our findings show that the recovery of microbiomes is environment-specific, and helps to reconcile existing, environment-specific research into a unified perspective. Video Abstract.
Collapse
Affiliation(s)
- Stephanie D Jurburg
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany.
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany.
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, 06108, Halle (Saale), Halle, Germany
| | - Ashley Shade
- Laboratoire d'Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Universite Claude Bernard Lyon 1, 69622, Villeurbanne, France
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, 06108, Halle (Saale), Halle, Germany
| |
Collapse
|
5
|
Enlund KB, Rahunen N, Thelander S, Olsén L. Evaluation of a Thiol-Detection Test to Assess Tooth Brushing Efficacy in Dogs. J Vet Dent 2024; 41:183-191. [PMID: 37345423 PMCID: PMC11003196 DOI: 10.1177/08987564231179898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Periodontal disease affects more than 80% of dogs over 3 years of age, making it the most common disease in dogs seen in veterinary clinics. Gingivitis, the early-stage of periodontal disease, may be reversible with tooth brushing. Thiol, a sulfuric compound, has previously been shown to correlate with the degree of periodontal disease. In this study, a thiol-detection test was used to investigate daily tooth brushing efficacy in dogs. Twenty-two beagle dogs were subjected to daily tooth brushing for 2 weeks. Gingival index (GI), plaque index (PI), calculus index (CI) and thiol were assessed before treatment (day 1), after 1 week (day 7), after last treatment (day 14), and 2 weeks after treatment finished (day 29). Degree of stress was also assessed using a fear, anxiety and stress (FAS) scale. Both 7 and 14 days of daily tooth brushing showed an improvement in oral health. Thiol decreased significantly and GI and PI improved significantly after 1 and 2 weeks of brushing. No significant improvement in CI was shown. After an additional 2 weeks without brushing, GI and PI had returned to baseline levels. Stress levels decreased from day 1 to day 14. This study suggests that a thiol-detection test can be used to assess tooth brushing efficacy. Tooth brushing has a positive effect on the oral health in dogs as soon as 7 days after commencement.
Collapse
Affiliation(s)
- Karolina Brunius Enlund
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nadja Rahunen
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sofia Thelander
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lena Olsén
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Switzer AD, Callahan BJ, Costello EK, Bik EM, Fontaine C, Gulland FM, Relman DA. Rookery through rehabilitation: Microbial community assembly in newborn harbour seals after maternal separation. Environ Microbiol 2023; 25:2182-2202. [PMID: 37329141 PMCID: PMC11180496 DOI: 10.1111/1462-2920.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/22/2023] [Indexed: 06/18/2023]
Abstract
Microbial community assembly remains largely unexplored in marine mammals, despite its potential importance for conservation and management. Here, neonatal microbiota assembly was studied in harbour seals (Phoca vitulina richardii) at a rehabilitation facility soon after maternal separation, through weaning, to the time of release back to their native environment. We found that the gingival and rectal communities of rehabilitated harbour seals were distinct from the microbiotas of formula and pool water, and became increasingly diverse and dissimilar over time, ultimately resembling the gingival and rectal communities of local wild harbour seals. Harbour seal microbiota assembly was compared to that of human infants, revealing the rapid emergence of host specificity and evidence of phylosymbiosis even though these harbour seals had been raised by humans. Early life prophylactic antibiotics were associated with changes in the composition of the harbour seal gingival and rectal communities and surprisingly, with transient increases in alpha diversity, perhaps because of microbiota sharing during close cohabitation with other harbour seals. Antibiotic-associated effects dissipated over time. These results suggest that while early life maternal contact may provide seeding for microbial assembly, co-housing of conspecifics during rehabilitation may help neonatal mammals achieve a healthy host-specific microbiota with features of resilience.
Collapse
Affiliation(s)
- Alexandra D. Switzer
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Benjamin J. Callahan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Elizabeth K. Costello
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, United States
| | | | | | - Frances M.D. Gulland
- The Marine Mammal Center, Sausalito, CA, United States
- Wildlife Health Center, School of Veterinary Medicine, University of California at Davis, Davis, CA, United States
| | - David A. Relman
- Department of Medicine, School of Medicine, Stanford University, Stanford, CA, United States
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, United States
- Infectious Diseases Section, VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
7
|
Perry EB, Discepolo DR, Liang SY, Scott M, Williamson K, Bender KS. Biocidal effects of a wipe-down procedure using common veterinary cleansers on microbial burden within working canine exterior coats. Front Vet Sci 2023; 10:1219249. [PMID: 37565083 PMCID: PMC10411539 DOI: 10.3389/fvets.2023.1219249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Recent work demonstrating reduction of aerosolized contamination via a wipe-down procedure using common veterinary antiseptics offers promise regarding health concerns associated with cross-contamination from working canines to humans. While mechanical reduction can be achieved via a wipe-down procedure, the biocidal impact on flora within the exterior coat is unknown. Methodology This study assessed the biocidal impact of antiseptics on the exterior bacterial community of the canine. Lint-free towels were saturated with 2% chlorhexidine gluconate scrub, or 7.5% povidone-iodine scrub diluted at a 1:4 ratio. Treatments were rotated across the dorsal aspect of kennel housed Foxhounds (n = 30). Sterile swabs were collected in triplicate prior to, and following wipe down, stored in Amies solution at 4°C, plated onto nutrient agar and reduction in colony forming units (CFU) was measured across both treatments. Statistical analysis utilizing PROC GLM examined effects of treatment (p ≤ 0.05). Molecular analysis of the 16S rRNA gene was completed for 3 hounds. Results Reduction in CFU was measured (p < 0.001) for both antiseptics. Qualitative molecular data indicated that both antiseptics had a biocidal effect on the dominant microbial community on the exterior coat with gram-positive, spore-forming taxa predominating post-treatment. Conclusion Effective wipe-down strategies using common veterinary cleansers should be further investigated and incorporated to safeguard working canine health and prevent cross-contamination of human personnel.
