1
|
Ma J, Chen Q, Yuan F, Cao M, Gao J, Yang C, Tan M, Xian R, Gao L, Kuai W. Prevalence and genotype distribution of norovirus in Ningxia Hui Autonomous Region, China, from 2011 to 2022. Virol J 2024; 21:232. [PMID: 39334155 PMCID: PMC11430420 DOI: 10.1186/s12985-024-02498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The norovirus (NoV) genome is diverse. Therefore, this study explored the epidemiological characteristics and genetic features of NoV in Ningxia Hui Autonomous Region, China, from 2011 to 2022 to clarify the genetic diversity in this region. Stool samples were screened for NoV and then sequenced and genotyped. In total, 1,788 of 13,083 specimens were NoV -positive (13.67%); 204 (1.56%) and 1,584 (12.11%) cases were GI and GII, respectively. Additionally, 559 were NoV infection with other viruses (4.27%), primarily with rotavirus (277/559, 49.55%). The NoV incidence rate was the highest among children aged 0-2 years (18.09%, 1054/5,828) and lowest among adults aged 45-64 years (110/1,495, 7.36%); it was also higher in the winter and spring than in the other seasons. GI.3[P3] was the dominant GI genotype. The dominant GII genotype changed roughly every two years. In the GII group, GII.4 was the most common genotype (46.79%), followed by GII.3 (21.34%), GII.2 (12.34%), and GII.17 (9.77%). There were three variants of GII.4 Den Haag, GII.4 New Orleans and GII.4 Sydney identified in the detected GII.4 strains, with GII.4 Sydney dominating. The GII.4 (87.36%), GII.3 (86.35%), and GII.2 (72.92%) strains were primarily detected in children, whereas it was the GII.17 (52.63%) strain in adults. Overall, the NoV genotypes in the Ningxia Hui Autonomous Region were diverse. Primarily, GII groups were dominant, but this changed over time.
Collapse
Affiliation(s)
- Jiangtao Ma
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China.
| | - Qian Chen
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Fang Yuan
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Min Cao
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Jianwei Gao
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Cong Yang
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| | - Ming Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Viral Disease Control and Prevention, Beijing, 102206, China
| | - Ran Xian
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
- School of Public Health, Ningxia Medical University, Yinchuan, 750001, China
| | - Lei Gao
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
- School of Public Health, Ningxia Medical University, Yinchuan, 750001, China
| | - Wenhe Kuai
- Ningxia Hui Autonomous Region Center for Disease Control and Prevention, Yinchuan, 750004, China
| |
Collapse
|
2
|
Chigor VN, Digwo DC, Adediji A, Chidebelu PE, Chigor CB, Ugwu KO, Ibangha IAI, Street R, Farkas K. Epidemiology of norovirus infection in Nigeria: a systematic review and meta-analysis. Arch Virol 2024; 169:138. [PMID: 38847856 DOI: 10.1007/s00705-024-06056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024]
Abstract
Human norovirus (HuNoV) is responsible for most cases of gastroenteritis worldwide, but information about the prevalence and diversity of HuNoV infections in lower-income settings is lacking. In order to provide more information about the burden and distribution of norovirus in Nigeria, we systematically reviewed original published research articles on the prevalence of HuNoV in Nigeria by accessing databases, including PubMed, Web of Science, ScienceDirect, Google Scholar, and African Journals Online (AJOL). The protocol for the review was registered on PROSPERO (registration number CRD42022308857). Thirteen relevant articles were included in the review, and 10 of them were used for meta-analysis. The pooled prevalence of HuNoV-associated gastroenteritis among children below 5 years of age in Nigeria, determined using the random-effects model, was 10.9% (95% CI, 6.7-16.7%). Among children below the age of 5 presenting with HuNoV infections, the highest prevalence was in children ≤2 years old (n = 127, 83%). The prevalence of HuNoV infections was seen to decrease with increasing age. In addition, HuNoV was detected in asymptomatic food handlers, bats, and seafoods. A total of 85 sequences of HuNoV isolates from Nigeria have been determined, and based on those sequences, the most prevalent norovirus genogroup was GII (84%). Genotypes GII.4 and GI.3 were the most frequently identified genotypes, with GII.4 constituting 46% of all of the HuNoVs identified in Nigeria. These results suggest a risk associated with cocirculation of emerging variants with known genotypes because of their recombination potential. Larger molecular epidemiological studies are still needed to fully understand the extent and pattern of circulation of HuNoVs in Nigeria.
