1
|
De Guzman LIP, Carpina RC, Chua JCA, Yu ET. Teredinibacter turnerae secretome highlights key enzymes for plant cell wall degradation. BIORESOUR BIOPROCESS 2025; 12:42. [PMID: 40327255 PMCID: PMC12055684 DOI: 10.1186/s40643-025-00876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 04/05/2025] [Indexed: 05/07/2025] Open
Abstract
Carbohydrate-active enzymes (CAZymes) are crucial in the sustainable production of fuels and raw materials from recalcitrant plant cell wall polysaccharides (PCWPs). Teredinibacter turnerae, a symbiont of wood-boring shipworms, is a prolific degrader of plant biomass, largely due to the extensive CAZyme repertoire in its genome. To identify key enzymes involved in PCWP utilization, we analyzed the secretomes of T. turnerae E7MBN strain grown on sucrose, major PCWPs (cellulose, xylan, and pectin), and residual rice hull biomass using mass spectrometry-based proteomics. Our results show that T. turnerae E7MBN exhibits minimal enzyme secretion across various carbon sources, where secretomes mostly display similar functional profiles. Enzymatic complexity varied with the substrate, with cellulose-grown secretome being the most complex and comprising the majority of secreted CAZymes. These CAZymes contain domains that primarily target cellulose, hemicellulose, or pectin, notably including multicatalytic enzymes that are consistently found in the secretome and are likely central to biomass degradation. In contrast, the xylan-grown secretome displayed a more specific response, secreting only a single bifunctional hemicellulase, E7_MBN_00081, also identified as a core component of the bacteria's enzymatic repertoire. Meanwhile, the pectin-grown secretome consists of multiple tonB-dependent receptors, which, along with isomerases, are considered common secretome constituents. E7MBN also demonstrated the capability to utilize rice hull biomass, predominantly secreting proteins previously identified under cellulose. Protein-protein interaction network analysis further revealed functional associations between CAZymes and several uncharacterized proteins, which include CBM-containing redox enzymes and a putative xylan-acting protein, thus offering new insights into their potential role in lignocellulose degradation. Overall, our work contributes to our understanding of enzymatic strategies employed by T. turnerae for PCWP deconstruction and highlights its potential as a promising source of CAZymes for sustainable biomass conversion.
Collapse
Affiliation(s)
| | - Renato C Carpina
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, Philippines
| | - Joan Catherine A Chua
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Eizadora T Yu
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
2
|
Gasser MT, Liu A, Altamia MA, Brensinger BR, Brewer SL, Flatau R, Hancock ER, Preheim SP, Filone CM, Distel DL. Membrane Vesicles Can Contribute to Cellulose Degradation by Teredinibacter turnerae, a Cultivable Intracellular Endosymbiont of Shipworms. Microb Biotechnol 2024; 17:e70064. [PMID: 39659293 PMCID: PMC11632262 DOI: 10.1111/1751-7915.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Teredinibacter turnerae is a cultivable cellulolytic Gammaproteobacterium (Cellvibrionaceae) that commonly occurs as an intracellular endosymbiont in the gills of wood-eating bivalves of the family Teredinidae (shipworms). The genome of T. turnerae encodes a broad range of enzymes that deconstruct cellulose, hemicellulose and pectin and contribute to wood (lignocellulose) digestion in the shipworm gut. However, the mechanisms by which T. turnerae secretes lignocellulolytic enzymes are incompletely understood. Here, we show that T. turnerae cultures grown on carboxymethyl cellulose (CMC) produce membrane vesicles (MVs) that include a variety of proteins identified by liquid chromatography-mass spectrometry (LC-MS/MS) as carbohydrate-active enzymes (CAZymes) with predicted activities against cellulose, hemicellulose and pectin. Reducing sugar assays and zymography confirm that these MVs exhibit cellulolytic activity, as evidenced by the hydrolysis of CMC. Additionally, these MVs were enriched with TonB-dependent receptors, which are essential to carbohydrate and iron acquisition by free-living bacteria. These observations indicate a potential role for MVs in lignocellulose utilisation by T. turnerae in the free-living state, suggest possible mechanisms for host-symbiont interaction and may be informative for commercial applications such as enzyme production and lignocellulosic biomass conversion.
