1
|
Cheung S, Zhou NA, Ruhanya V, J Jesser K, Nezomba I, Musvibe J, Manyisa B, Nyandoro G, Chibukira P, Mukaratirwa A, Muserere ST, Masunda K, Ong A, Meschke JS. Characterization of enteric pathogens in Harare, Zimbabwe using environmental surveillance and metagenomics. JOURNAL OF WATER AND HEALTH 2025; 23:477-492. [PMID: 40298267 DOI: 10.2166/wh.2025.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 04/30/2025]
Abstract
High diarrheal disease burden remains an urgent concern in low- and middle-income countries, greatly affecting children under the age of 5 years and those living with HIV and AIDS. Treatment of infectious diseases has also become increasingly difficult with the rapid rise of antimicrobial resistance (AMR). Environmental surveillance of wastewater can supplement gaps in clinical surveillance as residents on a sewage system contribute to the wastewater, providing simple, composite samples that can improve understanding about both pathogens and AMR in the community. This study evaluated the effectiveness of environmental surveillance with shotgun metagenomics as a tool to characterize a broad range of enteric pathogens, antibiotic resistance genes, and virulence factor genes (VFGs) in wastewater from six neighborhoods in Harare, Zimbabwe. Alpha and beta diversity of the microbial community were similar between high-income and low-income suburbs. Enteric pathogens of high AMR and clinical concern, including Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica, were detected in all samples. The top VFGs were encoded for delivery, adherence, and motility, functions important in toxin secretion, colonization, and immune modulation. The findings provide a foundation for future studies to explore environmental surveillance and shotgun metagenomics as a public health monitoring tool for enteric diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Angelo Ong
- University of Washington, Seattle, WA, USA
| | | |
Collapse
|
2
|
Nejati A, Tabatabaei SM, Mahmoudi S, Zahraei SM, Tabatabaie H, Razaghi M, Khodakhah F, Yousefi M, Mollaei-Kandelousi Y, Keyvanlou M, Soheili P, Pouyandeh S, Samimi-Rad K, Shahmahmoodi S. Environmental Surveillance of Poliovirus and Non-polio Enteroviruses in Iran, 2017-2023: First Report of Imported Wild Poliovirus Type 1 Since 2000. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:391-397. [PMID: 38658427 DOI: 10.1007/s12560-024-09600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
In Iran, which is at high risk of the Wild Poliovirus (WPV) and Vaccine-Derived Poliovirus (VDPV) importation due to its neighborhood with two polio endemic countries, Pakistan and Afghanistan, Environmental Surveillance (ES) was established in November 2017. Sistan-Balouchestan province was chosen for the ES due to its vicinity with Pakistan and Afghanistan. Five sewage collection sites in 4 cities (Zahedan, Zabol, Chabahar and Konarak) were selected in the high-risk areas. Since the establishment of ES in November 2017 till the end of 2023, 364 sewage specimens were collected and analyzed. The ES detected polioviruses which have the highest significance for polio eradication program, that is, Wild Poliovirus type 1 (WPV1) and Poliovirus type 2 (PV2). In April and May 2019, three of 364 (0.8%) sewage specimens from Konarak were positive for imported WPV1. According to phylogenetic analysis, they were highly related to WPV1 circulating in Karachi (Sindh province) in Pakistan. PV2 was also detected in 5.7% (21/364) of the sewage specimens, most of which proved to be imported from the neighboring countries. Of 21 isolated PV2s, 7 were VDPV2, of which 5 proved to be imported from the neighboring countries as there was VDPV2 circulating in Pakistan at the time of sampling, and 2 were ambiguous VDPVs (aVDPV) with unknown source. According to the findings of this study, as long as WPV1 and VDPV2 outbreaks are detected in Iran's neighboring countries, there is a definite need for continuation and expansion of the environmental surveillance.
Collapse
Affiliation(s)
- Ahmad Nejati
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mehdi Tabatabaei
- Health Promotion Research Center, Zahedan University of Medical Sciences, Sistan Balouchestan Province, Zahedan, Iran
| | - Sussan Mahmoudi
- Vaccine Preventable Diseases Department, Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Seyed Mohsen Zahraei
- Vaccine Preventable Diseases Department, Center for Communicable Diseases Control, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamideh Tabatabaie
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Razaghi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Khodakhah
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yousefi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaghoub Mollaei-Kandelousi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Keyvanlou
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Soheili
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Pouyandeh
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Samimi-Rad
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shohreh Shahmahmoodi
- National Polio Laboratory, Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Zhou N, Ong A, Fagnant-Sperati C, Harrison J, Kossik A, Beck N, Shirai J, Burnor E, Swanstrom R, Demeke B, Patel S, Scott Meschke J. Evaluation of Sampling and Concentration Methods for Salmonella enterica Serovar Typhi Detection from Wastewater. Am J Trop Med Hyg 2023; 108:482-491. [PMID: 36746655 PMCID: PMC9978546 DOI: 10.4269/ajtmh.22-0427] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/13/2022] [Indexed: 02/08/2023] Open
Abstract
Salmonella enterica serovar (Salmonella Typhi) is the causative bacterial agent of typhoid fever. Environmental surveillance of wastewater and wastewater-impacted surface waters has proven effective in monitoring various pathogens and has recently been applied to Salmonella Typhi. This study evaluated eight sample collection and concentration methods with 12 variations currently being developed and used for Salmonella Typhi surveillance globally to better understand the performance of each method based on its ability to detect Salmonella Typhi and its feasibility. Salmonella Typhi strains Ty21a and Ty2 were seeded to influent wastewater at known concentrations to evaluate the following methods: grab sampling using electropositive filters, centrifugation, direct enrichment, or membrane filtration and trap sampling using Moore swabs. Concentrated samples underwent nucleic acid extraction and were detected and/or quantified via quantitative polymerase chain reaction (qPCR). Results suggest that all methods tested can be successful at concentrating Salmonella Typhi for subsequent detection by qPCR, although each method has its own strengths and weaknesses, including the Salmonella Typhi concentration it is best suited for, with a range of positive detections observed as low as 0.1-0.001 colony-forming units (CFU) Ty21a/mL and 0.01 CFU Ty2/mL. These factors should be considered when identifying a method for environmental surveillance and will greatly depend on the use case planned.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - John Scott Meschke