Collapse
Affiliation(s)
- Erin B Perry
- Department of Animal Science Food and Nutrition, Southern Illinois University, Carbondale, IL, United States
| | - Dakota R Discepolo
- Department of Animal Science Food and Nutrition, Southern Illinois University, Carbondale, IL, United States
| | - Stephen Y Liang
- Department of Emergency Medicine and Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Maurnice Scott
- Department of Animal Science Food and Nutrition, Southern Illinois University, Carbondale, IL, United States
| | - Kyleigh Williamson
- School of Biological Sciences, Microbiology Program, Southern Illinois University, Carbondale, IL, United States
| | - Kelly S Bender
- School of Biological Sciences, Microbiology Program, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
8
|
Meineri G, Cocolin L, Morelli G, Schievano C, Atuahene D, Ferrocino I. Effect of an Enteroprotective Complementary Feed on Faecal Markers of Inflammation and Intestinal Microbiota Composition in Weaning Puppies. Vet Sci 2023; 10:434. [PMID: 37505839 PMCID: PMC10385893 DOI: 10.3390/vetsci10070434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Weaning entails numerous modifications of the intestinal structure and microbiota composition, making puppies at high risk of sickness during this delicate life stage. The aim of this study was to investigate the effects of a four-week administration of a supplement composed of ultramicronised Palmitoylethanolamide, bovine colostrum and Bacillus subtilis (Normalia® Extra, Innovet Italia Srl, Saccolongo, Italy) on markers of gut health and microbiome of weaning puppies. Twenty-nine four-week-old Golden Retriever puppies were randomly assigned to control (CG, n = 13) and treated (TG, n = 16) groups. During the whole experimental time, there were no differences between the groups with regard to average daily gain and faecal score. In TG, faecal calprotectin and zonulin values were statistically significantly decreased compared to CG, especially at week 8 (zonulin: 42.8 ± 1.54 ng/mL and 55.3 ± 42.8 ng/mL, and calprotectin: 2.91 ± 0.38 µg/g and 5.71 ± 0.43 µg/g, in TG and CG, respectively; p < 0.0001 for both comparisons). Bacteria belonging to phylum Campylobacterota decreased (p = 0.04), while those referring to genera Coprococcus and Pseudomonas increased (p = 0.01 and p = 0.04, respectively). The supplementation of the tested complementary feed can promote the intestinal health of puppies and therefore facilitate weaning by lowering gut inflammation.
Collapse
Affiliation(s)
- Giorgia Meineri
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Giada Morelli
- CeDIS (Science Information and Documentation Center), Innovet Italia Srl, Via Leonardo Da Vinci 3, 35030 Saccolongo, Italy
| | - Carlo Schievano
- Innovative Statistical Research Srl, Prato della Valle 24, 35123 Padova, Italy
| | - David Atuahene
- Department of Veterinary Sciences, School of Agriculture and Veterinary Medicine, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
9
|
In Vivo Effect of a Nisin–Biogel on the Antimicrobial and Virulence Signatures of Canine Oral Enterococci. Antibiotics (Basel) 2023; 12:antibiotics12030468. [PMID: 36978334 PMCID: PMC10044209 DOI: 10.3390/antibiotics12030468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Periodontal disease is a relevant oral disease in dogs and nisin–biogel has been previously proposed to be used in its control. Enterococci, as inhabitants of the oral cavity with a high genetic versatility, are a reliable bacterial model for antimicrobial studies. Our goal was to evaluate the in vivo influence of the long-term dental application of the nisin–biogel on the virulence and antimicrobial signatures of canine oral enterococci. Twenty dogs were randomly allocated to one of two groups (treatment group—TG with nisin–biogel dental application, or control group—CG without treatment) and submitted to dental plaque sampling at day 0 and after 90 days (T90). Samples were processed for Enterococcus spp. isolation, quantification, identification, molecular typing and antimicrobial and virulence characterization. From a total of 140 enterococci, molecular typing allowed us to obtain 70 representative isolates, mostly identified as E. faecalis and E. faecium. No significant differences (p > 0.05) were observed in the virulence index of the isolates obtained from samples collected from the TG and CG at T90. At T90, a statistically significant difference (p = 0.0008) was observed in the antimicrobial resistance index between the isolates from the TC and CG. Oral enterococci were revealed to be reservoirs of high resistant and virulent phenotypes.