Collapse
Affiliation(s)
- Mark T. Gasser
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | - Annie Liu
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | - Marvin A. Altamia
- Ocean Genome Legacy CenterNortheastern UniversityNahantMassachusettsUSA
| | | | - Sarah L. Brewer
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | - Ron Flatau
- Ocean Genome Legacy CenterNortheastern UniversityNahantMassachusettsUSA
| | - Eric R. Hancock
- Johns Hopkins University Applied Physics LaboratoryLaurelMarylandUSA
| | | | | | - Daniel L. Distel
- Ocean Genome Legacy CenterNortheastern UniversityNahantMassachusettsUSA
| |
Collapse
|
3
|
Mosquera E, Blanco-Libreros JF, Riascos JM. Are urban mangroves emerging hotspots of non-indigenous species? A study on the dynamics of macrobenthic fouling communities in fringing red mangrove prop roots. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractUrbanization represents a radical transformation of natural habitats that alters all the biotic and abiotic properties governing ecosystems. Urban expansion often results in oversimplified communities, where most specialists decline or disappear and a few generalist or exotic species become dominant. The consequences of urban expansion in mangrove forests are understudied, although these systems have been altered by humans for centuries and the growth of human population in tropical coasts is expected to be faster than in higher latitudes. To assess the importance of indigenous and non-indigenous species in driving temporal and spatial changes in community structure of red-mangrove prop-root macrobenthic communities, we studied heavily altered mangrove forests from two bays from the Caribbean coast of Colombia in 2005 and 2021. In all places/periods, the community richness was low, a few taxa were dominant (11 taxa, out of 40, comprised ~ 90% of the total abundance) and 35% of those taxa were non-indigenous species whose presence is related with known stressors in urbanized systems. Hence, call for efforts to assess whether urban mangrove forests are emerging as hotspots for non-indigenous biota. Community structure did not change within or between bays, there was a clear, significant turnover of core species between 2005 and 2021, with non-indigenous species playing a prominent role in this variability. This was puzzling—ecological theory asserts that the abundance of a species is related to their permanence: core species are relatively stable through time, while rare species appear or disappear—but this may not apply for stressed communities influenced by non-indigenous biota.
Collapse
|
4
|
Intrahabitat Differences in Bacterial Communities Associated with Corbicula fluminea in the Large Shallow Eutrophic Lake Taihu. Appl Environ Microbiol 2022; 88:e0232821. [PMID: 35285714 DOI: 10.1128/aem.02328-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Asian clam Corbicula fluminea is a keystone zoobenthos in freshwater ecosystems. However, its associated microbiome is not well understood. We investigated the bacterial communities of this clam and its surrounding environment, including sediment and water simultaneously, in a large lake by means of 16S rRNA gene sequencing. Approximately two-thirds of the bacterial operational taxonomic units (OTUs) associated with clams were observed in the surrounding environment and mostly from particle-associated samples. The associated bacterial communities were site specific and more similar to environmental bacteria from the same site than those at other sites, suggesting a local environmental influence on host bacteria. However, the significant differences in bacterial diversities and compositions between the clam and the environment also indicated strong host selection pressure on bacteria from the surrounding environment. Bacteria affiliated with Firmicutes, Spirochaetes, Tenericutes, Bacteroidetes, Epsilonbacteraeota, Patescibacteria, and Fusobacteria were found to be significantly enriched in the clams in comparison to their local environment. Oligotyping analyses of the core-associated bacterial OTUs also demonstrated that most of the core OTUs had lower relative abundances and occurrence frequencies in environmental samples. The core bacterial OTUs were found to play an important role in maintaining the stability of the bacterial community network. These core bacteria included the two most abundant taxa Romboutsia and Paraclostridium with the potential function of fermenting polysaccharides for assisting host clams in food digestion. Overall, we demonstrate that clam-associated bacteria were spatially dynamic and site specific, which were mainly structured both by local environments and host selection. IMPORTANCE The Asian clam Corbicula fluminea is an important benthic clam in freshwater ecosystems due to its high population densities and high filtering efficiency for particulate organic matter. While the associated microbiota is believed to be vital for host living, our knowledge about the compositions, sources, and potential functions is still lacking. We found that C. fluminea offers a unique ecological niche for specific lake bacteria. We also observed high intrahabitat variation in the associated bacterial communities. Such variations were driven mainly by local environments, followed by host selection pressure. While the local microbes served as a source of the clam-associated bacteria, host selection resulted in enrichments of bacterial taxa with the potential for assisting the host in organic matter digestion. These results significantly advance our current understanding of the origins and ecological roles of the microbiota associated with a keynote clam in freshwater ecosystems.
