1
|
Abegglen O, Srikantharupan S, Zotter K, Marcionelli G, Ndarugendamwo T, Lim PJ, Giunta C, Kaufman C, Rohrbach M. Registry-Based Frequency of Molecularly Confirmed Osteogenesis Imperfecta in a Swiss Cohort of Individuals With Connective Tissue Disorders. Am J Med Genet A 2025; 197:e64016. [PMID: 39957537 DOI: 10.1002/ajmg.a.64016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/24/2025] [Indexed: 02/18/2025]
Abstract
Patient registries play a crucial role in advancing our understanding of rare diseases, enabling the collection of comprehensive clinical and molecular data that inform diagnosis, treatment, and management strategies and advance our understanding of rare diseases. We showcase the first Swiss registry of 796 patients with suspected or confirmed connective tissue disorders (CTD) who were referred to our center over a period of 26 years between 1995 and 2022. The registry contains information on the natural history, anthropometrics, biochemical, histological, and genetic analyses. 61.3% of patients were referred by other hospitals or genetic specialists, with the primary reasons for referral being suspicion of Ehlers-Danlos syndrome (EDS) (53.6%) and osteogenesis imperfecta (OI) (28.1%). Molecular confirmation of these diagnoses was obtained in 60 cases of EDS and 98 cases of OI through genetic testing. In-depth analyses of 173 OI patients revealed that the majority of OI cases were caused by mutations in COL1A1 or COL1A2. Rarer variants were identified in genes involved in collagen synthesis and bone regulation. Genotype-phenotype correlations were observed in a small subset of patients, with a high prevalence of glycine substitutions in COL1A1 and COL1A2 variants associated with severe phenotypes. This registry offers insights into the molecular underpinnings of EDS and OI and underscores the importance of genetic testing for accurate diagnosis and management.
Collapse
Affiliation(s)
- Olivia Abegglen
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Shajanth Srikantharupan
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kathrin Zotter
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Giulio Marcionelli
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Timothée Ndarugendamwo
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Pei Jin Lim
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Cecilia Giunta
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christina Kaufman
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marianne Rohrbach
- Connective Tissue Unit, Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Yammine KM, Li RC, Borgula IM, Mirda Abularach S, DiChiara AS, Raines RT, Shoulders MD. An outcome-defining role for the triple-helical domain in regulating collagen-I assembly. Proc Natl Acad Sci U S A 2024; 121:e2412948121. [PMID: 39503893 PMCID: PMC11573663 DOI: 10.1073/pnas.2412948121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
Collagens are the foundational component of diverse tissues, including skin, bone, cartilage, and basement membranes, and are the most abundant protein class in animals. The fibrillar collagens are large, complex, multidomain proteins, all containing the characteristic triple helix motif. The most prevalent collagens are heterotrimeric, meaning that cells express at least two distinctive procollagen polypeptides that must assemble into specific heterotrimer compositions. The molecular mechanisms ensuring correct heterotrimeric assemblies are poorly understood - even for the most common collagen, type-I. The longstanding paradigm is that assembly is controlled entirely by the ~30 kDa globular C-propeptide (C-Pro) domain. Still, this dominating model for procollagen assembly has left many questions unanswered. Here, we show that the C-Pro paradigm is incomplete. In addition to the critical role of the C-Pro domain in templating assembly, we find that the amino acid sequence near the C terminus of procollagen's triple-helical domain plays an essential role in defining procollagen assembly outcomes. These sequences near the C terminus of the triple-helical domain encode conformationally stabilizing features that ensure only desirable C-Pro-mediated trimeric templates are committed to irreversible triple-helix folding. Incorrect C-Pro trimer assemblies avoid commitment to triple-helix formation thanks to destabilizing features in the amino acid sequences of their triple helix. Incorrect C-Pro assemblies are consequently able to dissociate and search for new binding partners. These findings provide a distinctive perspective on the mechanism of procollagen assembly, revealing the molecular basis by which incorrect homotrimer assemblies are avoided and setting the stage for a deeper understanding of the biogenesis of this ubiquitous protein.
