1
|
Hu Y, Li H, Wang X, Duan X, Zhang Y, Wen B, Dong S, Yan Z, Fan Y, Jing Y. Activation of the aryl hydrocarbon receptor alleviates Sjögren's syndrome by promoting Bregs differentiation. Int Immunopharmacol 2025; 158:114812. [PMID: 40381492 DOI: 10.1016/j.intimp.2025.114812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/24/2025] [Accepted: 05/04/2025] [Indexed: 05/20/2025]
Abstract
The aryl hydrocarbon receptor (AhR) is involved in the regulation of inflammation and maintenance of immune homeostasis. However, the role of AhR in the pathogenesis of autoimmune diseases, especially in Sjögren's syndrome (SS) remains unclear. Sjögren's syndrome mice model induced by using salivary gland proteins and Complete Freund's Adjuvant, we found that after activation of AhR with 6-formylindolo [3,2-b] carbazole (FICZ), salivary gland lymphocyte infiltration and saliva flow rates were significantly alleviated. And the percents and numbers of GCB cells, plasma cells (PC), and plasmablast cells (PBC) were significantly decreased but the percents of regulatory B cells (Bregs) were significantly increased in model mice treated with FICZ. Moreover, the proportions of Th1 and Th17 cells were also reduced after being treated with FICZ. Indeed, these changes were recovered in B-cell-specific AhR knock-out mice. Overall, our study provides a new strategy that AhR activation alleviates Sjögren's syndrome by promoting Bregs differentiation thereby inhibiting both humoral and cellular immunity responses, which provides new insights for the future therapy of Sjögren's syndrome.
Collapse
Affiliation(s)
- Ying Hu
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Haonan Li
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaocui Wang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuemei Duan
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yunfei Zhang
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Bin Wen
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shumin Dong
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ze Yan
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yufeng Fan
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
| | - Yukai Jing
- Department of Clinical Laboratory, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.
| |
Collapse
|
2
|
Muratoğlu B, Özdemir C, Eylem CC, Reçber T, Nemutlu E, Yet İ, Uçkan-Çetinkaya D. Circadian rhythm and aryl hydrocarbon receptor crosstalk in bone marrow adipose tissue and implications in leukemia. Sci Rep 2025; 15:16387. [PMID: 40350529 PMCID: PMC12066725 DOI: 10.1038/s41598-025-93169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 03/05/2025] [Indexed: 05/14/2025] Open
Abstract
Leukemic cells modulate the bone marrow microenvironment to enhance their survival. Lipolysis in bone marrow adipose tissue (BMAT) has emerged as a critical factor supporting leukemic cell survival, yet understanding its primary role in leukemia development remains limited. Fanconi anemia (FA), characterized by a predisposition to acute myeloid leukemia (AML) and hypersensitivity to environmental toxins, is a transitional model for studying leukemic transformation. İntegrated multi-omics analyses were conducted on BMAT-derived mesenchymal stem/stromal cells (MSCs) from healthy donors (HD), AML, and FA patients. These analyses revealed intricate interactions among genes, metabolites, and lipids. Particularly noteworthy were the effects observed following the inhibition of aryl hydrocarbon receptor (AhR) signaling by StemRegenin1 (SR1). BMAT-MSCs showed increased expression of epithelial-mesenchymal transition (EMT) genes in FA and AML, suggesting a potential shift towards cancer-associated fibroblasts in the dysregulated marrow microenvironment. Identification of potential circadian rhythm biomarkers (NPAS2, PER2, BHLHE40, PER3, CIART) in BMAT-MSCs indicates a link between related lipid metabolism genes (e.g., PTGS1, PIK3R1) and SR1 treatment, implicating them in lipolysis processes. Dysregulation of circadian rhythm-related genes (CIART, BHLHE40, NPAS2) in AML BMAT-MSCs, along with changes in circulating lipid metabolites like palmitate suggests their role in shaping the leukemia microenvironment. Upregulation of FABP5 and CD36 suggests a novel molecular mechanism involving FABP5 in AhR-mediated circadian regulation and identifies CD36 as a potential partner for FABP5 in BMAT-MSCs. Overall, this study unveils the interplay between AhR signaling, circadian rhythm, and the leukemia microenvironment in BMAT-MSCs, offering new insights into leukemia pathogenesis and therapeutic opportunities.