Collapse
Affiliation(s)
- Vincent N Chigor
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria.
| | - Daniel C Digwo
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Adedapo Adediji
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Paul E Chidebelu
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Chinyere B Chigor
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Kenneth O Ugwu
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Ini-Abasi I Ibangha
- Water and Public Health Research Group (WPHRG), Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410001, Nigeria
| | - Renee Street
- South African Medical Research Council, Environment & Health Research Unit, Durban, KwaZulu-Natal, South Africa
| | - Kata Farkas
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, United Kingdom
| |
Collapse
|
3
|
Dakouo D, Ouermi D, Ouattara AK, Simpore A, Compaore TR, Traore MAE, Gamsore Z, Zoure AA, Traore L, Zohoncon TM, Yonli AT, Ilboudo PD, Djigma FW, Simpore J. Rotavirus vaccines in Africa and Norovirus genetic diversity in children aged 0 to 5 years old: a systematic review and meta-analysis : Rotavirus vaccines in Africa and Norovirus genetic diversity. BMC Infect Dis 2024; 24:547. [PMID: 38822241 PMCID: PMC11143598 DOI: 10.1186/s12879-024-09434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Noroviruses are the second leading cause of death in children under the age of 5 years old. They are responsible for 200 million cases of diarrhoea and 50,000 deaths in children through the word, mainly in low-income countries. The objective of this review was to assess how the prevalence and genetic diversity of noroviruses have been affected by the introduction of rotavirus vaccines in Africa. PubMed, Web of Science and Science Direct databases were searched for articles. All included studies were conducted in Africa in children aged 0 to 5 years old with gastroenteritis. STATA version 16.0 software was used to perform the meta-analysis. The method of Dersimonian and Laird, based on the random effects model, was used for the statistical analyses in order to estimate the pooled prevalence's at a 95% confidence interval (CI). Heterogeneity was assessed by Cochran's Q test using the I2 index. The funnel plot was used to assess study publication bias. A total of 521 studies were retrieved from the databases, and 19 were included in the meta-analysis. The pooled norovirus prevalence's for pre- and post-vaccination rotavirus studies were 15% (95 CI, 15-18) and 13% (95 CI, 09-17) respectively. GII was the predominant genogroup, with prevalence of 87.64% and 91.20% respectively for the pre- and post-vaccination studies. GII.4 was the most frequently detected genotype, with rates of 66.84% and 51.24% respectively for the pre- and post-vaccination studies. This meta-analysis indicates that rotavirus vaccination has not resulted in a decrease in norovirus infections in Africa.
Collapse
Affiliation(s)
- Dako Dakouo
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Djénéba Ouermi
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
- Département de Biologie et Physiologie Animales, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
| | - Abdoul Karim Ouattara
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso.
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso.