Collapse
Affiliation(s)
- Kathryn M. Yammine
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Rasia C. Li
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Isabella M. Borgula
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Andrew S. DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| |
Collapse
|
3
|
From Genetics to Clinical Implications: A Study of 675 Dutch Osteogenesis Imperfecta Patients. Biomolecules 2023; 13:biom13020281. [PMID: 36830650 PMCID: PMC9953243 DOI: 10.3390/biom13020281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable connective tissue disorder that causes bone fragility due to pathogenic variants in genes responsible for the synthesis of type I collagen. Efforts to classify the high clinical variability in OI led to the Sillence classification. However, this classification only partially takes into account extraskeletal manifestations and the high genetic variability. Little is known about the relation between genetic variants and phenotype as of yet. The aim of the study was to create a clinically relevant genetic stratification of a cohort of 675 Dutch OI patients based on their pathogenic variant types and to provide an overview of their respective medical care demands. The clinical records of 675 OI patients were extracted from the Amsterdam UMC Genome Database and matched with the records from Statistics Netherlands (CBS). The patients were categorized based on their harbored pathogenic variant. The information on hospital admissions, outpatient clinic visits, medication, and diagnosis-treatment combinations (DTCs) was compared between the variant groups. OI patients in the Netherlands appear to have a higher number of DTCs, outpatient clinic visits, and hospital admissions when compared to the general Dutch population. Furthermore, medication usage seems higher in the OI cohort in comparison to the general population. The patients with a COL1A1 or COL1A2 dominant negative missense non-glycine substitution appear to have a lower health care need compared to the other groups, and even lower than patients with COL1A1 or COL1A2 haploinsufficiency. It would be useful to include the variant type in addition to the Sillence classification when categorizing a patient's phenotype.
Collapse
|
4
|
Cole CC, Misiura M, Hulgan SAH, Peterson CM, Williams JW, Kolomeisky AB, Hartgerink JD. Cation-π Interactions and Their Role in Assembling Collagen Triple Helices. Biomacromolecules 2022; 23:4645-4654. [PMID: 36239387 DOI: 10.1021/acs.biomac.2c00856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cation-π interactions play a significant role in the stabilization of globular proteins. However, their role in collagen triple helices is less well understood and they have rarely been used in de novo designed collagen mimetic systems. In this study, we analyze the stabilizing and destabilizing effects in pairwise amino acid interactions between cationic and aromatic residues in both axial and lateral sequential relationships. Thermal unfolding experiments demonstrated that only axial pairs are stabilizing, while the lateral pairs are uniformly destabilizing. Molecular dynamics simulations show that pairs with an axial relationship can achieve a near-ideal interaction distance, but pairs in a lateral relationship do not. Arginine-π systems were found to be more stabilizing than lysine-π and histidine-π. Arginine-π interactions were then studied in more chemically diverse ABC-type heterotrimeric helices, where arginine-tyrosine pairs were found to form the best helix. This work helps elucidate the role of cation-π interactions in triple helices and illustrates their utility in designing collagen mimetic peptides.
Collapse
Affiliation(s)
- Carson C Cole
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Mikita Misiura
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sarah A H Hulgan
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Caroline M Peterson
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Joseph W Williams
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Anatoly B Kolomeisky
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Nanda R, Hazan S, Sauer K, Aladin V, Keinan-Adamsky K, Corzilius B, Shahar R, Zaslansky P, Goobes G. Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes. Acta Biomater 2022; 144:195-209. [PMID: 35331939 DOI: 10.1016/j.actbio.2022.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Bone is a fascinating biomaterial composed mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, and water molecules residing at the interfaces between these phases. They are hierarchically organized with minor constituents such as non-collagenous proteins, citrate ions and glycosaminoglycans into a composite structure that is mechanically durable yet contains enough porosity to accommodate cells and blood vessels. The nanometer scale organization of the collagen fibrous structure and the mineral constituents in bone were recently extensively scrutinized. However, molecular details at the lowest hierarchical level still need to be unraveled to better understand the exact atomic-level arrangement of all these important components in the context of the integral structure of the bone. In this report, we unfold some of the molecular characteristics differentiating between two load-bearing (cleithrum) bones, one from sturgeon fish, where the matrix contains osteocytes and one from pike fish where the bone tissue is devoid of these bone cells. Using enhanced solid-state NMR measurements, we underpin disparities in the collagen fibril structure and dynamics, the mineral phases, the citrate content at the organic-inorganic interface and water penetrability in the two bones. These findings suggest that different strategies are undertaken in the erection of the mineral-organic interfaces in various bones characterized by dissimilar osteogenesis or remodeling pathways and may have implications for the mechanical properties of the particular bone. STATEMENT OF SIGNIFICANCE: Bone boasts unique interactions between collagen fibers and mineral phases through interfaces holding together this bio-composite structure. Over evolution, fish have gone from mineralizing their bones aided by certain bone cells called osteocytes, like tetrapod, to mineralization without these cells. Here, we report atomic level differences in collagen fiber cross linking and organization, porosity of the mineral phases and content of citrate molecules at the bio-mineral interface in bones from modern versus ancient fish. The dissimilar structural features may suggest disparate mechanical properties for the two bones. Fundamental level understanding of the organic and inorganic components in bone and the interfacial interactions holding them together is essential for successful bone repair and for treating better tissue pathologies.