Collapse
|
10
|
Figueiredo CGF, Santos MSD, Santos AS, Silva EDS, Lima B, Lucca Junior WD, Araujo YLFMD, Batista MVDA. In vitro evaluation of the antibacterial effect of Brazilian red propolis ethanol extract in the prevention of periodontal disease in dogs. Comp Immunol Microbiol Infect Dis 2023; 92:101924. [PMID: 36463681 DOI: 10.1016/j.cimid.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Dental plaque (DP) is found on the surface of teeth and comprises a community of microorganisms that form a structured biofilm. Bacteria present in DP are potential periodontal pathogens when there is an imbalance in the healthy oral environment, and are precursors of periodontal disease (PD). In dogs, the treatments, such as mechanical removal, are difficult and expensive to apply. Therefore, in order to seek new therapeutic alternatives to control dental plaque in dogs, Brazilian red propolis ethanol extract (RPEE) was tested to evaluate its antibacterial effect on bacteria isolated from DP of dogs without PD. DP was collected from the supragingival dental surfaces of 10 dogs. Bacterial isolates of DP were identified by PCR and sequencing of 16S rDNA gene. The RPEE was obtained using the ultrasound ethanol extraction technique, and the chemical composition was obtained by HPLC-DAD and UV-spectrophotometry. In total, 29 different bacteria belonging to five genera were identified. Formononetin, biochanin A, liquiritigenin and daidzein were the major constituents of the RPEE. The cytotoxic effect showed cell viability after 24 h above 50 % at all concentrations evaluated. The minimum inhibitory concentration was between 37.5 and 150.0 µg/mL for all bacterial isolates. The minimal bactericidal concentration was between 150 and 1200 µg/mL for Gram-positive and 300-1200 µg/mL for Gram-negative bacteria. The results are promising and suggest that RPEE has significant antibacterial potential against the bacteria present in the DP of healthy dogs. Although further studies are still needed, the results suggest RPEE might be safely used in the prevention of periodontal disease.
Collapse
Affiliation(s)
- Chrislayne Gonçalves Farias Figueiredo
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil
| | - Mariel Salvador Dos Santos
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil
| | - Amanda Silva Santos
- Laboratory of Chemistry of Natural and Biochemical Products, Department of Physiology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil
| | - Elizabete de Santana Silva
- Sergipe Multiuser Molecular Neuroscience Laboratory, Department of Morphology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil
| | - Bruno Lima
- Laboratory of Pharmaceutical Testing and Toxicity, Department of Pharmacy, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil
| | - Waldecy de Lucca Junior
- Sergipe Multiuser Molecular Neuroscience Laboratory, Department of Morphology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil
| | - Yzila Liziane Farias Maia de Araujo
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão, SE 49100-000, Brazil.
| |
Collapse
|
11
|
Cunha E, Carreira LM, Nunes T, Videira M, Tavares L, Veiga AS, Oliveira M. In Vivo Evaluation of the Efficacy of a Nisin-Biogel as a New Approach for Canine Periodontal Disease Control. Pharmaceutics 2022; 14:pharmaceutics14122716. [PMID: 36559210 PMCID: PMC9787893 DOI: 10.3390/pharmaceutics14122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease (PD) is a common oral disease in dogs. Recent in vitro research revealed that nisin−biogel is a promising compound for canine PD control. In this work, a clinical trial was developed to assess the in vivo efficacy of nisin−biogel in dogs by determining the dental plaque index (DPI), gingivitis index (GI), and periodontal pocket depth (PPD) after dental administration. The biogel’s influence on aerobic bacteria counts was also evaluated, as well as its acceptance/adverse effects in dogs. Twenty animals were allocated to one of two groups: a treatment group (TG) subjected to a dental topical application of nisin−biogel for 90 days and a control group (CG) with no treatment. Besides daily monitoring, on day 1 (T0) and at the end of the assay (T90), animals were subjected to blood analysis, periodontal evaluation, dental plaque sampling, scaling, and polishing. Statistical analysis with mixed models showed a significant reduction in mean PPD (estimate = −0.371, p-value < 0.001) and DPI (estimate = −0.146, p-value < 0.05) in the TG animals at T90. A reduction in the GI (estimate = −0.056, p-value > 0.05) was also observed but with no statistical significance. No influence on total bacterial counts was observed, and no adverse effects were detected. The nisin−biogel was revealed to be a promising compound for canine PD control.
Collapse
Affiliation(s)
- Eva Cunha
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
- Correspondence:
| | - Luís Miguel Carreira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Telmo Nunes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Marta Videira
- Casa dos Animais de Lisboa, Estrada da Pimenteira, 1300-459 Lisbon, Portugal
| | - Luís Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
12
|
Niemiec BA, Gawor J, Tang S, Prem A, Krumbeck JA. The bacteriome of the oral cavity in healthy dogs and dogs with periodontal disease. Am J Vet Res 2022; 83:50-58. [PMID: 34727048 DOI: 10.2460/ajvr.21.02.0027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the bacteriome of the oral cavity in healthy dogs and dogs with various stages of periodontal disease. ANIMALS Dogs without periodontal disease (n = 12) or with mild (10), moderate (19), or severe (10) periodontal disease. PROCEDURES The maxillary arcade of each dog was sampled with a sterile swab, and swabs were submitted for next-generation DNA sequencing targeting the V1-V3 region of the 16S rRNA gene. RESULTS 714 bacterial species from 177 families were identified. The 3 most frequently found bacterial species were Actinomyces sp (48/51 samples), Porphyromonas cangingivalis (47/51 samples), and a Campylobacter sp (48/51 samples). The most abundant species were P cangingivalis, Porphyromonas gulae, and an undefined Porphyromonas sp. Porphyromonas cangingivalis and Campylobacter sp were part of the core microbiome shared among the 4 groups, and P gulae, which was significantly enriched in dogs with severe periodontal disease, was part of the core microbiome shared between all groups except dogs without periodontal disease. Christensenellaceae sp, Bacteroidales sp, Family XIII sp, Methanobrevibacter oralis, Peptostreptococcus canis, and Tannerella sp formed a unique core microbiome in dogs with severe periodontal disease. CONCLUSIONS AND CLINICAL RELEVANCE Results highlighted that in dogs, potential pathogens can be common members of the oral cavity bacteriome in the absence of disease, and changes in the relative abundance of certain members of the bacteriome can be associated with severity of periodontal disease. Future studies may aim to determine whether these changes are the cause or result of periodontal disease or the host immune response.