| | - Abibou Simpore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Agence Nationale pour la Sécurité Sanitaire de l'Environnement, de l'Alimentation, du Travail et des Produits de Santé (ANSSEAT), Ouagadougou, Burkina Faso
| | - Tégwendé Rebecca Compaore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03, 03 BP 7192, Burkina Faso
| | - Mah Alima Esther Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Zakaria Gamsore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Abdou Azaque Zoure
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Département Biomédical et Santé Publique, Institut de Recherche en Sciences de la Santé (IRSS/CNRST), Ouagadougou 03, 03 BP 7192, Burkina Faso
| | - Lassina Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - Théodora Mahoukèdè Zohoncon
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
- Faculté de Médecine, Université Saint Thomas d'Aquin, Ouagadougou 01, 06 BP 10212, Burkina Faso
| | - Albert Théophane Yonli
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - P Denise Ilboudo
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| | - Jacques Simpore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI- ZERBO, Ouagadougou 03, 03 BP 7021, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA), Ouagadougou 01, 01 BP 364, Burkina Faso
| |
Collapse
|
4
|
Chen Q, Ma J, Gao L, Xian R, Wei K, Shi A, Yuan F, Cao M, Zhao Y, Jin M, Kuai W. Determination and analysis of whole genome sequence of recombinant GII.6[P7] norovirus in Ningxia, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 115:105499. [PMID: 37734510 DOI: 10.1016/j.meegid.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
While the GII.4 norovirus was the predominant genotype, non-GII.4 genotype was increasingly focused since the non-GII.4 genotype caused regional epidemics. In this study, the detection rate was16.51% (183/1108) in Ningxia from January to December 2020. Among identified genotypes, GII.4[P31] and GII.4[P16] were the dominant genotypes (n = 20 and 18, respectively) while GII.6[P7] was the main type (n = 6) in non-GII.4 strains which was mainly detected in from May to July. The whole genome sequences of the norovirus diarrhea samples identified as GII.6 [P7] with Ct ≤ 30 collected in 2020 were determined. In this study, the complete genome sequences of norovirus strains PL20-044 and QTX20-071 were identified and analyzed phylogenetically. Phylogenetic analysis of the ORF1and ORF2 regions showed that these strains evolved from the GII·P7-GII.6 strains detected in recent years from different country. The results showed that PL20-044 had intra-type recombination with GII·P7-GII.6c and GII·P7-GII.6a, while QTX20-071 had intre-type recombination within GII·P7-GII.6a. The evolutionary rates of the RdRp gene region of the GII·P7 genotype and the VP1 gene region of the GII.6 genotype were 2.91 × 10-3 (95%HPDs2.32-3.51 × 10-3) and 2.61 × 10-3 (95%HPDs2.14-3.11 × 10-3) substitutions/site/year, respectively. Comparative analysis of the amino acid mutation sites in VP1 with the GII·P7-GII.6a strains before 1997, the later detected strains have changed in aa131 and aa354. Moreover, PL20-044 strains showed special mutations at aa316 and aa395. These results help to understand the norovirus genotype circulating in the human population in Ningxia, and discover the evolutionary characteristics of the GII·P7-GII.6 strain.
Collapse
Affiliation(s)
- Qian Chen
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Jiangtao Ma
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China.
| | - Lei Gao
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Ran Xian
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Kaixin Wei
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Anqi Shi
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China; School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Fang Yuan
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China
| | - Min Cao
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China
| | - Yu Zhao
- School of Public Health, Ningxia Medical University, Yinchuan 750001, China
| | - Miao Jin
- National Institute for Viral Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102211, China
| | - Wenhe Kuai
- Ningxia Center for Disease Prevention and Control, Yinchuan 750004, China
| |
Collapse
|
5
|
Pham NTK, Khamrin P, Shimizu-Onda Y, Hoque SA, Trinh QD, Komine-Aizawa S, Okitsu S, Maneekarn N, Hayakawa S, Yoshimune K, Ushijima H. Genetic diversity and declining norovirus prevalence in infants and children during Japan's COVID-19 pandemic: a three-year molecular surveillance. Arch Virol 2023; 168:231. [PMID: 37584776 DOI: 10.1007/s00705-023-05856-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 08/17/2023]
Abstract
Noroviruses (NoVs) are a global concern, causing widespread outbreaks and sporadic acute gastroenteritis (AGE) cases across all age groups. Recent research has shed light on the emergence of novel recombinant strains of NoV in various countries. To delve deeper into this phenomenon, we extensively analyzed 1,175 stool samples collected from Japanese infants and children with AGE from six different prefectures in Japan over three years, from July 2018 to June 2021. Our investigation aimed to determine the prevalence and genetic characteristics of NoV associated with sporadic AGE while exploring the possibility of detecting NoV recombination events. Among the analyzed samples, we identified 355 cases positive for NoV, 11 cases attributed to GI genotypes, and 344 associated with GII genotypes. Notably, we discovered four distinct GI genotypes (GI.2, GI.3, GI.4, and GI.6) and seven diverse GII genotypes (GII.2, GII.3, GII.4, GII.6, GII.7, GII.14, and GII.17). The predominant genotypes were GII.4 (56.4%; 194 out of 344), followed by GII.2 and GII.3. Through dual genotyping based on sequencing of the ORF1/ORF2 junction region, we identified a total of 14 different RdRp/capsid genotypes. Of particular interest were the prevalent recombinant genotypes GII.4[P31] and GII.2[P16]. Notably, our study revealed a decrease in the number of children infected with NoV during and after the COVID-19 pandemic. These findings underscore the importance of continuous NoV surveillance efforts.