Collapse
|
6
|
Bateman JF, Shoulders MD, Lamandé SR. Collagen misfolding mutations: the contribution of the unfolded protein response to the molecular pathology. Connect Tissue Res 2022; 63:210-227. [PMID: 35225118 PMCID: PMC8977234 DOI: 10.1080/03008207.2022.2036735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mutations in collagen genes cause a broad range of connective tissue pathologies. Structural mutations that impact procollagen assembly or triple helix formation and stability are a common and important mutation class. How misfolded procollagens engage with the cellular proteostasis machinery and whether they can elicit a cytotoxic unfolded protein response (UPR) is a topic of considerable research interest. Such interest is well justified since modulating the UPR could offer a new approach to treat collagenopathies for which there are no current disease mechanism-targeting therapies. This review scrutinizes the evidence underpinning the view that endoplasmic reticulum stress and chronic UPR activation contributes significantly to the pathophysiology of the collagenopathies. While there is strong evidence that the UPR contributes to the pathology for collagen X misfolding mutations, the evidence that misfolding mutations in other collagen types induce a canonical, cytotoxic UPR is incomplete. To gain a more comprehensive understanding about how the UPR amplifies to pathology, and thus what types of manipulations of the UPR might have therapeutic relevance, much more information is needed about how specific misfolding mutation types engage differentially with the UPR and downstream signaling responses. Most importantly, since the capacity of the proteostasis machinery to respond to collagen misfolding is likely to vary between cell types, reflecting their functional roles in collagen and extracellular matrix biosynthesis, detailed studies on the UPR should focus as much as possible on the actual target cells involved in the collagen pathologies.
Collapse
Affiliation(s)
- John F. Bateman
- Murdoch Children’s Research Institute, Australia,Department of Paediatrics, University of Melbourne, Australia
| | | | - Shireen R. Lamandé
- Murdoch Children’s Research Institute, Australia,Department of Paediatrics, University of Melbourne, Australia
| |
Collapse
|
7
|
Jensen MM, Bonna A, Frederiksen SJ, Hamaia SW, Højrup P, Farndale RW, Karring H. Tyrosine-sulfated dermatopontin shares multiple binding sites and recognition determinants on triple-helical collagens with proteins implicated in cell adhesion and collagen folding, fibrillogenesis, cross-linking, and degradation. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140771. [PMID: 35306228 DOI: 10.1016/j.bbapap.2022.140771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Dermatopontin (DPT), a small extracellular matrix protein that stimulates collagen fibrillogenesis, contains sulfotyrosine residues but neither its level of sulfation nor its binding sites on fibrillar collagens are known. Here, we discovered that DPT is present in a relatively high mass concentration (~ 0.02%) in porcine corneal stroma, from which we purified five DPT charge variants (A-E) containing up to six sulfations. The major variant (C), containing four sulfotyrosine residues, was used to locate binding sites for DPT on triple-helical collagens II and III using the Collagen Toolkits. DPT-binding loci included the triple helix crosslinking sites and collagenase cleavage site. We find that strong DPT-binding sites on triple-helical collagen comprise an arginine-rich, positively-charged sequence that also contains hydrophobic residues. This collagen-binding signature of DPT is similar to that of the chaperone HSP47. Thus, we propose that DPT assumes the role of HSP47 as a collagen chaperone during and after the secretion. Peptide II-44, harbouring the conserved collagenase cleavage site, shows the strongest DPT-binding of the Collagen Toolkit II peptides. Substituting any of the three arginine residues (R) with alanine in the sequence GLAGQRGIVGLOGQRGER of II-44 resulted in almost complete loss of DPT binding. Since osteogenesis imperfecta, spondyloepiphyseal dysplasia, and spondyloepimetaphyseal dysplasia congenita are associated with missense mutations that substitute the corresponding arginine residues in collagens alpha-1(I) and alpha-1(II), we suggest that disrupted DPT binding to fibrillar collagens may contribute to these connective tissue disorders. In conclusion, the present work provides a cornerstone for further elucidation of the role of DPT.