- Address correspondence to John Meschke, Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Ste. 100, Seattle, WA 98105. E-mail:
| |
Collapse
|
4
|
Belgasmi H, Miles SJ, Sayyad L, Wong K, Harrington C, Gerloff N, Coulliette-Salmond AD, Guntapong R, Tacharoenmuang R, Ayutthaya AIN, Apostol LNG, Valencia MLD, Burns CC, Benito GR, Vega E. CaFÉ: A Sensitive, Low-Cost Filtration Method for Detecting Polioviruses and Other Enteroviruses in Residual Waters. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10:10.3389/fenvs.2022.914387. [PMID: 35928599 PMCID: PMC9344547 DOI: 10.3389/fenvs.2022.914387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acute flaccid paralysis (AFP) surveillance has been used to identify polio cases and target vaccination campaigns since the inception of the Global Poliovirus Eradication Initiative (GPEI) in 1988. To date, only Afghanistan and Pakistan have failed to interrupt wild poliovirus transmission. Circulation of vaccine-derived polioviruses (VDPV) continues to be a problem in high-risk areas of the Eastern Mediterranean, African, and Southeast Asian regions. Environmental surveillance (ES) is an important adjunct to AFP surveillance, helping to identify circulating polioviruses in problematic areas. Stools from AFP cases and contacts (>200,000 specimens/year) and ES samples (>642 sites) are referred to 146 laboratories in the Global Polio Laboratory Network (GPLN) for testing. Although most World Health Organization supported laboratories use the two-phase separation method due to its simplicity and effectiveness, alternative simple, widely available, and cost-effective methods are needed. The CAFÉ (Concentration and Filtration Elution) method was developed from existing filtration methods to handle any type of sewage or residual waters. At $10-20 US per sample for consumable materials, CAFÉ is cost effective, and all equipment and reagents are readily available from markets and suppliers globally. The report describes the results from a parallel study of CAFÉ method with the standard two-phase separation method. The study was performed with samples collected from five countries (Guatemala, Haïti, Thailand, Papua New Guinea, and the Philippines), run in three laboratories-(United States, Thailand and in the Philippines) to account for regional and sample-to-sample variability. Samples from each site were divided into two 500 ml aliquots and processed by both methods, with no other additional concentration or manipulation. The results of 338 parallel-tested samples show that the CAFÉ method is more sensitive than the two-phase separation method for detection of non-polio enteroviruses (p-value < 0.0001) and performed as well as the two-phase separation method for polioviruses detection with no significant difference (p-value > 0.05). The CAFÉ method is a robust, sensitive, and cost-effective method for isolating enteroviruses from residual waters.
Collapse
Affiliation(s)
- Hanen Belgasmi
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Stacey Jeffries Miles
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | | | - Chelsea Harrington
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Nancy Gerloff
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Angela D Coulliette-Salmond
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
- U.S Public Health Service, Rockville, MD, United States
| | - Ratigorn Guntapong
- Department of Medical Science, Enteric Viruses Section, National Institute of Health, Nonthaburi, Thailand
| | - Ratana Tacharoenmuang
- Department of Medical Science, Enteric Viruses Section, National Institute of Health, Nonthaburi, Thailand
| | | | | | | | - Cara C. Burns
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Gloria-Rey Benito
- Pan American Health Organization, World Health Organization, Washington, DC, United States
| | - Everardo Vega
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
5
|
Kline A, Dean K, Kossik AL, Harrison JC, Januch JD, Beck NK, Zhou NA, Shirai JH, Boyle DS, Mitchell J, Meschke JS. Persistence of poliovirus types 2 and 3 in waste-impacted water and sediment. PLoS One 2022; 17:e0262761. [PMID: 35081146 PMCID: PMC8791527 DOI: 10.1371/journal.pone.0262761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
Eradication of poliovirus (PV) is a global public health priority, and as clinical cases decrease, the role of environmental surveillance becomes more important. Persistence of PV and the environmental factors that influence it (such as temperature and sample type) are an important part of understanding and interpreting positive environmental surveillance samples. The objective of this study was to evaluate the persistence of poliovirus type 2 (PV2) and type 3 (PV3) in wastewater and sediment. Microcosms containing either 1) influent wastewater or 2) influent wastewater with a sediment matrix were seeded with either PV2 or PV3, and stored for up to 126 days at three temperatures (4°C, room temperature [RT], and 30°C). Active PV in the liquid of (1), and the sediment and liquid portions of (2) were sampled and quantified at up to 10 time points via plaque assay and RT-qPCR. A suite of 17 models were tested for best fit to characterize decay of PV2 and PV3 over time and determine the time points at which >90% (T90) and >99% (T99) reduction was reached. Linear models assessed the influence of experimental factors (matrix, temperature, virus type and method of detection) on the predicted T90 and T99 values. Results showed that when T90 was the dependent variable, virus type, matrix, and temperature significantly affected decay, and there was a clear interaction between the sediment matrix and temperature. When T99 was the dependent variable, only temperature and matrix type significantly influenced the decay metric. This study characterizes the persistence of both active and molecular PV2 and PV3 in relevant environmental conditions, and demonstrates that temperature and sediment both play important roles in PV viability. As eradication nears and clinical cases decrease, environmental surveillance and knowledge of PV persistence will play a key role in understanding the silent circulation in endemic countries.