Collapse
Affiliation(s)
- Ngan Thi Kim Pham
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Ohyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Chiba, Japan
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yuko Shimizu-Onda
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Ohyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Sheikh Ariful Hoque
- Cell and Tissue Culture Laboratory, Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Ohyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Ohyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Shoko Okitsu
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Ohyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Ohyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kazuaki Yoshimune
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Chiba, Japan
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, 30-1 Ohyaguchi Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
6
|
Genomic stratification and differential natural selection signatures among human norovirus genogroup II isolates. Arch Virol 2022; 167:1235-1245. [PMID: 35322317 PMCID: PMC8942050 DOI: 10.1007/s00705-022-05396-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022]
Abstract
Noroviruses (NoVs), which are members of the family Caliciviridae, are the most common cause of gastroenteritis in humans. Ten NoV genogroups have been reported so far. Of these, genogroup II (GII) is the most prevalent, and it causes serious infections worldwide. The complete genome sequences of NoV GII isolates from different geographical regions were retrieved from the public database. The model-based clustering approach, implemented in the STRUCTURE resource, was employed for assessment of genetic composition. The MEGA X and IQ Tree tools were used for phylogenetic analysis. Genome-wide natural selection analysis was performed using maximum-likelihood-based methods. The demographic features of NoV GII genome sequences were assessed using the BEAST package. All of the NoV GII sequences initially clustered into two main subpopulations at significant K = 2, where the genotype GII.4 samples clearly split from the rest of the genotypes. This indicates a marked genetic distinction between norovirus GII.4 and non-GII.4 samples. Phylogenetic analysis showed the presence of five distinct subclades for genotype GII.2 and seven subclades for GII.4 samples. Several isolates with admixed ancestry were identified that constituted distinct subclusters in the phylogenetic tree. No continental-specific genetic distinctions were observed among the NoV GII samples. Significant genomic signatures of both positive and negative natural selection were identified across the NoV GII genes. A differential pattern of positive selection signals was inferred between the GII.4 and non-GII.4 genotypes. The demographic analysis revealed an increase in the effective population size of NoV GII during 2009-2010, followed by a rapid fall in 2015.
Collapse
|
7
|
Virological and Epidemiological Features of Norovirus Infections in Brazil, 2017-2018. Viruses 2021; 13:v13091724. [PMID: 34578304 PMCID: PMC8472875 DOI: 10.3390/v13091724] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022] Open
Abstract
Noroviruses are considered an important cause of acute gastroenteritis (AGE) across all age groups. Here, we investigated the incidence of norovirus, genotypes circulation, and norovirus shedding in AGE stool samples from outpatients in Brazil. During a two-year period, 1546 AGE stool samples from ten Brazilian states were analyzed by RT-qPCR to detect and quantify GI and GII noroviruses. Positive samples were genotyped by dual sequencing using the ORF1/2 junction region. Overall, we detected norovirus in 32.1% of samples, with a massive predominance of GII viruses (89.1%). We also observed a significant difference between the median viral load of norovirus GI (3.4×105 GC/g of stool) and GII (1.9×107 GC/g). The most affected age group was children aged between 6 and 24 m old, and norovirus infection was detected throughout the year without marked seasonality. Phylogenetic analysis of partial RdRp and VP1 regions identified six and 11 genotype combinations of GI and GII, respectively. GII.4 Sydney[P16] was by far the predominant genotype (47.6%), followed by GII.2[P16], GII.4 Sydney[P31], and GII.6[P7]. We detected, for the first time in Brazil, the intergenogroup recombinant genotype GIX.1[GII.P15]. Our study contributes to the knowledge of norovirus genotypes circulation at the national level, reinforcing the importance of molecular surveillance programs for future vaccine designs.