Collapse
|
5
|
Li S, Young T, Archer S, Lee K, Sharma S, Alfaro AC. Mapping the Green-Lipped Mussel (Perna canaliculus) Microbiome: A Multi-Tissue Analysis of Bacterial and Fungal Diversity. Curr Microbiol 2022; 79:76. [PMID: 35091849 PMCID: PMC8799583 DOI: 10.1007/s00284-021-02758-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/28/2021] [Indexed: 11/03/2022]
Abstract
Poor health and mortality events of the commercially important and endemic New Zealand green-lipped mussel (Perna canaliculus) pose a threat to its industry. Despite the known importance of microbiomes to animal health and environmental resilience, the host-associated microbiome is unexplored in this species. We conducted the first baseline characterization of bacteria and fungi within key host tissues (gills, haemolymph, digestive gland, and stomach) using high-throughput amplicon sequencing of 16S rRNA gene and ITS1 region for bacteria and fungi, respectively. Tissue types displayed distinctive bacterial profiles, consistent among individuals, that were dominated by phyla which reflect (1) a fluid exchange between the circulatory system (gills and haemolymph) and surrounding aqueous environment and (2) a highly diverse digestive system (digestive gland and stomach) microbiota. Gammaproteobacteria and Campylobacterota were mostly identified in the gill tissue and haemolymph, and were also found in high abundance in seawater. Digestive gland and stomach tissues were dominated by common gut bacterial phyla, such as Firmicutes, Cyanobacteria, Proteobacteria, and Bacteroidota, which reflects the selectivity of the digestive system and food-based influences. Other major notable taxa included the family Spirochaetaceae, and genera Endozoicomonas, Psychrilyobacter, Moritella and Poseidonibacter, which were highly variable among tissue types and samples. More than 50% of fungal amplicon sequence variants (ASVs) were unclassified beyond the phylum level, which reflects the lack of studies with marine fungi. However, the majority of those identified were assigned to the phylum Ascomycota. The findings from this work provide the first insight into healthy tissue microbiomes of P. canaliculus and is of central importance to understanding the effect of environmental changes on farmed mussels at the microbial level.
Collapse
Affiliation(s)
- Siming Li
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Tim Young
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
- The Centre for Biomedical and Chemical Sciences, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Stephen Archer
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Kevin Lee
- Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Shaneel Sharma
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, Private Bag, 92006, Auckland, 1142, New Zealand.
| |
Collapse
|
6
|
Pesante G, Sabbadin F, Elias L, Steele-King C, Shipway JR, Dowle AA, Li Y, Busse-Wicher M, Dupree P, Besser K, Cragg SM, Bruce NC, McQueen-Mason SJ. Characterisation of the enzyme transport path between shipworms and their bacterial symbionts. BMC Biol 2021; 19:233. [PMID: 34724941 PMCID: PMC8561940 DOI: 10.1186/s12915-021-01162-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Background Shipworms are marine xylophagus bivalve molluscs, which can live on a diet solely of wood due to their ability to produce plant cell wall-degrading enzymes. Bacterial carbohydrate-active enzymes (CAZymes), synthesised by endosymbionts living in specialised shipworm cells called bacteriocytes and located in the animal’s gills, play an important role in wood digestion in shipworms. However, the main site of lignocellulose digestion within these wood-boring molluscs, which contains both endogenous lignocellulolytic enzymes and prokaryotic enzymes, is the caecum, and the mechanism by which bacterial enzymes reach the distant caecum lumen has remained so far mysterious. Here, we provide a characterisation of the path through which bacterial CAZymes produced in the gills of the shipworm Lyrodus pedicellatus reach the distant caecum to contribute to the digestion of wood. Results Through a combination of transcriptomics, proteomics, X-ray microtomography, electron microscopy studies and in vitro biochemical characterisation, we show that wood-digesting enzymes produced by symbiotic bacteria are localised not only in the gills, but also in the lumen of the food groove, a stream of mucus secreted by gill cells that carries food particles trapped by filter feeding to the mouth. Bacterial CAZymes are also present in the crystalline style and in the caecum of their shipworm host, suggesting a unique pathway by which enzymes involved in a symbiotic interaction are transported to their site of action. Finally, we characterise in vitro four new bacterial glycosyl hydrolases and a lytic polysaccharide monooxygenase identified in our transcriptomic and proteomic analyses as some of the major bacterial enzymes involved in this unusual biological system. Conclusion Based on our data, we propose that bacteria and their enzymes are transported from the gills along the food groove to the shipworm’s mouth and digestive tract, where they aid in wood digestion. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01162-6.