Collapse
Affiliation(s)
- Bihter Muratoğlu
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100, Sihhiye, Ankara, Turkey
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Cansu Özdemir
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| | - Cemil Can Eylem
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Tuba Reçber
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - İdil Yet
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
- Department of Stem Cell Sciences, Institute of Health Sciences, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
- Division of Hematology, Department of Pediatrics, Hacettepe University Faculty of Medicine, 06100, Sihhiye, Ankara, Turkey.
| |
Collapse
|
3
|
Sulentic CEW, Kaplan BLF, Lawrence BP. Using the Key Characteristics Framework to Unlock the Mysteries of Aryl Hydrocarbon Receptor-Mediated Effects on the Immune System. Annu Rev Immunol 2025; 43:191-218. [PMID: 39813730 DOI: 10.1146/annurev-immunol-083122-040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Initially discovered for its role mediating the deleterious effects of environmental contaminants, the aryl hydrocarbon receptor (AHR) is now known to be a crucial regulator of the immune system. The expanding list of AHR ligands includes synthetic and naturally derived molecules spanning pollutants, phytochemicals, pharmaceuticals, and substances derived from amino acids and microorganisms. The consequences of engaging AHR vary, depending on factors such as the AHR ligand, cell type, immune challenge, developmental state, dose, and timing of exposure relative to the immune stimulus. This review frames this complexity using the recently identified key characteristics of agents that affect immune system function (altered cell signaling, proliferation, differentiation, effector function, communication, trafficking, death, antigen presentation and processing, and tolerance). The use of these key characteristics provides a scaffold for continued discovery of how AHR and its myriad ligands influence the immune system, which will help harness the power of this enigmatic receptor to prevent or treat disease.
Collapse
Affiliation(s)
- Courtney E W Sulentic
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, USA
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - B Paige Lawrence
- Department of Environmental Medicine and Department of Microbiology and Immunology, University of Rochester, Rochester, New York, USA;
| |
Collapse
|
4
|
Song Y, Luo L, Lin Z, Zhang T, Li Z, Cao Y, Zhu X. Paeoniflorin sensitizes imatinib mesylate-resistant chronic myeloid leukemia cells via the inhibition of Cyr61 production. Anticancer Drugs 2025; 36:190-198. [PMID: 39773616 DOI: 10.1097/cad.0000000000001681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Imatinib mesylate (IM) is a first-line therapy for chronic myeloid leukemia (CML) and exhibits good therapeutic effects, but not in all patients with CML owing to drug resistance. Our previous study showed that Cyr61 plays a key role in IM resistance in CML cells. Paeoniflorin (PF) is a bioactive compound isolated from the traditional Chinese medicine Paeonia lactiflora Pall that displays anticancer activity. Little is, however, known regarding the role of PF in IM-resistant CML cells. This study aimed to evaluate whether PF could decrease Cyr61 production and improve IM-resistant CML cell sensitivity to IM and to investigate the underlying mechanisms. CML cell lines (K562 and KCL22) and IM-resistant cell lines (K562G and KCL22R) were used as CML study models. Cyr61 expression was assessed in both parental and IM-resistant CML cells by western blotting, real-time quantitative PCR , and ELISA. Lentiviral vectors were used to induce the knockdown of Cyr61 expression, followed by a comprehensive evaluation of cell proliferation and apoptosis. The results showed that PF decreased the production of Cyr61 in the presence of IM by inhibiting extracellular regulated protein kinases 1/2 activation. PF significantly decreased the IC50 value of IM and increased IM-induced apoptosis of IM-resistant CML cells. Importantly, PF also improved the sensitivity of CML cells to bosutinib and dasatinib via inhibition of Cyr61 production. In conclusion, we report for the first time that PF may effectively improve the sensitivity of IM-resistant CML cells to IM, bosutinib, and dasatinib, at least in part, by subsequently downregulating Cyr61.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Drug Resistance, Neoplasm/drug effects