Collapse
|
8
|
Chen C, Guan Z, Huang C, Jiang D, Liu X, Zhou Y, Yan D, Zhang X, Zhou Y, Ding C, Lan L, Lin Y, Wu J, Li L, Yang S. Epidemiological Trends and Hotspots of Other Infectious Diarrhea (OID) in Mainland China: A Population-Based Surveillance Study From 2004 to 2017. Front Public Health 2021; 9:679853. [PMID: 34368054 PMCID: PMC8339203 DOI: 10.3389/fpubh.2021.679853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The incidence of other infectious diarrhea (OID) ranked second in class C notifiable disease in China. It has posed a great threat to public health of all age groups. The aim of this study was to investigate the epidemiological trends and hotspots of OID in mainland China. Materials and Methods: Incidence and mortality data for OID stratified by date, age and region from 2004 to 2017 was extracted from the data-center of China public health science. Joinpoint regression and space-time analyses were performed to explore the epidemiological trends and hotspots of OID. Results: The average annual incidence of OID was 60.64/100,000 and it showed an increased trend in the mainland China especially after 2006 (APC = 4.12, 95 CI%: 2.06-6.21). Children of 0-4 year age group accounts for 60.00% (5,820,897/11,414,247) of all cases and its incidence continuously increased though 2004-2017 (APC = 6.65, 95 CI%: 4.39-8.96). The first-level spatial and temporal aggregation areas were located in Beijing and Tianjin, with the gathering time from 2005/1/1 to 2011/12/31 (RR = 5.52, LLR = 572893.59, P < 0.001). The secondary spatial and temporal aggregation areas covered Guangdong, Guangxi, Hainan and Guizhou from 2011/1/1 to 2017/12/31 (RR = 1.98, LLR = 242292.72, P < 0.001). OID of Tianjin and Beijing presented a decreased trend since 2006. However, the incidence of OID in Guangdong, Guangxi, Hainan and Guizhou showed increased trends through 2004-2017. Conclusion: Our study showed that OID showed a constantly increasing trend and brought considerable burden in China especially in the 0-4 age group. The high-risk periods and clusters of regions for OID were identified, which will help government develop disease-specific and location-specific interventive measures.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jie Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Dey SK, Sharif N, Billah B, Siddique TTI, Islam T, Parvez AK, Talukder AA, Phan T, Ushijima H. Molecular epidemiology and genetic diversity of norovirus infection in children with acute gastroenteritis in Bangladesh, 2014-2019. J Med Virol 2021; 93:3564-3571. [PMID: 33386771 DOI: 10.1002/jmv.26772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 01/28/2023]
Abstract
Acute gastroenteritis (AGE) is one of the most common diseases in children, and it continues to be a significant cause of morbidity and mortality worldwide. Norovirus is one of the major enteropathogens associated with both sporadic diarrhea and outbreaks of gastroenteritis. This study aims to investigate genotype diversity and molecular epidemiology of norovirus in Bangladesh. A total of 466 fecal specimens were collected from January 2014 to January 2019 from children below 5 years old with AGE in Bangladesh. All samples were analyzed by reverse transcriptase polymerase chain reaction to detect norovirus, and sequence analysis was conducted if found positive. Norovirus was detected in 5.1% (24 of 466) fecal specimens. Norovirus genotype GII.7 was predominant (62.5%, 15 of 24), followed by GII.3 (37.5%, 9 of 24). Coinfection between rotavirus and norovirus was found in 7 of 24 positive cases. Diarrhea (93.7%) and dehydration (89%) were the most common symptoms in children with AGE. About 80% of the positive cases were detected in children aged under 24 months. One seasonal peak (87.5% infection) was detected in the winter. This study suggests that norovirus continues to be one of the major etiologies of children AGE in Bangladesh. This study will provide a guideline to assess the burden of norovirus infection in Bangladesh, which will assist to combat against AGE.