Collapse
Affiliation(s)
- Brook A Niemiec
- Veterinary Dental Specialties and Oral Surgery, San Diego, CA
| | | | - Shuiquan Tang
- MiDOG LLC, Tustin, CA.,Zymo Research Corp., Irvine, CA
| | - Aishani Prem
- MiDOG LLC, Tustin, CA.,Zymo Research Corp., Irvine, CA
| | | |
Collapse
|
13
|
Davis EM, Weese JS. Oral Microbiome in Dogs and Cats: Dysbiosis and the Utility of Antimicrobial Therapy in the Treatment of Periodontal Disease. Vet Clin North Am Small Anim Pract 2021; 52:107-119. [PMID: 34838246 DOI: 10.1016/j.cvsm.2021.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advances in gene sequence technology and data analysis have enabled the detection and taxonomic identification of microorganisms in vivo based on their unique RNA or DNA sequences. Standard culture techniques can only detect those organisms that readily grow on artificial media in vitro. Culture-independent technology has been used to provide a more accurate assessment of the richness (total number of species) and diversity (relative abundance of each species) of microorganisms present in a prescribed location. The microbiome has been defined as the genes and genomes of all microbial inhabitants within a defined environment. Microorganisms within a microbiome interact with each other as well as with the host. A microbiome is dynamic and may change over time as conditions within the defined environment become altered. In oral health, neither gingivitis nor periodontitis is present, and the host and microbiome coexist symbiotically without evoking an inflammatory response. The circumstances that cause a shift from immune tolerance to a proinflammatory response remain unknown, and a unified, all-encompassing hypothesis to explain how and why periodontal disease develops has yet to be described. The purpose of this review is to clarify the current understanding of the role played by the oral microbiome in dogs and cats, describe how the microbiome changes in periodontal disease, and offer guidance on the utility of systemic antimicrobial agents in the treatment of periodontitis in companion animals.
Collapse
Affiliation(s)
- Eric M Davis
- Animal Dental Specialists of Upstate New York, 6867 East Genesee Street, Fayetteville, NY 13066, USA.
| | - J Scott Weese
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
14
|
Pereira AM, Clemente A. Dogs' Microbiome From Tip to Toe. Top Companion Anim Med 2021; 45:100584. [PMID: 34509665 DOI: 10.1016/j.tcam.2021.100584] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Microbiota and microbiome, which refers, respectively, to the microorganisms and conjoint of microorganisms and genes are known to live in symbiosis with hosts, being implicated in health and disease. The advancements and cost reduction associated with high-throughput sequencing techniques have allowed expanding the knowledge of microbial communities in several species, including dogs. Throughout their body, dogs harbor distinct microbial communities according to the location (e.g., skin, ear canal, conjunctiva, respiratory tract, genitourinary tract, gut), which have been a target of study mostly in the last couple of years. Although there might be a core microbiota for different body sites, shared by dogs, it is likely influenced by intrinsic factors such as age, breed, and sex, but also by extrinsic factors such as the environment (e.g., lifestyle, urban vs rural), and diet. It starts to become clear that some medical conditions are mediated by alterations in microbiota namely dysbiosis. Moreover, understanding microbial colonization and function can be used to prevent medical conditions, for instance, modulation of gut microbiota of puppies is more effective to ensure a healthy gut than interventions in adults. This paper gathers current knowledge of dogs' microbial communities, exploring their function, implications in the development of diseases, and potential interactions among communities while providing hints for further research.
Collapse
Affiliation(s)
- Ana Margarida Pereira
- University of the Azores, Faculty of Agricultural and Environmental Sciences, Institute of Agricultural and Environmental Research and Technology (IITAA). Rua Capitão João d'Ávila, Azores, Portugal.