- Glucosides/pharmacology
- Glucosides/administration & dosage
- Monoterpenes/pharmacology
- Cysteine-Rich Protein 61/biosynthesis
- Cysteine-Rich Protein 61/antagonists & inhibitors
- Cysteine-Rich Protein 61/genetics
- Cysteine-Rich Protein 61/metabolism
- K562 Cells
- Apoptosis/drug effects
- Cell Line, Tumor
Collapse
Affiliation(s)
- Yanfang Song
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine
| | - Li Luo
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine
| | - Zhen Lin
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Taigang Zhang
- Department of Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine
| | - Zhaozhong Li
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yinping Cao
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xianjin Zhu
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
5
|
Frenis K, Badalamenti B, Mamigonian O, Weng C, Wang D, Fierstein S, Côté P, Khong H, Li H, Lummertz da Rocha E, Sankaran VG, Rowe RG. Path of differentiation defines human macrophage identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634694. [PMID: 39896569 PMCID: PMC11785145 DOI: 10.1101/2025.01.24.634694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Macrophages play central roles in immunity, wound healing, and homeostasis - a functional diversity that is underpinned by varying developmental origins. The impact of ontogeny on properties of human macrophages is inadequately understood. We demonstrate that definitive human fetal liver (HFL) hematopoietic stem cells (HSCs) possess two divergent paths of macrophage specification that lead to distinct identities. The monocyte-dependent pathway exists in both prenatal and postnatal hematopoiesis and generates macrophages with adult-like responses properties. We now uncover a fetal-specific pathway of expedited differentiation that generates tissue resident-like macrophages (TRMs) that retain HSC-like self-renewal programs governed by the aryl hydrocarbon receptor (AHR). We show that AHR antagonism promotes TRM expansion and mitigates inflammation in models of atopic dermatitis (AD). Overall, we directly connect path of differentiation with functional properties of macrophages and identify an approach to promote selective expansion of TRMs with direct relevance to inflammation and diseases of macrophage dysfunction.
Collapse
|
6
|
Chang F, Wang L, Kim Y, Kim M, Lee S, Lee SW. The Aryl Hydrocarbon Receptor Regulates Invasiveness and Motility in Acute Myeloid Leukemia Cells through Expressional Regulation of Non-Muscle Myosin Heavy Chain IIA. Int J Mol Sci 2024; 25:8147. [PMID: 39125717 PMCID: PMC11311371 DOI: 10.3390/ijms25158147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most prevalent type of hematopoietic malignancy. Despite recent therapeutic advancements, the high relapse rate associated with extramedullary involvement remains a challenging issue. Moreover, therapeutic targets that regulate the extramedullary infiltration of AML cells are still not fully elucidated. The Aryl Hydrocarbon Receptor (AHR) is known to influence the progression and migration of solid tumors; however, its role in AML is largely unknown. This study explored the roles of AHR in the invasion and migration of AML cells. We found that suppressed expression of AHR target genes correlated with an elevated relapse rate in AML. Treatment with an AHR agonist on patient-derived AML cells significantly decreased genes associated with leukocyte trans-endothelial migration, cell adhesion, and regulation of the actin cytoskeleton. These results were further confirmed in THP-1 and U937 AML cell lines using AHR agonists (TCDD and FICZ) and inhibitors (SR1 and CH-223191). Treatment with AHR agonists significantly reduced Matrigel invasion, while inhibitors enhanced it, regardless of the Matrigel's stiffness. AHR agonists significantly reduced the migration rate and chemokinesis of both cell lines, but AHR inhibitors enhanced them. Finally, we found that the activity of AHR and the expression of NMIIA are negatively correlated. These findings suggest that AHR activity regulates the invasiveness and motility of AML cells, making AHR a potential therapeutic target for preventing extramedullary infiltration in AML.