Collapse
Affiliation(s)
- Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Nadim Sharif
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | - Tarequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | - Ali Azam Talukder
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Tung Phan
- Division of Clinical Microbiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hiroshi Ushijima
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University, Tokyo, Japan
| |
Collapse
|
10
|
Chen C, Wu B, Zhang H, Li KF, Liu R, Wang HL, Yan JB. Molecular evolution of GII.P17-GII.17 norovirus associated with sporadic acute gastroenteritis cases during 2013-2018 in Zhoushan Islands, China. Virus Genes 2020; 56:279-287. [PMID: 32065329 DOI: 10.1007/s11262-020-01744-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
In this study, we investigated the molecular characteristics and spatio-temporal dynamics of GII.P17-GII.17 norovirus in Zhoushan Islands during 2013-2018. We collected 1849 samples from sporadic acute gastroenteritis patients between January 2013 and August 2018 in Zhoushan Islands, China. Among the 1849 samples, 134 (7.24%) samples were positive for human norovirus (HuNoV). The complete sequence of GII.17 VP1 gene was amplified from 31 HuNoV-positive samples and sequenced. A phylogenetic tree was constructed based on the full-length sequence of the VP1 gene. Phylogenetic analysis revealed that the GII.17 genotype detected during 2014-2018 belongs to the new GII.17 Kawasaki variant. Divergence analysis revealed that the time of the most recent common ancestor (TMRCA) of GII.17 in Zhoushan Islands was estimated to be between 1997 and 1998. The evolutionary rate of the VP1 gene of the GII.17 genotype norovirus was 1.14 × 10-3 (95% HPD: 0.62-1.73 × 10-3) nucleotide substitutions/site/year. The spatio-temporal diffusion analysis of the GII.17 genotype identified Hong Kong as the epicenter for GII.17 dissemination. The VP1 gene sequence of Zhoushan Island isolates correlated with that of Hong Kong and Japan isolates.
Collapse
Affiliation(s)
- Can Chen
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affifiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Wu
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Hui Zhang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Ke-Feng Li
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China
| | - Rong Liu
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Ling Wang
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China.
| | - Jian-Bo Yan
- Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Zhoushan Center for Disease Control and Prevention, Zhoushan, Zhejiang Province, China. .,Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
11
|
Guarines KM, Mendes RPG, de Magalhães JJF, Pena L. Norovirus-associated gastroenteritis, Pernambuco, Northeast Brazil, 2014-2017. J Med Virol 2019; 92:1093-1101. [PMID: 31743458 DOI: 10.1002/jmv.25631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Norovirus (NoV) is currently the leading cause of nonbacterial gastroenteritis. In Brazil, few studies have characterized the molecular, epidemiological and clinical features of NoV-associated gastroenteritis. This study aimed to describe the molecular and clinicoepidemiological findings of NoV infections in patients of all ages throughout Pernambuco state, Northeast Brazil. Thus, 1135 stool samples were analyzed from patients with gastroenteritis from Pernambuco state. NoV was detected by enzyme immunoassay in 125 (11.01%) samples. Regarding gender distribution, 55 (44.00%) patients were female and 70 (56.00%) male. Their ages ranged from 5 days to 87 years, and the group most affected by NoV infection (88.00%) was children under 3 years. Complete clinical information was available for 88 out of 125 NoV-positive patients. Diarrhea was present in all patients and vomiting was reported in 60 patients (68.68%). Nine patients (10.22%) had bloody stools and 46 (52.27%) had a fever, with temperatures ranging from 37.90°C to 39.90°C (mean 38.20°C). NoV was detected mainly in the summer-autumn seasons. Genome sequencing and phylogenetic analyses identified four different NoV GII genotypes circulating in this area of the country. Therefore, our study provided valuable information about the clinics and epidemiology of NoV infection in tropical settings and will assist health authorities to develop better control strategies against this important pathogen.