Collapse
Affiliation(s)
- Giovanna Pesante
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Federico Sabbadin
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Luisa Elias
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Clare Steele-King
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - J Reuben Shipway
- Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department, of Biology, University of York, York, YO10 5DD, UK
| | - Yi Li
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Marta Busse-Wicher
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Katrin Besser
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK
| | - Simon M Cragg
- Institute of Marine Sciences Laboratories, Langstone Harbour, Ferry Road, Eastney, Portsmouth, PO4 9LY, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Simon J McQueen-Mason
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
7
|
A picture is worth a thousand words: novel photographic evidence on the anatomy of the digestive system of three shipworm species (Bivalvia, Teredinidae). ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00540-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Stravoravdis S, Shipway JR, Goodell B. How Do Shipworms Eat Wood? Screening Shipworm Gill Symbiont Genomes for Lignin-Modifying Enzymes. Front Microbiol 2021; 12:665001. [PMID: 34322098 PMCID: PMC8312274 DOI: 10.3389/fmicb.2021.665001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Shipworms are ecologically and economically important mollusks that feed on woody plant material (lignocellulosic biomass) in marine environments. Digestion occurs in a specialized cecum, reported to be virtually sterile and lacking resident gut microbiota. Wood-degrading CAZymes are produced both endogenously and by gill endosymbiotic bacteria, with extracellular enzymes from the latter being transported to the gut. Previous research has predominantly focused on how these animals process the cellulose component of woody plant material, neglecting the breakdown of lignin – a tough, aromatic polymer which blocks access to the holocellulose components of wood. Enzymatic or non-enzymatic modification and depolymerization of lignin has been shown to be required in other wood-degrading biological systems as a precursor to cellulose deconstruction. We investigated the genomes of five shipworm gill bacterial symbionts obtained from the Joint Genome Institute Integrated Microbial Genomes and Microbiomes Expert Review for the production of lignin-modifying enzymes, or ligninases. The genomes were searched for putative ligninases using the Joint Genome Institute’s Function Profile tool and blastp analyses. The resulting proteins were then modeled using SWISS-MODEL. Although each bacterial genome possessed at least four predicted ligninases, the percent identities and protein models were of low quality and were unreliable. Prior research demonstrates limited endogenous ability of shipworms to modify lignin at the chemical/molecular level. Similarly, our results reveal that shipworm bacterial gill-symbiont enzymes are unlikely to play a role in lignin modification during lignocellulose digestion in the shipworm gut. This suggests that our understanding of how these keystone organisms digest and process lignocellulose is incomplete, and further research into non-enzymatic and/or other unknown mechanisms for lignin modification is required.