Collapse
Affiliation(s)
- Allison Kline
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Kara Dean
- Biosystems & Agricultural Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - Alexandra L. Kossik
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Joanna Ciol Harrison
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - James D. Januch
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Nicola K. Beck
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Nicolette A. Zhou
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | - Jeffry H. Shirai
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| | | | - Jade Mitchell
- Biosystems & Agricultural Engineering, Michigan State University, East Lansing, Michigan, United States of America
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
6
|
Giri S, Mohan VR, Srinivasan M, Kumar N, Kumar V, Dhanapal P, Venkatesan J, Gunasekaran A, Abraham D, John J, Kang G. Case-Control Study of Household and Environmental Transmission of Typhoid Fever in India. J Infect Dis 2021; 224:S584-S592. [PMID: 35238355 PMCID: PMC8892545 DOI: 10.1093/infdis/jiab378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Typhoid fever causes substantial morbidity and mortality in low- and middle-income countries. We conducted a case-control study in Vellore, southern India, to understand risk factors for transmission of typhoid. Methods From April 2018 to October 2019, households of blood culture-confirmed typhoid cases that occurred within a fever surveillance cohort aged 6 months–15 years, and controls matched for age, sex, geographic location, and socioeconomic status, were recruited. Information on risk factors was obtained using standard questionnaires. Household and environmental samples were collected for detection of Salmonella Typhi using real-time polymerase chain reaction. Multivariable analysis was used to evaluate associations between risk factors and typhoid. Results One hundred pairs of cases and controls were recruited. On multivariable regression analysis, mothers eating food from street vendors during the previous week (odds ratio [OR] = 2.04; 95% confidence interval [CI], 1.03–4.12; P = .04) was independently associated with typhoid, whereas treatment of household drinking water (OR = 0.45; 95% CI, 0.25–0.80; P = .007) was protective. There was no significant difference in S Typhi detection between the environmental samples from case and control households. Conclusions Street-vended food is a risk factor for typhoid in densely populated urban communities of Vellore. Improved sanitation facilities and awareness about point-of-use water treatment are likely to contribute to typhoid control.
Collapse
Affiliation(s)
- Sidhartha Giri
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | | | - Nirmal Kumar
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Vinoth Kumar
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Pavithra Dhanapal
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | | | - Annai Gunasekaran
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Dilip Abraham
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| | - Jacob John
- Department of Community Health, Christian Medical College, Vellore, India
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, India
| |
Collapse
|
7
|
Zohra T, Ikram A, Salman M, Amir A, Saeed A, Ashraf Z, Ahad A. Wastewater based environmental surveillance of toxigenic Vibrio cholerae in Pakistan. PLoS One 2021; 16:e0257414. [PMID: 34591885 PMCID: PMC8483414 DOI: 10.1371/journal.pone.0257414] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pakistan has been experiencing intervals of sporadic cases and localized outbreaks in the last two decades. No proper study has been carried out in order to find out the environmental burden of toxigenic V. cholerae as well as how temporal and environmental factors associated in driving cholera across the country. METHODS We tested waste water samples from designated national environment surveillance sites in Pakistan with RT-PCR assay. Multistage sampling technique were utilized for samples collection and for effective sample processing Bag-Mediated Filtration system, were employed. Results were analysed by district and month wise to understand the geographic distribution and identify the seasonal pattern of V. cholera detection in Pakistan. RESULTS Between May 2019, and February 2020, we obtained and screened 160 samples in 12 districts across Pakistan. Out of 16 sentinel environmental surveillance sites, 15 sites showed positive results against cholera toxigenic gene with mostly lower CT value (mean, 34±2) and have significant difference (p < 0.05). The highest number of positive samples were collected from Sindh in month of November, then in June it is circulating in different districts of Pakistan including four Provinces respectively. CONCLUSION V. cholera detection do not follow a clear seasonal pattern. However, the poor sanitation problems or temperature and rainfall may potentially influence the frequency and duration of cholera across the country. Occurrence of toxigenic V. cholerae in the environment samples showed that cholera is endemic, which is an alarming for a potential future cholera outbreaks in the country.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Aamer Ikram
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Salman
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Afreenish Amir
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Asim Saeed
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Zurva Ashraf
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| | - Abdul Ahad
- Public Health Laboratories Division, Department of Microbiology, National Institute of Health, Islamabad, Pakistan
| |
Collapse
|
8
|