Collapse
Affiliation(s)
- Morten M Jensen
- Department of Green Technology, University of Southern Denmark, 5230 Odense, Denmark
| | - Arkadiusz Bonna
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Sigurd J Frederiksen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Samir W Hamaia
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Richard W Farndale
- Department of Biochemistry, Downing Site, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, 5230 Odense, Denmark.
| |
Collapse
|
8
|
Scheiber AL, Wilkinson KJ, Suzuki A, Enomoto-Iwamoto M, Kaito T, Cheah KS, Iwamoto M, Leikin S, Otsuru S. 4PBA reduces growth deficiency in osteogenesis imperfecta by enhancing transition of hypertrophic chondrocytes to osteoblasts. JCI Insight 2022; 7:149636. [PMID: 34990412 PMCID: PMC8855815 DOI: 10.1172/jci.insight.149636] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022] Open
Abstract
Short stature is a major skeletal phenotype in osteogenesis imperfecta (OI), a genetic disorder mainly caused by mutations in genes encoding type I collagen. However, the underlying mechanism is poorly understood, and no effective treatment is available. In OI mice that carry a G610C mutation in COL1A2, we previously found that mature hypertrophic chondrocytes (HCs) are exposed to cell stress due to accumulation of misfolded mutant type I procollagen in the endoplasmic reticulum (ER). By fate mapping analysis of HCs in G610C OI mice, we found that HCs stagnate in the growth plate, inhibiting translocation of HC descendants to the trabecular area and their differentiation to osteoblasts. Treatment with 4-phenylbutyric acid (4PBA), a chemical chaperone, restored HC ER structure and rescued this inhibition, resulting in enhanced longitudinal bone growth in G610C OI mice. Interestingly, the effects of 4PBA on ER dilation were limited in osteoblasts, and the bone fragility was not ameliorated. These results highlight the importance of targeting HCs to treat growth deficiency in OI. Our findings demonstrate that HC dysfunction induced by ER disruption plays a critical role in the pathogenesis of OI growth deficiency, which lays the foundation for developing new therapies for OI.
Collapse
Affiliation(s)
- Amanda L Scheiber
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Kevin J Wilkinson
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Akiko Suzuki
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Motomi Enomoto-Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Kathryn Se Cheah
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Masahiro Iwamoto
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| | - Sergey Leikin
- Section on Physical Biochemistry, Eunice Kennedy Shriver National Institute of Child Health & Human Developme, Bethesda, United States of America
| | - Satoru Otsuru
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, United States of America
| |
Collapse
|
9
|
Gorrell L, Omari S, Makareeva E, Leikin S. Noncanonical ER-Golgi trafficking and autophagy of endogenous procollagen in osteoblasts. Cell Mol Life Sci 2021; 78:8283-8300. [PMID: 34779895 DOI: 10.1007/s00018-021-04017-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/01/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023]
Abstract
Secretion and quality control of large extracellular matrix proteins remain poorly understood and debated, particularly transport intermediates delivering folded proteins from the ER to Golgi and misfolded ones to lysosomes. Discrepancies between different studies are related to utilization of exogenous cargo, off-target effects of experimental conditions and cell manipulation, and identification of transport intermediates without tracing their origin and destination. To address these issues, here we imaged secretory and degradative trafficking of type I procollagen in live MC3T3 osteoblasts by replacing a region encoding N-propeptide in endogenous Col1a2 gDNA with GFP cDNA. We selected clones that produced the resulting fluorescent procollagen yet had normal expression of key osteoblast and ER/cell stress genes, normal procollagen folding, and normal deposition and mineralization of extracellular matrix. Live-cell imaging of these clones revealed ARF1-dependent transport intermediates, which had no COPII coat and delivered procollagen from ER exit sites (ERESs) to Golgi without stopping at ER-Golgi intermediate compartment (ERGIC). It also confirmed ERES microautophagy, i.e., lysosomes engulfing ERESs containing misfolded procollagen. Beyond validating these trafficking models for endogenous procollagen, we uncovered a probable cause of noncanonical cell stress response to procollagen misfolding. Recognized and retained only at ERESs, misfolded procollagen does not directly activate the canonical UPR, yet it disrupts the ER lumen by blocking normal secretory export from the ER.