Collapse
Affiliation(s)
- Klarissa M Guarines
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Renata P G Mendes
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Jurandy J F de Magalhães
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil.,Department of Virology, Pernambuco State Central Laboratory (LACEN/PE), Recife, Pernambuco, Brazil
| | - Lindomar Pena
- Department of Virology, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
12
|
Abstract
BACKGROUND Based on the impact public health of norovirus and the current progress in norovirus vaccine development, it is necessary to continuously monitor the epidemiology of norovirus infection, especially in children who are more susceptible to norovirus. OBJECTIVES To monitor the activity and genotypes of norovirus infection in sporadic diarrhea in Shanghainese children during 2014-2018. STUDY DESIGN Acute diarrheal cases were prospectively enrolled in the outpatient setting. Real-time reverse transcription-polymerase chain reaction was used for screening norovirus GI and GII genogroups. Dual norovirus genotypes were identified based on the partial capsid and polymerase gene sequences. RESULTS Of the 3422 children with diarrhea, 510 (14.9%) were positive for noroviruses with 13 (2.5%) strains being GI genogroup and 497 (97.5%) strains being GII genogroup. Five distinct capsid GII genotypes were identified, including GII.4-Sydney/2012 (71.8%), GII.3 (13.8%), GII.17 (7.8%), GII.2 (6.0%), GII.6 (0.3%) and GII.8 (0.3%). Seven polymerase GII genotypes were identified, including GII.Pe (77.0%), GII.P12 (11.0%), GII.P17 (9.0%), GII.P16 (2.1%), and GII.P7, GII.P8 and GII.P2 in each (0.3%). Eleven distinct polymerase/capsid genotypes were identified with GII.Pe/GII.4-Sydney/2012 (74.2%), GII.P12/GII.3 (11.7%) and GII.P17/GII.17 (7.7%) being common. GII.P17/GII.17 strains were detected since September 2014. Recombinant GII.P16/GII.2 strains were detected since December 2016. CONCLUSIONS Norovirus is a major pathogen causing diarrhea in Shanghainese children. GII.Pe/GII.4-Sydney/2012 strains remained the predominant genotype. The emergence of GII.P17/GII.17 and GII.P16/GII.2 strains in sporadic diarrhea was consistent with norovirus-associated outbreaks attributable to these 2 novel variants in China. Continuous monitoring norovirus genotypes circulating in pediatric population is needed for current vaccine development.