Kiulia NM, Gonzalez R, Thompson H, Aw TG, Rose JB. Quantification and Trends of Rotavirus and Enterovirus in Untreated Sewage Using Reverse Transcription Droplet Digital PCR. FOOD AND ENVIRONMENTAL VIROLOGY 2021; 13:154-169. [PMID: 33591485 DOI: 10.1007/s12560-020-09455-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
The quantification and trends in concentrations for naturally occurring rotaviruses (RV) and enteroviruses (EV) in untreated sewage in various wastewater systems have not often been compared. There is now greater interest in monitoring the infections in the community including live vaccine efficacy by evaluating untreated sewage. The goals of this study were to 1) survey the concentrations of naturally occurring RV and EV in untreated sewage using a reverse transcription-droplet digital polymerase chain reaction (RT-ddPCR) and 2) investigate the use of a new adsorption elution (bag-mediated filtration system (BMFS) using ViroCap filters) against more traditional polyethylene glycol (PEG) precipitation for virus concentration. Sewage samples were collected from lagoons in Kenya and Michigan (MI), the United States (USA) and from wastewater treatment plants (WWTPs) in the USA. RVs were detected at geometric mean concentrations in various locations, California (CA) 1.31 × 105 genome copies/L (gc/L), Kenya (KE) 2.71 × 104 gc/L and Virginia (VA) 1.48 × 105 gc/L, and EVs geometric means were 3.72 × 106 gc/L (CA), 1.18 × 104 gc/L (Kenya), and 6.18 × 103 gc/L (VA). The mean RV concentrations using BMFS-ViroCap in split samples compared to PEG precipitation methods demonstrated that the levels were only 9% (#s BMFS/PEG) in the Michigan lagoons which was significantly different (p < 0.01). This suggests that RV concentrations in Kenya are around 1.69 × 106 gc/L. Overall, there was no difference in concentrations for the other sampling locations across the methods of virus recovery (i.e., PEG precipitation and HA filters) using one-way ANOVA (F = 1.7, p = 0.2739) or Tukey-Kramer pairwise comparisons (p > 0.05). This study provides useful data on RV and EV concentrations in untreated sewage in Kenya and the USA. It also highlights on the usefulness of the RT-ddPCR for absolute quantification of RV and EV in sewage samples. The BMFS using ViroCap filters while less efficient compared to the more traditional PEG precipitation method was able to recover RVs and EVs in untreated sewage and may be useful in poor resource settings while underestimating viruses by 1 to 1.5 logs.
Collapse
Affiliation(s)
- Nicholas M Kiulia
- The Water Quality, Environmental and Molecular Microbiology Laboratory, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
- Enteric Pathogens and Water Research Laboratory, Institute of Primate Research, P.O. Box 24481-00502, Karen, Nairobi, Kenya.
| | - Raul Gonzalez
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA, 23455, USA
| | - Hannah Thompson
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA, 23455, USA
| | - Tiong Gim Aw
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| | - Joan B Rose
- The Water Quality, Environmental and Molecular Microbiology Laboratory, Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
9
|
Linden YS, Fagnant-Sperati CS, Kossik AL, Harrison JC, Beck NK, Boyle DS, Meschke JS. Method Development for Enteric Virus Recovery from Primary Sludge. Viruses 2021; 13:v13030440. [PMID: 33803454 PMCID: PMC8000433 DOI: 10.3390/v13030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Enteric viruses, such as poliovirus, are a leading cause of gastroenteritis, which causes 2–3 million deaths annually. Environmental surveillance of wastewater supplements clinical surveillance for monitoring enteric virus circulation. However, while many environmental surveillance methods require liquid samples, some at-risk locations utilize pit latrines with waste characterized by high solids content. This study’s objective was to develop and evaluate enteric virus concentration protocols for high solids content samples. Two existing protocols were modified and tested using poliovirus type 1 (PV1) seeded into primary sludge. Method 1 (M1) utilized acid adsorption, followed by 2 or 3 elutions (glycine/sodium chloride and/or threonine/sodium chloride), and skimmed milk flocculation. Method 2 (M2) began with centrifugation. The liquid fraction was filtered through a ViroCap filter and eluted (beef extract/glycine). The solid fraction was eluted (beef extract/disodium hydrogen phosphate/citric acid) and concentrated by skimmed milk flocculation. Recovery was enumerated by plaque assay. M1 yielded higher PV1 recovery than M2, though this result was not statistically significant (26.1% and 15.9%, respectively). M1 was further optimized, resulting in significantly greater PV1 recovery when compared to the original protocol (p < 0.05). This method can be used to improve understanding of enteric virus presence in communities without liquid waste streams.
Collapse
Affiliation(s)
- Yarrow S. Linden
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98195, USA; (Y.S.L.); (C.S.F.-S.); (A.L.K.); (J.C.H.); (N.K.B.)
| | - Christine S. Fagnant-Sperati
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98195, USA; (Y.S.L.); (C.S.F.-S.); (A.L.K.); (J.C.H.); (N.K.B.)
| | - Alexandra L. Kossik
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98195, USA; (Y.S.L.); (C.S.F.-S.); (A.L.K.); (J.C.H.); (N.K.B.)
| | - Joanna Ciol Harrison
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98195, USA; (Y.S.L.); (C.S.F.-S.); (A.L.K.); (J.C.H.); (N.K.B.)
| | - Nicola K. Beck
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98195, USA; (Y.S.L.); (C.S.F.-S.); (A.L.K.); (J.C.H.); (N.K.B.)
| | - David S. Boyle
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA;
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98195, USA; (Y.S.L.); (C.S.F.-S.); (A.L.K.); (J.C.H.); (N.K.B.)