| | - Alfonso Clemente
- Department of Physiology and Biochemistry in Animal Nutrition, Estacion Experimental del Zaidin, Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
15
|
Cunha E, Valente S, Nascimento M, Pereira M, Tavares L, Dias R, Oliveira M. Influence of the dental topical application of a nisin-biogel in the oral microbiome of dogs: a pilot study. PeerJ 2021; 9:e11626. [PMID: 34316391 PMCID: PMC8286056 DOI: 10.7717/peerj.11626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Periodontal disease (PD) is one of the most widespread inflammatory diseases in dogs. This disease is initiated by a polymicrobial biofilm in the teeth surface (dental plaque), leading to a local inflammatory response, with gingivitis and/or several degrees of periodontitis. For instance, the prevention of bacterial dental plaque formation and its removal are essential steps in PD control. Recent research revealed that the antimicrobial peptide nisin incorporated in the delivery system guar gum (biogel) can inhibit and eradicate bacteria from canine dental plaque, being a promising compound for prevention of PD onset in dogs. However, no information is available regarding its effect on the dog’s oral microbiome. In this pilot study, the influence of the nisin-biogel on the diversity of canine oral microbiome was evaluated using next generation sequencing (NGS), aiming to access the viability of nisin-biogel to be used in long-term experiment in dogs. Composite toothbrushing samples of the supragingival plaque from two dogs were collected at three timepoints: T1—before any application of the nisin-biogel to the animals’ teeth surface; T2—one hour after one application of the nisin-biogel; and T3—one hour after a total of three applications of the nisin-biogel, each 48 hours. After that, microbial profiling was performed by NGS of the V3V4 16s rRNA region. After only one application of the nisin-biogel to the oral cavity of dogs, a statistically significant reduction in microbial diversity was observed (T2) as well as a reduction of some bacterial species potentially related with distinct stages of PD, when compared with samples collected before any application (T1). However, after a total of three nisin-biogel applications (T3), a recovery of the microbial diversity was detected. In conclusion, the nisin-biogel may influence the canine oral microbiome. A reduction in some bacterial species potentially related with distinct stages of PD was observed. This pilot study will help to design a controlled in vivo clinical trial to evaluate nisin-biogel effect on dental plaque progression and canine periodontal indices evolution in a long-term application period.
Collapse
Affiliation(s)
- Eva Cunha
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Valente
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Nascimento
- BioISI: Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marcelo Pereira
- BioISI: Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luís Tavares
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Ricardo Dias
- BioISI: Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Manuela Oliveira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
16
|
Oba PM, Carroll MQ, Alexander C, Valentine H, Somrak AJ, Keating SCJ, Sage AM, Swanson KS. Microbiota populations in supragingival plaque, subgingival plaque, and saliva habitats of adult dogs. Anim Microbiome 2021; 3:38. [PMID: 34001282 PMCID: PMC8130298 DOI: 10.1186/s42523-021-00100-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/30/2021] [Indexed: 02/01/2023] Open
Abstract
Background Oral diseases are common in dogs, with microbiota playing a prominent role in the disease process. Oral cavity habitats harbor unique microbiota populations that have relevance to health and disease. Despite their importance, the canine oral cavity microbial habitats have been poorly studied. The objectives of this study were to (1) characterize the oral microbiota of different habitats of dogs and (2) correlate oral health scores with bacterial taxa and identify what sites may be good options for understanding the role of microbiota in oral diseases. We used next-generation sequencing to characterize the salivary (SAL), subgingival (SUB), and supragingival (SUP) microbial habitats of 26 healthy adult female Beagle dogs (4.0 ± 1.2 year old) and identify taxa associated with periodontal disease indices. Results Bacterial species richness was highest for SAL, moderate for SUB, and lowest for SUP samples (p < 0.001). Unweighted and weighted principal coordinates plots showed clustering by habitat, with SAL and SUP samples being the most different from one another. Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, Actinobacteria, and Spirochaetes were the predominant phyla in all habitats. Paludibacter, Filifactor, Peptostreptococcus, Fusibacter, Anaerovorax, Fusobacterium, Leptotrichia, Desulfomicrobium, and TG5 were enriched in SUB samples, while Actinomyces, Corynebacterium, Leucobacter, Euzebya, Capnocytophaga, Bergeyella, Lautropia, Lampropedia, Desulfobulbus, Enhydrobacter, and Moraxella were enriched in SUP samples. Prevotella, SHD-231, Helcococcus, Treponema, and Acholeplasma were enriched in SAL samples. p-75-a5, Arcobacter, and Pasteurella were diminished in SUB samples. Porphyromonas, Peptococcus, Parvimonas, and Campylobacter were diminished in SUP samples, while Tannerella, Proteocalla, Schwartzia, and Neisseria were diminished in SAL samples. Actinomyces, Corynebacterium, Capnocytophaga, Leptotrichia, and Neisseria were associated with higher oral health scores (worsened health) in plaque samples. Conclusions Our results demonstrate the differences that exist among canine salivary, subgingival plaque and supragingival plaque habitats. Salivary samples do not require sedation and are easy to collect, but do not accurately represent the plaque populations that are most important to oral disease. Plaque Actinomyces, Corynebacterium, Capnocytophaga, Leptotrichia, and Neisseria were associated with higher (worse) oral health scores. Future studies analyzing samples from progressive disease stages are needed to validate these results and understand the role of bacteria in periodontal disease development.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, 162 Animal Sciences Laboratory, Urbana, IL, 61801, USA