Collapse
MESH Headings
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/agonists
- Humans
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Cell Movement
- Myosin Heavy Chains/metabolism
- Myosin Heavy Chains/genetics
- Neoplasm Invasiveness
- Nonmuscle Myosin Type IIA/metabolism
- Nonmuscle Myosin Type IIA/genetics
- Cell Line, Tumor
- Female
- Male
- Gene Expression Regulation, Leukemic
- Middle Aged
- Aged
- THP-1 Cells
- U937 Cells
- Adult
- Basic Helix-Loop-Helix Transcription Factors
Collapse
Affiliation(s)
- Fengjiao Chang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Lele Wang
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Youngjoon Kim
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Minkyoung Kim
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Sunwoo Lee
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
| | - Sang-Woo Lee
- Department of Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110460, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Congues F, Wang P, Lee J, Lin D, Shahid A, Xie J, Huang Y. Targeting aryl hydrocarbon receptor to prevent cancer in barrier organs. Biochem Pharmacol 2024; 223:116156. [PMID: 38518996 PMCID: PMC11144369 DOI: 10.1016/j.bcp.2024.116156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
The skin, lung, and gut are important barrier organs that control how the body reacts to environmental stressors such as ultraviolet (UV) radiation, air pollutants, dietary components, and microorganisms. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that plays an important role in maintaining homeostasis of barrier organs. AhR was initially discovered as a receptor for environmental chemical carcinogens such as polycyclic aromatic hydrocarbons (PAHs). Activation of AhR pathways by PAHs leads to increased DNA damage and mutations which ultimately lead to carcinogenesis. Ongoing evidence reveals an ever-expanding role of AhR. Recently, AhR has been linked to immune systems by the interaction with the development of natural killer (NK) cells, regulatory T (Treg) cells, and T helper 17 (Th17) cells, as well as the production of immunosuppressive cytokines. However, the role of AhR in carcinogenesis is not as straightforward as we initially thought. Although AhR activation has been shown to promote carcinogenesis in some studies, others suggest that it may act as a tumor suppressor. In this review, we aim to explore the role of AhR in the development of cancer that originates from barrier organs. We also examined the preclinical efficacy data of AhR agonists and antagonists on carcinogenesis to determine whether AhR modulation can be a viable option for cancer chemoprevention.
Collapse
Affiliation(s)
- Francoise Congues
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Pengcheng Wang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA; Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Joshua Lee
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Daphne Lin
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ayaz Shahid
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Jianming Xie
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ying Huang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
8
|
Dos Santos IL, Mitchell M, Nogueira PAS, Lafita-Navarro MC, Perez-Castro L, Eriom J, Kilgore JA, Williams NS, Guo L, Xu L, Conacci-Sorrell M. Targeting of neuroblastoma cells through Kynurenine-AHR pathway inhibition. FEBS J 2024; 291:2172-2190. [PMID: 38431776 DOI: 10.1111/febs.17109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Neuroblastoma poses significant challenges in clinical management. Despite its relatively low incidence, this malignancy contributes disproportionately to cancer-related childhood mortality. Tailoring treatments based on risk stratification, including MYCN oncogene amplification, remains crucial, yet high-risk cases often confront therapeutic resistance and relapse. Here, we explore the aryl hydrocarbon receptor (AHR), a versatile transcription factor implicated in diverse physiological functions such as xenobiotic response, immune modulation, and cell growth. Despite its varying roles in malignancies, AHR's involvement in neuroblastoma remains elusive. Our study investigates the interplay between AHR and its ligand kynurenine (Kyn) in neuroblastoma cells. Kyn is generated from tryptophan (Trp) by the activity of the enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2). We found that neuroblastoma cells displayed sensitivity to the TDO2 inhibitor 680C91, exposing potential vulnerabilities. Furthermore, combining TDO2 inhibition with retinoic acid or irinotecan (two chemotherapeutic agents used to treat neuroblastoma patients) revealed synergistic effects in select cell lines. Importantly, clinical correlation analysis using patient data established a link between elevated expression of Kyn-AHR pathway genes and adverse prognosis, particularly in older children. These findings underscore the significance of the Kyn-AHR pathway in neuroblastoma progression, emphasizing its potential role as a therapeutic target.