- Correspondence:
| |
Collapse
|
10
|
Fagnant‐Sperati C, Ren Y, Zhou N, Komen E, Mwangi B, Hassan J, Chepkurui A, Nzunza R, Nyangao J, van Zyl W, Wolfaardt M, Matsapola P, Ngwana F, Jeffries‐Miles S, Coulliette‐Salmond A, Peñaranda S, Vega E, Shirai J, Kossik A, Beck N, Boyle D, Burns C, Taylor M, Borus P, Meschke J. Validation of the bag-mediated filtration system for environmental surveillance of poliovirus in Nairobi, Kenya. J Appl Microbiol 2021; 130:971-981. [PMID: 32743931 PMCID: PMC7854911 DOI: 10.1111/jam.14807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/15/2023]
Abstract
AIMS This study compared the bag-mediated filtration system (BMFS) and standard WHO two-phase separation methods for poliovirus (PV) environmental surveillance, examined factors impacting PV detection and monitored Sabin-like (SL) PV type 2 presence with withdrawal of oral polio vaccine type 2 (OPV2) in April 2016. METHODS AND RESULTS Environmental samples were collected in Nairobi, Kenya (Sept 2015-Feb 2017), concentrated via BMFS and two-phase separation methods, then assayed using the WHO PV isolation algorithm and intratypic differentiation diagnostic screening kit. SL1, SL2 and SL3 were detected at higher rates in BMFS than two-phase samples (P < 0·05). In BMFS samples, SL PV detection did not significantly differ with volume filtered, filtration time or filter shipment time (P > 0·05), while SL3 was detected less frequently with higher shipment temperatures (P = 0·027). SL2 was detected more frequently before OPV2 withdrawal in BMFS and two-phase samples (P < 1 × 10-5 ). CONCLUSIONS Poliovirus was detected at higher rates with the BMFS, a method that includes a secondary concentration step, than using the standard WHO two-phase method. SL2 disappearance from the environment was commensurate with OPV2 withdrawal. SIGNIFICANCE AND IMPACT OF THE STUDY The BMFS offers comparable or improved PV detection under the conditions in this study, relative to the two-phase method.
Collapse
Affiliation(s)
- C.S. Fagnant‐Sperati
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - Y. Ren
- Department of BiostatisticsUniversity of WashingtonSeattleWAUSA
| | - N.A. Zhou
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - E. Komen
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - B. Mwangi
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - J. Hassan
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - A. Chepkurui
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - R. Nzunza
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - J. Nyangao
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - W.B. van Zyl
- Department of Medical VirologyUniversity of PretoriaPretoriaSouth Africa
| | - M. Wolfaardt
- Department of Medical VirologyUniversity of PretoriaPretoriaSouth Africa
| | - P.N. Matsapola
- Department of Medical VirologyUniversity of PretoriaPretoriaSouth Africa
| | - F.B. Ngwana
- Department of Medical VirologyUniversity of PretoriaPretoriaSouth Africa
| | - S. Jeffries‐Miles
- Cherokee Nation Assurance a contracting agency to the Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | | | - S. Peñaranda
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - E. Vega
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - J.H. Shirai
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - A.L. Kossik
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - N.K. Beck
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | | | - C.C. Burns
- Division of Viral DiseasesCenters for Disease Control and PreventionAtlantaGAUSA
| | - M.B. Taylor
- Department of Medical VirologyUniversity of PretoriaPretoriaSouth Africa
| | - P. Borus
- Centre for Viral ResearchKenya Medical Research InstituteNairobiKenya
| | - J.S. Meschke
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
11
|
Coulliette-Salmond AD, Alleman MM, Wilnique P, Rey-Benito G, Wright HB, Hecker JW, Miles S, Peñaranda S, Lafontant D, Corvil S, Francois J, Rossignol E, Stanislas M, Gue E, Faye PC, Castro CJ, Schmidt A, Ng TFF, Burns CC, Vega E. Haiti Poliovirus Environmental Surveillance. Am J Trop Med Hyg 2020; 101:1240-1248. [PMID: 31701857 DOI: 10.4269/ajtmh.19-0469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Poliovirus (PV) environmental surveillance was established in Haiti in three sites each in Port-au-Prince and Gonaïves, where sewage and fecal-influenced environmental open water channel samples were collected monthly from March 2016 to February 2017. The primary objective was to monitor for the emergence of vaccine-derived polioviruses (VDPVs) and the importation and transmission of wild polioviruses (WPVs). A secondary objective was to compare two environmental sample processing methods, the gold standard two-phase separation method and a filter method (bag-mediated filtration system [BMFS]). In addition, non-polio enteroviruses (NPEVs) were characterized by next-generation sequencing using Illumina MiSeq to provide insight on surrogates for PVs. No WPVs or VDPVs were detected at any site with either concentration method. Sabin (vaccine) strain PV type 2 and Sabin strain PV type 1 were found in Port-au-Prince, in March and April samples, respectively. Non-polio enteroviruses were isolated in 75-100% and 0-58% of samples, by either processing method during the reporting period in Port-au-Prince and Gonaïves, respectively. Further analysis of 24 paired Port-au-Prince samples confirmed the detection of a human NPEV and echovirus types E-3, E-6, E-7, E-11, E-19, E-20, and E-29. The comparison of the BMFS filtration method to the two-phase separation method found no significant difference in sensitivity between the two methods (mid-P-value = 0.55). The experience of one calendar year of sampling has informed the appropriateness of the initially chosen sampling sites, importance of an adequate PV surrogate, and robustness of two processing methods.