| | - Meredith Q Carroll
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, 162 Animal Sciences Laboratory, Urbana, IL, 61801, USA
| | - Celeste Alexander
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Helen Valentine
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amy J Somrak
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, 61801, USA
| | - Stephanie C J Keating
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, 61801, USA
| | - Adrianna M Sage
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin - Madison, 2015 Linden Dr, Madison, WI, 53706, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, 162 Animal Sciences Laboratory, Urbana, IL, 61801, USA. .,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
Lucyshyn DR, Maggs DJ, Cooper AE, Rousseau JD, Weese JS. Feline conjunctival microbiota in a shelter: effects of time, upper respiratory disease and famciclovir administration. J Feline Med Surg 2021; 23:316-330. [PMID: 32820981 PMCID: PMC10812210 DOI: 10.1177/1098612x20949038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate changes in the conjunctival microbiota of shelter-housed cats with time, upper respiratory disease (URD) and famciclovir administration. METHODS Cats were assigned to treatment groups on shelter entry. Healthy cats or cats with URD received ~30 mg/kg or ~90 mg/kg of famciclovir or placebo PO q12h for 7 days, or were untreated. Swabs were collected from ventral conjunctival fornices prior to (day 1) and immediately after (day 8) the treatment period. Microbiota analysis was conducted on 124 randomly selected swabs from healthy (56 swabs) or URD-affected (68 swabs) cats. Following DNA extraction and amplification of the V4 region of the 16S rRNA gene, sequences were assembled into operational taxonomic units (OTUs). Over-represented OTUs (as determined by linear discriminate analysis effect size), alpha and beta diversity, and median relative abundance of known feline ocular surface pathogens were assessed for the entire population and in 10 clinically relevant subpopulations of cats. RESULTS Bacteria from 33 phyla and 70 genera were identified. Considering all cats, median relative abundance of Mycoplasma increased from day 1 to day 8, while Proteobacteria decreased. Community membership and structure (beta diversity) differed between days 1 and 8 for all famciclovir-treated cats (regardless of health status or dose) and healthy or URD-affected cats (regardless of famciclovir dose). Differences in taxonomic diversity within a sample (alpha diversity) between day 1 and day 8 were not detected in any subpopulations. CONCLUSIONS AND RELEVANCE Within 1 week of shelter entry, there were significant changes in community structure and membership of the feline conjunctival microbiota, with a shift towards over-representation of feline ocular surface pathogens. Although famciclovir may impact beta diversity of the feline conjunctival microbiota, absence of change in alpha diversity suggests minimal shift in individual cats.
Collapse
Affiliation(s)
- Danica R Lucyshyn
- Department of Surgical and Radiological Sciences, University of California–Davis, Davis, CA, USA
| | - David J Maggs
- Department of Surgical and Radiological Sciences, University of California–Davis, Davis, CA, USA
| | - Ann E Cooper
- Veterinary Medical Teaching Hospital, University of California–Davis, Davis, CA, USA
| | - Joyce D Rousseau
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - J Scott Weese
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
18
|
Staton GJ, Clegg SR, Ainsworth S, Armstrong S, Carter SD, Radford AD, Darby A, Wastling J, Hall N, Evans NJ. Dissecting the molecular diversity and commonality of bovine and human treponemes identifies key survival and adhesion mechanisms. PLoS Pathog 2021; 17:e1009464. [PMID: 33780514 PMCID: PMC8049484 DOI: 10.1371/journal.ppat.1009464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/15/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Here, we report the first complete genomes of three cultivable treponeme species from bovine digital dermatitis (DD) skin lesions, two comparative human treponemes, considered indistinguishable from bovine DD species, and a bovine gastrointestinal (GI) treponeme isolate. Key genomic differences between bovine and human treponemes implicate microbial mechanisms that enhance knowledge of how DD, a severe disease of ruminants, has emerged into a prolific, worldwide disease. Bovine DD treponemes have additional oxidative stress genes compared to nearest human-isolated relatives, suggesting better oxidative stress tolerance, and potentially explaining how bovine strains can colonize skin surfaces. Comparison of both bovine DD and GI treponemes as well as bovine pathogenic and human non-pathogenic saprophyte Treponema phagedenis strains indicates genes encoding a five-enzyme biosynthetic pathway for production of 2,3-diacetamido-2,3-dideoxy-d-mannuronic acid, a rare di-N-acetylated mannuronic acid sugar, as important for pathogenesis. Bovine T. phagedenis strains further differed from human strains by having unique genetic clusters including components of a type IV secretion system and a phosphate utilisation system including phoU, a gene associated with osmotic stress survival. Proteomic analyses confirmed bovine derived T. phagedenis exhibits expression of PhoU but not the putative secretion system, whilst the novel mannuronic acid pathway was expressed in near entirety across the DD treponemes. Analysis of osmotic stress response in water identified a difference between bovine and human T. phagedenis with bovine strains exhibiting enhanced survival. This novel mechanism could enable a selective advantage, allowing environmental persistence and transmission of bovine T. phagedenis. Finally, we investigated putative outer membrane protein (OMP) ortholog families across the DD treponemes and identified several families as multi-specific adhesins capable of binding extra cellular matrix (ECM) components. One bovine pathogen specific adhesin ortholog family showed considerable serodiagnostic potential with the Treponema medium representative demonstrating considerable disease specificity (91.6%). This work has shed light on treponeme host adaptation and has identified candidate molecules for future diagnostics, vaccination and therapeutic intervention.