Collapse
MESH Headings
- Humans
- Kynurenine/metabolism
- Neuroblastoma/pathology
- Neuroblastoma/metabolism
- Neuroblastoma/genetics
- Neuroblastoma/drug therapy
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Cell Line, Tumor
- Tryptophan Oxygenase/metabolism
- Tryptophan Oxygenase/genetics
- Tryptophan Oxygenase/antagonists & inhibitors
- Tretinoin/pharmacology
- Signal Transduction/drug effects
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Igor Lopes Dos Santos
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Mitchell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Dell Medical School, Austin, TX, USA
| | - Pedro A S Nogueira
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joyane Eriom
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica A Kilgore
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Mazandaranian MR, Dana PM, Asemi Z, Hallajzadeh J, Mansournia MA, Yousefi B. Effects of berberine on leukemia with a focus on its molecular targets. Anticancer Agents Med Chem 2022; 22:2766-2774. [PMID: 35331097 DOI: 10.2174/1871520622666220324092302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/04/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Leukemia is a common cancer among both women and men worldwide. Besides the fact that finding new treatment methods may enhance the life quality of patients, there are several problems that we face today in treating leukemia patients, such as drugs side effects and acquired resistance to chemotherapeutic drugs. Berberine is a bioactive alkaloid found in herbal plants (e.g. Rhizoma coptidis and Cortex phellodendri) and exerts several beneficial functions, including anti-tumor activities. Furthermore, berberine exerts antiproliferative and anti-inflammatory effects. Up to now, some studies have investigated the roles of berberine in different types of leukemia, including acute myeloid leukemia and chronic lymphocytic leukemia. In this review, a detailed description of berberine roles in leukemia is provided. We discuss how berberine involves different molecular targets (e.g. interleukins and cyclins) and signaling pathways (e.g. mTOR and PI3K) to exert its anti-tumor functions and how berberine is effective in leukemia treatment when combined with other therapeutic drugs.
Collapse
Affiliation(s)
- Mohammad Reza Mazandaranian
- Department of Community Nutrition, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Vaughan KL, Franchini AM, Kern HG, Lawrence BP. The Aryl Hydrocarbon Receptor Modulates Murine Hematopoietic Stem Cell Homeostasis and Influences Lineage-Biased Stem and Progenitor Cells. Stem Cells Dev 2021; 30:970-980. [PMID: 34428990 PMCID: PMC8851211 DOI: 10.1089/scd.2021.0096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
The core function of hematopoietic stem and progenitor cells (HSPCs) is to provide lifelong production of all lineages of the blood and immune cells. The mechanisms that modulate HSPC homeostasis and lineage biasing are not fully understood. Growing evidence implicates the aryl hydrocarbon receptor (AHR), an environment-sensing transcription factor, as a regulator of hematopoiesis. AHR ligands modulate the frequency of mature hematopoietic cells in the bone marrow and periphery, while HSPCs from mice lacking AHR (AHR KO) have increased proliferation. Yet, whether AHR modulates HSPC lineage potential and directs differentiation toward specific lineage-biased progenitors is not well understood. This study revealed that AHR KO mice have an increased proportion of myeloid-biased HSCs and myeloid-biased multipotent progenitor (MPP3) cells. Utilizing inducible AHR knockout mice (iAHR KO), it was discovered that acute deletion of AHR doubled the number of MPP3 cells and altered the composition of downstream lineage-committed progenitors, such as increased frequency of pregranulocyte/premonocyte committed progenitors. Furthermore, in vivo antagonism of the AHR led to a 2.5-fold increase in the number of MPP3 cells and promoted myeloid-biased differentiation. Using hematopoietic-specific conditional AHR knockout mice (AHRVav1) revealed that increased frequency of myeloid-biased HSCs and myeloid-biased progenitors is driven by AHR signaling that is intrinsic to the hematopoietic compartment. These findings demonstrate that the AHR plays a pivotal role in regulating steady-state hematopoiesis, influencing HSPC homeostasis and lineage potential. In addition, the data presented provide potential insight into how deliberate modulation of AHR signaling could help with the treatment of a broad range of diseases that require the hematopoietic compartment.