Collapse
|
13
|
Lu L, Zhong H, Xu M, Su L, Cao L, Jia R, Xu J. Genetic diversity and epidemiology of Genogroup II noroviruses in children with acute sporadic gastroenteritis in Shanghai, China, 2012-2017. BMC Infect Dis 2019; 19:736. [PMID: 31438883 PMCID: PMC6704660 DOI: 10.1186/s12879-019-4360-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Noroviruses (NoVs) are considered an important cause of acute gastroenteritis (AGE) across all age groups, especially in children under 5 years of age. We investigated the epidemiology of noroviruses in outpatient children from the Children's Hospital of Fudan University in Shanghai, China. METHODS Stool specimens were collected between January 2012 and December 2017 from 1433 children under 5 years of age with acute gastroenteritis. All samples were analysed by conventional reverse transcription-polymerase chain reaction (RT-PCR) for genogroup II NoVs amplifying both the RNA-dependent RNA polymerase (RdRp) and partial capsid genes. The Norovirus Genotyping Tool v.2.0 ( https://www.rivm.nl/mpf/typingtool/norovirus/ ) was used for genotyping the strains, and phylogenetic analyses were conducted by MEGA 6.0. RESULTS From 2012 to 2017, GII NoVs were detected in 15.4% (220/1433) of the samples, with the highest detection rate in children aged 7-12 months (19.2%, 143/746). The seasons with the highest prevalence of GII NoVs infection were autumn and winter. Based on genetic analysis of RdRp, GII.Pe (74.5%%, 137/184) was the most predominant RdRp genotype from 2013 to 2017, while GII.P4 played a dominant role in 2012 (55.6%, 21/36). Among the capsid genotypes, the most prevalent NoV genotype from 2012 to 2017 was GII.4 (74.1%, 163/220). On the basis of genetic analysis of RdRp and capsid sequences, the strains were clustered into - 19 RdRp/capsid genotypes, and 12 of them were discordant, such as GII.Pe/GII.4-Sydney_2012, GII.P12/GII.3, GII.P7/GII.6, GII.Pe/GII.3, and GII.P16/GII.2. Starting with 2013, GII.Pe/GII.4-Sydney_2012 had completely replaced the pandemic GII.P4-2006b/GII.4-2006b subtype and was detected in children across all age groups. CONCLUSIONS The present study shows high detection rates and the genetic diversity of circulating NoV GII genotypes in paediatric AGE samples from Shanghai. The findings emphasize the importance of continuous molecular surveillance of emerging NoV strains.
Collapse
Affiliation(s)
- Lijuan Lu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Huaqing Zhong
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Menghua Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Liyun Su
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Lingfeng Cao
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Ran Jia
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jin Xu
- Department of Clinical Laboratory, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
14
|
Li HY, Zhang YG, Lei X, Song J, Duan ZJ. Prevalence of noroviruses in children hospitalized for acute gastroenteritis in Hohhot, China, 2012-2017. BMC Infect Dis 2019; 19:595. [PMID: 31288749 PMCID: PMC6615110 DOI: 10.1186/s12879-019-4230-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/26/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Noroviruses (NVs) are an important cause of acute gastroenteritis (AGE) worldwide. There are limited data on the prevalence and molecular characterization of NVs in children in Hohhot, China. METHODS Between January 2012 and December 2017, 1863 stool samples were collected at Maternal and Child Health Hospital in Hohhot. All samples were screened for NVs by real-time reverse transcription polymerase chain reaction (real-time RT-PCR). RESULTS NVs were detected in 24.15% of these inpatient cases, ranging from 12.78 to 32.92% in different years. NV was detected throughout the year, with a peak in winter. Based on sequence analysis of the partial VP1 gene, the 306 identified NV strains were divided into six genotypes: GII.3 (71.24%), GII.4 (23.53%), and GII.2, GII.5, GII.6, and GII.13 (total 5.23%). Based on further sequence analysis of the RNA-dependent RNA polymerase (RdRp), GII.P12/GII.3, GII.Pe/GII.4, and GII.P4/GII.4 were identified as predominant genotypes, accounting for 92.6% of genotyped strains. The median age of the children with NV infection was 8.0 (range 0-59) months. However, children infected with GII.3 were younger (median 7.0 months) than GII.4-positive patients (median 10.0 months). CONCLUSION NV contributed greatly to AGE among hospitalized children in Hohhot in China. Continuous surveillance is important for understanding the local prevalence and characterization of NV.
Collapse
Affiliation(s)
- Hui-ying Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Changping District, Beijing, People’s Republic of China
| | - Yu-geng Zhang
- Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Inner Mongolia010031, Hohhot, China
| | - Xia Lei
- Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Inner Mongolia010031, Hohhot, China
| | - Jian Song
- Center for Disease Control and Prevention of Inner Mongolia Autonomous Region, Inner Mongolia010031, Hohhot, China
| | - Zhao-jun Duan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Rd., Changping District, Beijing, People’s Republic of China
| |
Collapse
|