Collapse
Affiliation(s)
- Angela D Coulliette-Salmond
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mary M Alleman
- Polio Eradication Branch, Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Pierre Wilnique
- Division of Epidemiology, Laboratory and Research, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Gloria Rey-Benito
- Pan American Health Organization, World Health Organization, Washington, District of Columbia
| | | | | | | | - Silvia Peñaranda
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Donald Lafontant
- Division of Epidemiology, Laboratory and Research, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Salomon Corvil
- Division of Epidemiology, Laboratory and Research, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Jeannot Francois
- Expanded Programme on Immunization, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Emmanuel Rossignol
- National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Magalie Stanislas
- National Public Health Laboratory, Ministry of Public Health and Population, Port-au-Prince, Haiti
| | - Edmond Gue
- Pan American Health Organization, World Health Organization Region of the Americas, Port-au-Prince, Haiti
| | - Papa C Faye
- Pan American Health Organization, World Health Organization Region of the Americas, Port-au-Prince, Haiti
| | - Christina J Castro
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee.,Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Terry Fei Fan Ng
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Cara C Burns
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Everardo Vega
- Polio and Picornavirus Laboratory Branch, Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
12
|
Zhou NA, Fagnant-Sperati CS, Komen E, Mwangi B, Mukubi J, Nyangao J, Hassan J, Chepkurui A, Maina C, van Zyl WB, Matsapola PN, Wolfaardt M, Ngwana FB, Jeffries-Miles S, Coulliette-Salmond A, Peñaranda S, Shirai JH, Kossik AL, Beck NK, Wilmouth R, Boyle DS, Burns CC, Taylor MB, Borus P, Meschke JS. Feasibility of the Bag-Mediated Filtration System for Environmental Surveillance of Poliovirus in Kenya. FOOD AND ENVIRONMENTAL VIROLOGY 2020; 12:35-47. [PMID: 31679104 PMCID: PMC7052051 DOI: 10.1007/s12560-019-09412-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/15/2019] [Indexed: 05/24/2023]
Abstract
The bag-mediated filtration system (BMFS) was developed to facilitate poliovirus (PV) environmental surveillance, a supplement to acute flaccid paralysis surveillance in PV eradication efforts. From April to September 2015, environmental samples were collected from four sites in Nairobi, Kenya, and processed using two collection/concentration methodologies: BMFS (> 3 L filtered) and grab sample (1 L collected; 0.5 L concentrated) with two-phase separation. BMFS and two-phase samples were analyzed for PV by the standard World Health Organization poliovirus isolation algorithm followed by intratypic differentiation. BMFS samples were also analyzed by a cell culture independent real-time reverse transcription polymerase chain reaction (rRT-PCR) and an alternative cell culture method (integrated cell culture-rRT-PCR with PLC/PRF/5, L20B, and BGM cell lines). Sabin polioviruses were detected in a majority of samples using BMFS (37/42) and two-phase separation (32/42). There was statistically more frequent detection of Sabin-like PV type 3 in samples concentrated with BMFS (22/42) than by two-phase separation (14/42, p = 0.035), possibly due to greater effective volume assayed (870 mL vs. 150 mL). Despite this effective volume assayed, there was no statistical difference in Sabin-like PV type 1 and Sabin-like PV type 2 detection between these methods (9/42 vs. 8/42, p = 0.80 and 27/42 vs. 32/42, p = 0.18, respectively). This study demonstrated that BMFS can be used for PV environmental surveillance and established a feasible study design for future research.
Collapse
Affiliation(s)
- Nicolette A Zhou
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Christine S Fagnant-Sperati
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Evans Komen
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Benlick Mwangi
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Johnstone Mukubi
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - James Nyangao
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Joanne Hassan
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Agnes Chepkurui
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - Caroline Maina
- Kenya Ministry of Health, Afya House, Cathedral Road, P.O. Box 30016, Nairobi, 00100, Kenya
| | - Walda B van Zyl
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Peter N Matsapola
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Marianne Wolfaardt
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Fhatuwani B Ngwana
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Stacey Jeffries-Miles
- IHRC, Inc. (contracting agency to the Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA 30329, USA), 2 Ravinia Drive, Suite 1200, Atlanta, GA, 30329, USA
| | - Angela Coulliette-Salmond
- Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA, 30329, USA
| | - Silvia Peñaranda
- Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA, 30329, USA
| | - Jeffry H Shirai
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Alexandra L Kossik
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Nicola K Beck
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA
| | - Robyn Wilmouth
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA, 98121, USA
| | - David S Boyle
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA, 98121, USA
| | - Cara C Burns
- Division of Viral Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop H17-6, Atlanta, GA, 30329, USA
| | - Maureen B Taylor
- Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa
| | - Peter Borus
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi, 00200, Kenya
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105, USA.
| |
Collapse
|
13
|
Estívariz CF, Pérez-Sánchez EE, Bahena A, Burns CC, Gary HE, García-Lozano H, Rey-Benito G, Peñaranda S, Castillo-Montufar KV, Nava-Acosta RS, Meschke JS, Oberste MS, Lopez-Martínez I, Díaz-Quiñonez JA. Field Performance of Two Methods for Detection of Poliovirus in Wastewater Samples, Mexico 2016-2017. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:364-373. [PMID: 31571037 PMCID: PMC10389298 DOI: 10.1007/s12560-019-09399-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
To enhance our ability to monitor poliovirus circulation and certify eradication, we evaluated the performance of the bag-mediated filtration system (BMFS) against the two-phase separation (TPS) method for concentrating wastewater samples for poliovirus detection. Sequential samples were collected at two sites in Mexico; one L was collected by grab and ~ 5 L were collected and filtered in situ with the BMFS. In the laboratory, 500 mL collected by grab were concentrated using TPS and the sample contained in the filter of the BMFS was eluted without secondary concentration. Concentrates were tested for the presence of poliovirus and non-poliovirus enterovirus (NPEV) using Global Poliovirus Laboratory Network standard procedures. Between February 16, 2016, and April 18, 2017, 125 pairs of samples were obtained. Collectors spent an average (± standard deviation) of 4.3 ± 2.2 min collecting the TPS sample versus 73.5 ± 30.5 min collecting and filtering the BMFS sample. Laboratory processing required an estimated 5 h for concentration by TPS and 3.5 h for elution. Sabin 1 poliovirus was detected in 37 [30%] samples with the TPS versus 24 [19%] samples with the BMFS (McNemar's mid p value = 0.004). Sabin 3 poliovirus was detected in 59 [47%] versus 49 (39%) samples (p = 0.043), and NPEV was detected in 67 [54%] versus 40 [32%] samples (p < 0.001). The BMFS method without secondary concentration did not perform as well as the TPS method for detecting Sabin poliovirus and NPEV. Further studies are needed to guide the selection of cost-effective environmental surveillance methods for the polio endgame.