Collapse
Affiliation(s)
- Laura Gorrell
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA.,Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Shakib Omari
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Elena Makareeva
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sergey Leikin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Dhooge T, Syx D, Hermanns-Lê T, Hausser I, Mortier G, Zonana J, Symoens S, Byers PH, Malfait F. Caffey disease is associated with distinct arginine to cysteine substitutions in the proα1(I) chain of type I procollagen. Genet Med 2021; 23:2378-2385. [PMID: 34272483 DOI: 10.1038/s41436-021-01274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Infantile Caffey disease is a rare disorder characterized by acute inflammation with subperiosteal new bone formation, associated with fever, pain, and swelling of the overlying soft tissue. Symptoms arise within the first weeks after birth and spontaneously resolve before the age of two years. Many, but not all, affected individuals carry the heterozygous pathogenic COL1A1 variant (c.3040C>T, p.(Arg1014Cys)). METHODS We sequenced COL1A1 in 28 families with a suspicion of Caffey disease and performed ultrastructural, immunocytochemical, and biochemical collagen studies on patient skin biopsies. RESULTS We identified the p.(Arg1014Cys) variant in 23 families and discovered a novel heterozygous pathogenic COL1A1 variant (c.2752C>T, p.(Arg918Cys)) in five. Both arginine to cysteine substitutions are located in the triple helical domain of the proα1(I) procollagen chain. Dermal fibroblasts (one patient with p.(Arg1014Cys) and one with p.(Arg918Cys)) produced molecules with disulfide-linked proα1(I) chains, which were secreted only with p.(Arg1014Cys). No intracellular accumulation of type I procollagen was detected. The dermis revealed mild ultrastructural abnormalities in collagen fibril diameter and packing. CONCLUSION The discovery of this novel pathogenic variant expands the limited spectrum of arginine to cysteine substitutions in type I procollagen. Furthermore, it confirms allelic heterogeneity in Caffey disease and impacts its molecular confirmation.
Collapse
Affiliation(s)
- Tibbe Dhooge
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Trinh Hermanns-Lê
- Department of Dermatopathology, University Hospital of Sart-Tilman, Liège University, Liège, Belgium
| | - Ingrid Hausser
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Geert Mortier
- Department of Medical Genetics, Antwerp University Hospital and University of Antwerp, Antwerp, Belgium
| | - Jonathan Zonana
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Sofie Symoens
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Peter H Byers
- Department of Pathology and Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fransiska Malfait
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
11
|
Cotrina-Vinagre FJ, Rodríguez-García ME, Martín-Hernández E, Durán-Aparicio C, Merino-López A, Medina-Benítez E, Martínez-Azorín F. Characterization of a complex phenotype (fever-dependent recurrent acute liver failure and osteogenesis imperfecta) due to NBAS and P4HB variants. Mol Genet Metab 2021; 133:201-210. [PMID: 33707149 DOI: 10.1016/j.ymgme.2021.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/26/2023]
Abstract
We report the clinical, biochemical and genetic findings from a Spanish boy of Caucasian origin who presented with fever-dependent RALF (recurrent acute liver failure) and osteogenesis imperfecta (OI). Whole-exome sequencing (WES) uncovered two compound heterozygous variants in NBAS (c.[1265 T > C];[1549C > T]:p.[(Leu422Pro)];[(Arg517Cys)]), and a heterozygous variant in P4HB (c.[194A > G];[194=]:p.[(Lys65Arg)];[(Lys65=)]) that was transmitted from the clinically unaffected mother who was mosaic carrier of the variant. Variants in NBAS protein have been associated with ILFS2 (infantile liver failure syndrome-2), SOPH syndrome (short stature, optic nerve atrophy, and Pelger-Huët anomaly syndrome), and multisystem diseases. Several patients showed clinical manifestations affecting the skeletal system, such as osteoporosis, pathologic fractures and OI. Experiments in the patient's fibroblasts demonstrated that mutated NBAS protein is overexpressed and thermally unstable, and reduces the expression of MGP, a regulator of bone homeostasis. Variant in PDI (protein encoded by P4HB) has been associated with CLCRP1 (Cole-Carpenter syndrome-1), a type of severe OI. An increase of COL1A2 protein retention was observed in the patient's fibroblasts. In order to study if the variant in P4HB was involved in the alteration in collagen trafficking, overexpression experiments of PDI were carried out. These experiments showed that overexpression of mutated PDI protein produces an increase in COL1A2 retention. In conclusion, these results corroborate that the variants in NBAS are responsible for the liver phenotype, and demonstrate that the variant in P4HB is involved in the bone phenotype, probably in synergy with NBAS variants.