Collapse
Affiliation(s)
- Stefanos Stravoravdis
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| | - J Reuben Shipway
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States.,Centre for Enzyme Innovation, School of Biological Sciences, Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Barry Goodell
- Goodell Laboratory, Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
9
|
Chalifour B, Li J. A Review of the Molluscan Microbiome: Ecology, Methodology and Future. MALACOLOGIA 2021. [DOI: 10.4002/040.063.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Bridget Chalifour
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| | - Jingchun Li
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 334 UCB, Boulder, Colorado, 80309, U.S.A
| |
Collapse
|
10
|
Verma D, Satyanarayana T. Xylanolytic Extremozymes Retrieved From Environmental Metagenomes: Characteristics, Genetic Engineering, and Applications. Front Microbiol 2020; 11:551109. [PMID: 33042057 PMCID: PMC7527525 DOI: 10.3389/fmicb.2020.551109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/21/2020] [Indexed: 01/29/2023] Open
Abstract
Xylanolytic enzymes have extensive applications in paper, food, and feed, pharmaceutical, and biofuel industries. These industries demand xylanases that are functional under extreme conditions, such as high temperature, acidic/alkaline pH, and others, which are prevailing in bioprocessing industries. Despite the availability of several xylan-hydrolyzing enzymes from cultured microbes, there is a huge gap between what is available and what industries require. DNA manipulations as well as protein-engineering techniques are also not quite satisfactory in generating xylan-hydrolyzing extremozymes. With a compound annual growth rate of 6.6% of xylan-hydrolyzing enzymes in the global market, there is a need for xylanolytic extremozymes. Therefore, metagenomic approaches have been employed to uncover hidden xylanolytic genes that were earlier inaccessible in culture-dependent approaches. Appreciable success has been achieved in retrieving several unusual xylanolytic enzymes with novel and desirable characteristics from different extreme environments using functional and sequence-based metagenomic approaches. Moreover, the Carbohydrate Active Enzymes database includes approximately 400 GH-10 and GH-11 unclassified xylanases. This review discusses sources, characteristics, and applications of xylanolytic enzymes obtained through metagenomic approaches and their amelioration by genetic engineering techniques.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Microbiology, Babasaheb Bhimrao Ambedkar (Central) University, Lucknow, India
| | - Tulasi Satyanarayana
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|
11
|
Secondary Metabolism in the Gill Microbiota of Shipworms (Teredinidae) as Revealed by Comparison of Metagenomes and Nearly Complete Symbiont Genomes. mSystems 2020; 5:5/3/e00261-20. [PMID: 32606027 PMCID: PMC7329324 DOI: 10.1128/msystems.00261-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We define a system in which the major symbionts that are important to host biology and to the production of secondary metabolites can be cultivated. We show that symbiotic bacteria that are critical to host nutrition and lifestyle also have an immense capacity to produce a multitude of diverse and likely novel bioactive secondary metabolites that could lead to the discovery of drugs and that these pathways are found within shipworm gills. We propose that, by shaping associated microbial communities within the host, the compounds support the ability of shipworms to degrade wood in marine environments. Because these symbionts can be cultivated and genetically manipulated, they provide a powerful model for understanding how secondary metabolism impacts microbial symbiosis. Shipworms play critical roles in recycling wood in the sea. Symbiotic bacteria supply enzymes that the organisms need for nutrition and wood degradation. Some of these bacteria have been grown in pure culture and have the capacity to make many secondary metabolites. However, little is known about whether such secondary metabolite pathways are represented in the symbiont communities within their hosts. In addition, little has been reported about the patterns of host-symbiont co-occurrence. Here, we collected shipworms from the United States, the Philippines, and Brazil and cultivated symbiotic bacteria from their gills. We analyzed sequences from 22 shipworm gill metagenomes from seven shipworm species and from 23 cultivated symbiont isolates. Using (meta)genome sequencing, we demonstrate that the cultivated isolates represent all the major bacterial symbiont species and strains in shipworm gills. We show that the bacterial symbionts are distributed among shipworm hosts in consistent, predictable patterns. The symbiotic bacteria harbor many gene cluster families (GCFs) for biosynthesis of bioactive secondary metabolites, only <5% of which match previously described biosynthetic pathways. Because we were able to cultivate the symbionts and to sequence their genomes, we can definitively enumerate the biosynthetic pathways in these symbiont communities, showing that ∼150 of ∼200 total biosynthetic gene clusters (BGCs) present in the animal gill metagenomes are represented in our culture collection. Shipworm symbionts occur in suites that differ predictably across a wide taxonomic and geographic range of host species and collectively constitute an immense resource for the discovery of new biosynthetic pathways corresponding to bioactive secondary metabolites. IMPORTANCE We define a system in which the major symbionts that are important to host biology and to the production of secondary metabolites can be cultivated. We show that symbiotic bacteria that are critical to host nutrition and lifestyle also have an immense capacity to produce a multitude of diverse and likely novel bioactive secondary metabolites that could lead to the discovery of drugs and that these pathways are found within shipworm gills. We propose that, by shaping associated microbial communities within the host, the compounds support the ability of shipworms to degrade wood in marine environments. Because these symbionts can be cultivated and genetically manipulated, they provide a powerful model for understanding how secondary metabolism impacts microbial symbiosis.