Collapse
Affiliation(s)
- Gareth J. Staton
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Simon R. Clegg
- School of Life Sciences, College of Science, University of Lincoln, Brayford Pool Campus, Lincoln, United Kingdom
| | - Stuart Ainsworth
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Stuart Armstrong
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Stuart D. Carter
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Alan D. Radford
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Alistair Darby
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| | - Jonathan Wastling
- Faculty of Natural Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- Department of Biological Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Nicholas J. Evans
- Department of Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Neston, United Kingdom
| |
Collapse
|
19
|
Razali K, Kaidi R, Abdelli A, Menoueri MN, Ait-Oudhia K. Oral flora of stray dogs and cats in Algeria: Pasteurella and other zoonotic bacteria. Vet World 2020; 13:2806-2814. [PMID: 33488002 PMCID: PMC7811559 DOI: 10.14202/vetworld.2020.2806-2814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/23/2020] [Indexed: 01/21/2023] Open
Abstract
Background and Aim: Knowledge of potentially pathogenic bacteria presents in the oral cavity of dogs and cats may be helpful in determining appropriate treatment for infected bite wounds. About 120.000 people are exposed to dog and cat bites every year in Algeria, but little is known about the dog and cat oral flora causing bite wound complications. The purpose of this study was to identify potential zoonotic bacteria from oral cavity of dogs and cats and to determine their susceptibility to antibiotics to contribute to the treatment of bite wound infection. Materials and Methods: Oral swabs from 100 stray dogs and 100 stray cats were collected and cultured in several media: Chocolate agar, MacConkey agar, and Mannitol Salt Agar. Bacterial isolates were identified using several commercial kits of the analytical profile index and tested for antibiotic susceptibility by disk diffusion method. Results: Overall, 185/200 (92.5%) dogs and cats carried zoonotic bacteria in their mouths, of which 55.13% (102/185) had at least two bacterial pathogens. 374 pathogenic strains belonging to 15 genera were isolated: Eleven were Gram-negative (Proteus, Pasteurella, Escherichia, Moraxella, Klebsiella, Acinetobacter, Enterobacter, Pseudomonas, Aeromonas, and NeisseriaHaemophilus) and four were Gram-positive (Staphylococcus, Streptococcus, and Corynebacterium, Bacillus). Fifty-one strains of Pasteurella were isolated from 44 carriers of Pasteurella (21 Pasteurella multocida, 21 Pasteurella pneumotropica, and 9 Pasteurella spp.). Pasteurella strains were tested for antibiotic resistance. Resistance to at least one drug was observed in 8 (15.68%) of Pasteurella isolates and two strains (3.92%) were found to be multidrug-resistant (to two or more drugs). Erythromycin, penicillin, and ampicillin were the antimicrobials to which the isolates showed greater resistance (7.84%, 5.88%, and 3.92%, respectively). Conclusion: To the best of our knowledge, this study is the first in Algeria to detect potential human pathogenic bacteria in the oral cavity of dogs and cats. It reveals that these animals have multiple zoonotic bacteria in their mouths including Pasteurella species, which may be multidrug-resistant.
Collapse
Affiliation(s)
- Kahina Razali
- Laboratory of Animal Reproduction Biotechnologies, Blida, Algeria.,Department of Veterinary Sciences, Institute of Veterinary Sciences, Université Saad Dahlab de Blida 1, Blida, Algeria
| | - Rachid Kaidi
- Laboratory of Animal Reproduction Biotechnologies, Blida, Algeria
| | - Amine Abdelli
- Department of Agriculture Science, Bouira University, Bouira, Algeria
| | - Mohamed Nabil Menoueri
- Department of Veterinary Sciences, Institute of Veterinary Sciences, Université Saad Dahlab de Blida 1, Blida, Algeria
| | | |
Collapse
|
20
|
Niemiec B, Gawor J, Nemec A, Clarke D, McLeod K, Tutt C, Gioso M, Steagall PV, Chandler M, Morgenegg G, Jouppi R. World Small Animal Veterinary Association Global Dental Guidelines. J Small Anim Pract 2020; 61:E36-E161. [PMID: 32715504 DOI: 10.1111/jsap.13132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental, oral, and maxillofacial diseases are some of the most common problems in small animal veterinary practice. These conditions create significant pain as well as localized and potentially systemic infection. As such, the World Small Animal Veterinary Association (WSAVA) believes that un- and under treated oral and dental diseases pose a significant animal welfare concern. Dentistry is an area of veterinary medicine which is still widely ignored and is subject to many myths and misconceptions. Effective teaching of veterinary dentistry in the veterinary school is the key to progression in this field of veterinary medicine, and to the improvement of welfare for all our patients globally. These guidelines were developed to provide veterinarians with the information required to understand best practices for dental therapy and create realistic minimum standards of care. Using the three-tiered continuing education system of WSAVA, the guidelines make global equipment and therapeutic recommendations and highlight the anaesthetic and welfare requirements for small animal patients. This document contains information on common oral and dental pathologies, diagnostic procedures (an easily implementable and repeatable scoring system for dental health, dental radiography and radiology) and treatments (periodontal therapy, extractions). Further, there are sections on anaesthesia and pain management for dental procedures, home dental care, nutritional information, and recommendations on the role of the universities in improving veterinary dentistry. A discussion of the deleterious effects of anaesthesia free dentistry (AFD) is included, as this procedure is ineffective at best and damaging at worst. Throughout the document the negative effects of undiagnosed and/or treated dental disease on the health and well-being of our patients, and how this equates to an animal welfare issue, is discussed.