Collapse
Affiliation(s)
- Francisco Javier Cotrina-Vinagre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain
| | - María Elena Rodríguez-García
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain
| | - Elena Martín-Hernández
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain; Unidad Pediátrica de Enfermedades Raras, Enfermedades Mitocondriales y Metabólicas Hereditarias, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Cristina Durán-Aparicio
- Departamento de Pediatría, Unidad de Gastroenterología y Hepatología Pediátricas, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Abraham Merino-López
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain
| | - Enrique Medina-Benítez
- Departamento de Pediatría, Unidad de Gastroenterología y Hepatología Pediátricas, Hospital 12 de Octubre, E-28041, Madrid, Spain
| | - Francisco Martínez-Azorín
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares (ERMN), Instituto de Investigación Hospital 12 de Octubre (i+12), E-28041 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), U723, E-28041 Madrid, Spain.
| |
Collapse
|
12
|
Duangchan T, Tawonsawatruk T, Angsanuntsukh C, Trachoo O, Hongeng S, Kitiyanant N, Supokawej A. Amelioration of osteogenesis in iPSC-derived mesenchymal stem cells from osteogenesis imperfecta patients by endoplasmic reticulum stress inhibitor. Life Sci 2021; 278:119628. [PMID: 34015290 DOI: 10.1016/j.lfs.2021.119628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022]
Abstract
AIM Osteogenesis imperfecta (OI) is a hereditary connective tissue disorder primarily caused by mutations in COL1A1 or COL1A2, which encode type I collagen. These mutations affect the quantity and/or quality of collagen composition in bones, leading to bone fragility. Currently, there is still a lack of treatment that addresses disease-causing factors due to an insufficient understanding of the pathological mechanisms involved. MAIN METHODS Induced pluripotent stem cells (iPSCs) were generated from OI patients with glycine substitution mutations in COL1A1 and COL1A2 and developed into mesenchymal stem cells (iPS-MSCs). OI-derived iPS-MSCs underwent in vitro osteogenic induction to study cell growth, osteogenic differentiation capacity, mRNA expression of osteogenic and unfolded protein response (UPR) markers and apoptosis. The effects of 4-phenylbutyric acid (4-PBA) were examined after treatment of OI iPS-MSCs during osteogenesis. KEY FINDINGS OI-derived iPS-MSCs exhibited decreased cell growth and impaired osteogenic differentiation and collagen expression. Expression of UPR genes was increased, which led to an increase in apoptotic cell death. 4-PBA treatment decreased apoptotic cells and reduced expression of UPR genes, including HSPA5, XBP1, ATF4, DDIT3, and ATF6. Osteogenic phenotypes, including RUNX2, SPP1, BGLAP, and IBPS expression, as well as calcium mineralization, were also improved. SIGNIFICANCE MSCs differentiated from disease-specific iPSCs have utility as a disease model for identifying disease-specific treatments. In addition, the ER stress-associated UPR could be a pathogenic mechanism associated with OI. Treatment with 4-PBA alleviated OI pathogenesis by attenuating UPR markers and apoptotic cell death.