Collapse
|
12
|
Musella M, Wathsala R, Tavella T, Rampelli S, Barone M, Palladino G, Biagi E, Brigidi P, Turroni S, Franzellitti S, Candela M. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137209. [PMID: 32084687 DOI: 10.1016/j.scitotenv.2020.137209] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, we characterize the structural variation of the microbiota of Mytilus galloprovincialis at the tissue scale, also exploring the connection with the microbial ecosystem of the surrounding water. Mussels were sampled within a farm located in the North-Western Adriatic Sea and microbiota composition was analyzed in gills, hemolymph, digestive glands, stomach and foot by Next Generation Sequencing marker gene approach. Mussels showed a distinctive microbiota structure, with specific declinations at the tissue level. Indeed, each tissue is characterized by a distinct pattern of dominant families, reflecting a peculiar adaptation to the respective tissue niche. For instance, the microbiota of the digestive gland is characterized by Ruminococcaceae and Lachnospiraceae, being shaped to ferment complex polysaccharides of dietary origin into short-chain fatty acids, well matching the general asset of the animal gut microbiota. Conversely, the gill and hemolymph ecosystems are dominated by marine microorganisms with aerobic oxidative metabolism, consistent with the role played by these tissues as an interface with the external environment. Our findings highlight the putative importance of mussel microbiota for different aspects of host physiology, with ultimate repercussions on mussel health and productivity.
Collapse
Affiliation(s)
- Margherita Musella
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Rasika Wathsala
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy
| | - Teresa Tavella
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Simone Rampelli
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Monica Barone
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giorgia Palladino
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Elena Biagi
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Patrizia Brigidi
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Turroni
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy.
| | - Marco Candela
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
13
|
Lucena T, Arahal DR, Sanz-Sáez I, Acinas SG, Sánchez O, Aznar R, Pedrós-Alió C, Pujalte MJ. Thalassocella blandensis gen. nov., sp. nov., a novel member of the family Cellvibrionaceae. Int J Syst Evol Microbiol 2020; 70:1231-1239. [PMID: 31793854 DOI: 10.1099/ijsem.0.003906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain ISS155T, isolated from surface Mediterranean seawater, has cells that are Gram-reaction-negative, motile, strictly aerobic chemoorganotrophic, oxidase-positive, unable to reduce nitrate to nitrite, and able to grow with cellulose as the sole carbon and energy source. It is mesophilic, neutrophilic, slightly halophilic and has a requirement for sodium and magnesium ions. Its 16S rRNA gene sequence places the strain among members of Cellvibrionaceae, in the Gammaproteobacteria, with Agarilytica rhodophyticola 017T as closest relative (94.3 % similarity). Its major cellular fatty acids are C18 : 1, C16 : 0 and C16 : 1; major phospholipids are phosphatidyl glycerol, phosphatidyl ethanolamine and an unidentified lipid, and the major respiratory quinone is Q8. The genome size is 6.09 Mbp and G+C content is 45.2 mol%. A phylogenomic analysis using UBCG merges strain ISS155T in a clade with A. rhodophyticola, Teredinibacter turnerae, Saccharophagus degradans and Agaribacterium haliotis type strain genomes, all of them possessing a varied array of carbohydrate-active enzymes and the potential for polysaccharide degradation. Average amino acid identity indexes determined against available Cellvibrionaceae type strain genomes show that strain ISS155T is related to them by values lower than 60 %, with a maximum of 58 % to A. rhodophyticola 017T and 57 % to T. turnerae T7902T and S. degradans 2-40T. These results, together with the low 16S rRNA gene sequence similarities and differences in phenotypic profiles, indicate that strain ISS155T represents a new genus and species in Cellvibrionaceae, for which we propose the name Thalassocella blandensis gen. nov., sp. nov., and strain ISS155T (=CECT 9533T=LMG 31237T) as the type strain.
Collapse
Affiliation(s)
- Teresa Lucena
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - David R Arahal
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - Isabel Sanz-Sáez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Spain
| | - Silvia G Acinas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, ICM-CSIC, Barcelona, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Rosa Aznar
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| | - Carlos Pedrós-Alió
- Department of Systems Biology, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - María J Pujalte
- Departamento de Microbiología y Ecología and Colección Española de Cultivos Tipo (CECT), Universitat de València, Valencia, Spain
| |
Collapse
|