Collapse
|
21
|
Bell SE, Nash AK, Zanghi BM, Otto CM, Perry EB. An Assessment of the Stability of the Canine Oral Microbiota After Probiotic Administration in Healthy Dogs Over Time. Front Vet Sci 2020; 7:616. [PMID: 33062653 PMCID: PMC7517700 DOI: 10.3389/fvets.2020.00616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The administration of an oral probiotic has been demonstrated to impact oral microbial diversity in humans but has not been examined in canines. The objective of this study was to test the hypothesis that oral probiotic administration would impact the oral microbiota of canines compared to control. Working canines in training (n = 13) were assigned to Test or Control groups and acclimated to one of three commercially available study diets utilizing common protein sources (Purina Pro Plan Savor lamb, Purina Pro Plan Sport chicken, Purina Pro Plan Focus salmon) for a minimum of 30 days prior to initiation of the study. Following acclimation, dogs in the Test group began a daily regimen of oral probiotic (Fortiflora® Purina, St. Louis, MO) top-dressed on their midday feeding. Control dogs received their midday feeding with no probiotic. All dogs were sampled once weekly via oral pediatric swabs across the 7-week study. Next generation sequencing (Illumina, MiSeq) was utilized to develop microbial profiles specific to treatment, diet, and time. Bacterial composition was dominated by eight phyla (Proteobacteria 43.8%, Bacteroidetes 22.5%, Firmicutes 18.9%, Actinobacteria 6.1%, Fusobacteria 3.6%, Gracilibacteria 2.1%, SR1 Absconditabacteria 1.5%, and Saccharibacteria 1.3%) representing more than 99% of the relative abundance of the microbial composition. Probiotic administration failed to impact relative abundance at any taxonomic level (P > 0.05). Similarly, no effect on the oral microbiota was measured for diet (P > 0.05). Comparison using a Jaccard Index demonstrate a consistent microbial profile over the 7-week study with no impact evidenced by study week (P = 0.19). The data also revealed a profile of ubiquitous taxa that were present across all dogs and all samples regardless of breed, sex, diet, treatment or other factors. These genera include Actinomyces, Corynebacterium, Capnocytophaga, Flavobacterium, Gemella, Abiotrophia, Streptococcus, and Frederiksenia. These data demonstrate the stability of canine oral microbiota over time.
Collapse
Affiliation(s)
- Sara E Bell
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States.,Penn Vet Working Dog Center, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Andrea K Nash
- Nestle Purina Research, St. Louis, MO, United States
| | | | - Cynthia M Otto
- Penn Vet Working Dog Center, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States.,Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Erin B Perry
- Department of Animal Science, Food and Nutrition, College of Agricultural Science, Southern Illinois University, Carbonale, IL, United States
| |
Collapse
|
22
|
Nair S, Farzan A, Weese JS, Poljak Z, Friendship RM. Effect of flavophospholipol on fecal microbiota in weaned pigs challenged with Salmonella Typhimurium. Porcine Health Manag 2020; 6:14. [PMID: 32426155 PMCID: PMC7216395 DOI: 10.1186/s40813-020-00151-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The heightened prevalence of Salmonella Typhimurium remains a public health and food safety concern. Studies have reported antibiotic, flavophospholipol, may have the ability to reduce Salmonella in swine, as well as alter the gut microbiota in favour of beneficial bacteria by inhibiting pathogenic bacteria. Thus, the objective of this study was to investigate the fecal microbiota of weaned pigs receiving in-feed flavophospholipol and challenged with Salmonella Typhimurium. RESULTS Twenty-one weaned pigs were fed either a diet containing 4 ppm of flavophospholipol (treatment group) or a non-medicated feed (control group) for 36 days post-weaning (Day 1 to Day 36). The pigs were orally challenged with a 2 mL dose of 108 CFU/mL of S. Typhimurium at Day 7 and Day 8. Community bacterial DNA extracted from fecal samples collected at Day 6 (before challenge) and Day 36 (28 days after challenge) were used to assess the fecal microbiota using the V4 region of the 16S rRNA gene with Illumina MiSeq next-generation sequencing. Sequencing data were visualized using mothur and analyzed in JMP and R software. The fecal microbiota of pigs in the treatment group had differences in abundance of phyla (Firmicutes, Proteobacteria) and genera (Lactobacillus, Roseburia, Treponema, unclassified Ruminococcaceae, Blautia, Streptococcus, Megasphaera, Dorea, Sporobacter, Peptococcus, unclassified Firmicutes, Clostridium IV and Campylobacter) when compared to pigs that were controls, 28 days after challenge with Salmonella (P < 0.05). Specifically, results demonstrated a significant increase in phylum Proteobacteria (P = 0.001) and decrease in Firmicutes (P = 0.012) and genus Roseburia (P = 0.003) in the treated pigs suggestive of possible microbial dysbiosis. An increased abundance of genera Lactobacillus (P = 0.012) was also noted in the treated group in comparison to the control. CONCLUSION Based on these findings, it is difficult to conclude whether treatment with 4 ppm of flavophospholipol is promoting favorable indigenous bacteria in the pig microbiota as previous literature has suggested.
Collapse
Affiliation(s)
- Saranya Nair
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - Abdolvahab Farzan
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - J. Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - Zvonimir Poljak
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| | - Robert M. Friendship
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario Canada
| |
Collapse
|
23
|
Efficacy of mechanical debridement with and without adjunct antimicrobial photodynamic therapy in the treatment of peri-implantitis among moderate cigarette-smokers and waterpipe-users. Photodiagnosis Photodyn Ther 2019; 28:153-158. [DOI: 10.1016/j.pdpdt.2019.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/06/2019] [Accepted: 09/12/2019] [Indexed: 02/08/2023]
|