Collapse
Affiliation(s)
- Thitinat Duangchan
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Tulyapruek Tawonsawatruk
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Chanika Angsanuntsukh
- Department of Orthopedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Objoon Trachoo
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Narisorn Kitiyanant
- Stem Cell Research Group, Institute of Molecular Biosciences, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
13
|
Hybrid minigene splicing assay verifies the pathogenicity of a novel splice site variant in the COL1A1 gene of a chinese patient with osteogenesis imperfecta type I. Injury 2019; 50:2215-2219. [PMID: 31653500 DOI: 10.1016/j.injury.2019.10.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a rare genetic bone disease associated with brittle bones and fractures. Among all known types, OI type I is the most common type and characterized by increased bone fragility, low bone mass, distinctly blue-gray sclera, and susceptibility to conductive hearing loss beginning in adolescence. Mutations in genes encoding type I collagen (COL1A1 and COL1A2) contribute to the main pathogenic mechanism of OI. METHODS Subtle mutation of the COL1A1 gene in the proband was detected by targeted next-generation sequencing (NGS) and confirmed by Sanger sequencing. We then assessed the effect of the mutation on the splicing of the COL1A1 gene by bioinformatics prediction and hybrid minigene splicing assay (HMSA). RESULTS A novel splice site mutation c.1821+1 G>C was discovered in the proband by NGS and further confirmed by Sanger sequencing, which was also simultaneously identified from the proband's mother and elder sister. Bioinformatics predicted that this mutation would result in a disappearance of the 5' donor splice site in intron 26, thereby leading to abnormal splicing and generation of premature stop codon. The follow-up experimental data generated by HMSA was consistent with this prediction. CONCLUSION Our study identified a novel splice site mutation that caused OI type I in the proband by abnormal splicing and demonstrated that combined applications of NGS, bioinformatics and HMSA are comprehensive and effective methods for diagnosis and aberrant splicing study of OI.
Collapse
|
14
|
Wong MY, Shoulders MD. Targeting defective proteostasis in the collagenopathies. Curr Opin Chem Biol 2019; 50:80-88. [PMID: 31028939 DOI: 10.1016/j.cbpa.2019.02.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/18/2022]
Abstract
The collagenopathies are a diverse group of diseases caused primarily by mutations in collagen genes. The resulting disruptions in collagen biogenesis can impair development, cause cellular dysfunction, and severely impact connective tissues. Most existing treatment options only address patient symptoms. Yet, while the disease-causing genes and proteins themselves are difficult to target, increasing evidence suggests that resculpting the intracellular proteostasis network, meaning the machineries responsible for producing and ensuring the integrity of collagen, could provide substantial benefit. We present a proteostasis-focused perspective on the collagenopathies, emphasizing progress toward understanding how mechanisms of collagen proteostasis are disrupted in disease. In parallel, we highlight recent advances in small molecule approaches to tune endoplasmic reticulum proteostasis that may prove useful in these disorders.
Collapse
Affiliation(s)
- Madeline Y Wong
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
15
|
Parveen A, Kumar R, Tandon R, Khurana S, Goswami C, Kumar A. Mutational hotspots of HSP47 and its potential role in cancer and bone-disorders. Genomics 2019; 112:552-566. [PMID: 30986427 DOI: 10.1016/j.ygeno.2019.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/16/2019] [Accepted: 04/11/2019] [Indexed: 10/27/2022]
Abstract
Heat shock protein 47 kDa (HSP47) serves as a client-specific chaperone, essential for collagen biosynthesis and its folding and structural assembly. To date, there is no comprehensive study on mutational hotspots. Using five different human mutational databases, we deduced a comprehensive list of human HSP47 mutations with 24, 67, 50, 43 and 2 deleterious mutations from the 1000 genomes data, gnomAD, COSMICv86, cBioPortal, and CanVar, respectively. We identified thirteen top-ranked missense mutations of HSP47 with the stringent cut-off of CADD score (>25) and Grantham score (≥151) as Ser76Trp, Arg103Cys, Arg116Cys, Ser159Phe, Arg167Cys, Arg280Cys, Trp293Cys, Gly323Trp, Arg339Cys, Arg373Cys, Arg377Cys, Ser399Phe, and Arg405Cys with the arginine-cysteine changes as the predominant mutations. These findings will assist in the evaluation of roles of HSP47 in collagen misfolding and human diseases such as cancer and bone disorders.
Collapse
Affiliation(s)
- Alisha Parveen
- Medical Research Center, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Rajesh Kumar
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sukant Khurana
- Pharmacology Department, Central Drug Research Institute - Lucknow, Uttar Pradesh, India
| | - Chandan Goswami
- National Institute of Science Education and Research, Bhubaneswar, Orissa, India
| | - Abhishek Kumar
- Department of Genetics & Molecular Biology in Botany, Institute of Botany, Christian-Albrechts-University at Kiel, Germany.
| |
Collapse
|