Collapse
Affiliation(s)
- Concepción F Estívariz
- Global Immunization Division, Global Health Center, Centers for Control Disease and Prevention, 1600 Clifton Rd NE, Atlanta, GA, 30329, USA.
| | - Elda E Pérez-Sánchez
- Instituto de Diagnóstico y Referencia Epidemiológico, Francisco de P. Miranda 177, Lomas de Plateros-Alvaro Obregon, Ciudad De México, 01480, Mexico
| | - Anita Bahena
- Organización Panamericana de la Salud, Ciudad de México, Montes Urales 440, 2nd floor, Col. Lomas de Chapultepec, 11000, Ciudad De Mexico, Mexico
| | - Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Howard E Gary
- Global Immunization Division, Global Health Center, Centers for Control Disease and Prevention, 1600 Clifton Rd NE, Atlanta, GA, 30329, USA
| | - Herlinda García-Lozano
- Instituto de Diagnóstico y Referencia Epidemiológico, Francisco de P. Miranda 177, Lomas de Plateros-Alvaro Obregon, Ciudad De México, 01480, Mexico
| | - Gloria Rey-Benito
- Immunization Unit, Pan American Health Organization, 525 23rd Street NW, Washington, DC, 20037, USA
| | - Silvia Peñaranda
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Katy V Castillo-Montufar
- Organización Panamericana de la Salud, Ciudad de México, Montes Urales 440, 2nd floor, Col. Lomas de Chapultepec, 11000, Ciudad De Mexico, Mexico
| | - Raúl S Nava-Acosta
- Organización Panamericana de la Salud, Ciudad de México, Montes Urales 440, 2nd floor, Col. Lomas de Chapultepec, 11000, Ciudad De Mexico, Mexico
| | - John Scott Meschke
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA, 98195, USA
| | - M Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Irma Lopez-Martínez
- Instituto de Diagnóstico y Referencia Epidemiológico, Francisco de P. Miranda 177, Lomas de Plateros-Alvaro Obregon, Ciudad De México, 01480, Mexico
| | - José A Díaz-Quiñonez
- Instituto de Diagnóstico y Referencia Epidemiológico, Francisco de P. Miranda 177, Lomas de Plateros-Alvaro Obregon, Ciudad De México, 01480, Mexico
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad De México, Mexico
| |
Collapse
|
14
|
van Zyl WB, A Zhou N, Wolfaardt M, Matsapola PN, Ngwana FB, Symonds EM, Fagnant-Sperati CS, Shirai JH, Kossik AL, Beck NK, Komen E, Mwangi B, Nyangao J, Boyle DS, Borus P, Taylor MB, Meschke JS. Detection of potentially pathogenic enteric viruses in environmental samples from Kenya using the bag-mediated filtration system. WATER SCIENCE & TECHNOLOGY, WATER SUPPLY 2019; 19:1668-1676. [PMID: 33584163 PMCID: PMC7797634 DOI: 10.2166/ws.2019.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/14/2019] [Indexed: 05/18/2023]
Abstract
Enteric virus environmental surveillance via a highly sensitive method is critical, as many enteric viruses have low infectious doses and can persist in the environment for extended periods. This study determined the potential of the novel bag-mediated filtration system (BMFS) to recover human enteric viruses and pepper mild mottle virus (PMMoV) from wastewater and wastewater-impacted surface waters, examined PMMoV use as a fecal contamination indicator in Kenya, and identified potential BMFS process controls. From April 2015 to April 2016, BMFS samples were collected from seven sites in Kenya (n = 59). Enteroviruses and PMMoV were detected in 100% of samples, and human adenovirus, human astrovirus, hepatitis A virus, norovirus GI, norovirus GII, sapovirus, and human rotavirus were detected in the majority of samples. The consistent detection of enteroviruses and PMMoV suggests that these viruses could be used as indicators in similarly fecally contaminated sites and BMFS process controls. As contamination of surface water sources remains a global issue, enteric virus environmental surveillance is necessary. This study demonstrates an effective way to sample large volumes of wastewater and wastewater-impacted surface waters for the detection of multiple enteric viruses simultaneously.
Collapse
Affiliation(s)
- Walda B van Zyl
- Department of Medical Virology, University of Pretoria, Faculty of Health Sciences, Private Bag X323, Arcadia 0007, South Africa
| | - Nicolette A Zhou
- (corresponding author) Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105, USA
| | - Marianne Wolfaardt
- Department of Medical Virology, University of Pretoria, Faculty of Health Sciences, Private Bag X323, Arcadia 0007, South Africa
| | - Peter N Matsapola
- Department of Medical Virology, University of Pretoria, Faculty of Health Sciences, Private Bag X323, Arcadia 0007, South Africa
| | - Fhatuwani B Ngwana
- Department of Medical Virology, University of Pretoria, Faculty of Health Sciences, Private Bag X323, Arcadia 0007, South Africa
| | - Erin M Symonds
- College of Marine Science, University of South Florida, 830 1st St S, St Petersburg, FL 33701, USA
| | - Christine S Fagnant-Sperati
- (corresponding author) Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105, USA
| | - Jeffry H Shirai
- (corresponding author) Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105, USA
| | - Alexandra L Kossik
- (corresponding author) Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105, USA
| | - Nicola K Beck
- (corresponding author) Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105, USA
| | - Evans Komen
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi 00200, Kenya
| | - Benlick Mwangi
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi 00200, Kenya
| | - James Nyangao
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi 00200, Kenya
| | - David S Boyle
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA
| | - Peter Borus
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi 00200, Kenya
| | - Maureen B Taylor
- Department of Medical Virology, University of Pretoria, Faculty of Health Sciences, Private Bag X323, Arcadia 0007, South Africa
- (corresponding author) Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105, USA
- College of Marine Science, University of South Florida, 830 1st St S, St Petersburg, FL 33701, USA
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi 00200, Kenya
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA
| | - J Scott Meschke
- Department of Medical Virology, University of Pretoria, Faculty of Health Sciences, Private Bag X323, Arcadia 0007, South Africa
- (corresponding author) Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA 98105, USA
- College of Marine Science, University of South Florida, 830 1st St S, St Petersburg, FL 33701, USA
- Centre for Viral Research, Kenya Medical Research Institute, Mbagathi Road, P.O. Box 54628, Nairobi 00200, Kenya
- PATH, 2201 Westlake Ave, Suite 200, Seattle, WA 98121, USA
| |
Collapse
|
15
|
Falman JC, Fagnant-Sperati CS, Kossik AL, Boyle DS, Meschke JS. Evaluation of Secondary Concentration Methods for Poliovirus Detection in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2019. [PMID: 30612304 DOI: 10.1007/s12560-018-09364-ypmid-30612304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Effective surveillance of human enteric viruses is critical to estimate disease prevalence within a community and can be a vital supplement to clinical surveillance. This study sought to evaluate simple, effective, and inexpensive secondary concentration methods for use with ViroCap™ filter eluate for environmental surveillance of poliovirus. Wastewater was primary concentrated using cartridge ViroCap filters, seeded with poliovirus type 1 (PV1), and then concentrated using five secondary concentration methods (beef extract-Celite, ViroCap flat disc filter, InnovaPrep® Concentrating Pipette, polyethylene glycol [PEG]/sodium chloride [NaCl] precipitation, and skimmed-milk flocculation). PV1 was enumerated in secondary concentrates by plaque assay on BGMK cells. Of the five tested methods, PEG/NaCl precipitation and skimmed-milk flocculation resulted in the highest PV1 recoveries. Optimization of the skimmed-milk flocculation method resulted in a greater PV1 recovery (106 ± 24.8%) when compared to PEG/NaCl precipitation (59.5 ± 19.4%) (p = 0.004, t-test). The high PV1 recovery, short processing time, low reagent cost, no required refrigeration, and requirement for only standard laboratory equipment suggest that the skimmed-milk flocculation method would be a good candidate to be field-validated for secondary concentration of environmental ViroCap filter samples containing poliovirus.
Collapse
Affiliation(s)
- Jill C Falman
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - Christine S Fagnant-Sperati
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - Alexandra L Kossik
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - David S Boyle
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA
| | - John Scott Meschke
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA.
| |
Collapse
|
16
|
Falman JC, Fagnant-Sperati CS, Kossik AL, Boyle DS, Meschke JS. Evaluation of Secondary Concentration Methods for Poliovirus Detection in Wastewater. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:20-31. [PMID: 30612304 PMCID: PMC6394643 DOI: 10.1007/s12560-018-09364-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/31/2018] [Indexed: 05/18/2023]
Abstract
Effective surveillance of human enteric viruses is critical to estimate disease prevalence within a community and can be a vital supplement to clinical surveillance. This study sought to evaluate simple, effective, and inexpensive secondary concentration methods for use with ViroCap™ filter eluate for environmental surveillance of poliovirus. Wastewater was primary concentrated using cartridge ViroCap filters, seeded with poliovirus type 1 (PV1), and then concentrated using five secondary concentration methods (beef extract-Celite, ViroCap flat disc filter, InnovaPrep® Concentrating Pipette, polyethylene glycol [PEG]/sodium chloride [NaCl] precipitation, and skimmed-milk flocculation). PV1 was enumerated in secondary concentrates by plaque assay on BGMK cells. Of the five tested methods, PEG/NaCl precipitation and skimmed-milk flocculation resulted in the highest PV1 recoveries. Optimization of the skimmed-milk flocculation method resulted in a greater PV1 recovery (106 ± 24.8%) when compared to PEG/NaCl precipitation (59.5 ± 19.4%) (p = 0.004, t-test). The high PV1 recovery, short processing time, low reagent cost, no required refrigeration, and requirement for only standard laboratory equipment suggest that the skimmed-milk flocculation method would be a good candidate to be field-validated for secondary concentration of environmental ViroCap filter samples containing poliovirus.
Collapse
Affiliation(s)
- Jill C Falman
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - Christine S Fagnant-Sperati
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - Alexandra L Kossik
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA
| | - David S Boyle
- PATH, 2201 Westlake Avenue, Suite 200, Seattle, WA, 98121, USA
| | - John Scott Meschke
- Department of Environmental & Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98195, USA.
| |
Collapse
|