Collapse
Affiliation(s)
- Keegan L. Vaughan
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Anthony M. Franchini
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Harrison G. Kern
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - B. Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
11
|
The Tumor Microenvironment-Dependent Transcription Factors AHR and HIF-1α Are Dispensable for Leukemogenesis in the Eµ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13184518. [PMID: 34572746 PMCID: PMC8466120 DOI: 10.3390/cancers13184518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) is the most common leukemia in Western countries, mostly affecting the elderly. The survival of leukemic cells depends on multiple soluble factors and on the stimulation of the BCR signaling pathway. Microenvironment-dependent transcription factors also contribute to CLL biology. Here, we generated new transgenic murine conditional knock-out models of CLL to study the role of the two transcription factors HIF-1α and AHR. Unexpectedly, we observed that both factors are dispensable for leukemia development in these models. Abstract Chronic lymphocytic leukemia (CLL) is the most frequent leukemia in the elderly and is characterized by the accumulation of mature B lymphocytes in peripheral blood and primary lymphoid organs. In order to proliferate, leukemic cells are highly dependent on complex interactions with their microenvironment in proliferative niches. Not only soluble factors and BCR stimulation are important for their survival and proliferation, but also the activation of transcription factors through different signaling pathways. The aryl hydrocarbon receptor (AHR) and hypoxia-inducible factor (HIF)-1α are two transcription factors crucial for cancer development, whose activities are dependent on tumor microenvironment conditions, such as the presence of metabolites from the tryptophan pathway and hypoxia, respectively. In this study, we addressed the potential role of AHR and HIF-1α in chronic lymphocytic leukemia (CLL) development in vivo. To this end, we crossed the CLL mouse model Eµ-TCL1 with the corresponding transcription factor-conditional knock-out mice to delete one or both transcription factors in CD19+ B cells only. Despite AHR and HIF-1α being activated in CLL cells, deletion of either or both of them had no impact on CLL progression or survival in vivo, suggesting that these transcription factors are not crucial for leukemogenesis in CLL.
Collapse
|
12
|
Zaragoza-Ojeda M, Apatiga-Vega E, Arenas-Huertero F. Role of aryl hydrocarbon receptor in central nervous system tumors: Biological and therapeutic implications. Oncol Lett 2021; 21:460. [PMID: 33907570 PMCID: PMC8063300 DOI: 10.3892/ol.2021.12721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, whose canonical pathway mainly regulates the genes involved in xenobiotic metabolism. However, it can also regulate several responses in a non-canonical manner, such as proliferation, differentiation, cell death and cell adhesion. AhR plays an important role in central nervous system tumors, as it can regulate several cellular responses via different pathways. The polymorphisms of the AHR gene have been associated with the development of gliomas. In addition, the metabolism of tumor cells promotes tumor growth, particularly in tryptophan synthesis, where some metabolites, such as kynurenine, can activate the AhR pathway, triggering cell proliferation in astrocytomas, medulloblastomas and glioblastomas. Furthermore, as part of the changes in neuroblastomas, AHR is able to downregulate the expression of proto-oncogene c-Myc, induce differentiation in tumor cells, and cause cell cycle arrest and apoptosis. Collectively, these data suggested that the modulation of the AhR pathway may downregulate tumor growth, providing a novel strategy for applications for the treatment of certain tumors through the control of the AhR pathway.
Collapse
Affiliation(s)
- Montserrat Zaragoza-Ojeda
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México.,Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, México
| | - Elisa Apatiga-Vega
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City 06720, México
| |
Collapse
|
13
|
AhR and Cancer: From Gene Profiling to Targeted Therapy. Int J Mol Sci 2021; 22:ijms22020752. [PMID: 33451095 PMCID: PMC7828536 DOI: 10.3390/ijms22020752] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that has been shown to be an essential regulator of a broad spectrum of biological activities required for maintaining the body’s vital functions. AhR also plays a critical role in tumorigenesis. Its role in cancer is complex, encompassing both pro- and anti-tumorigenic activities. Its level of expression and activity are specific to each tumor and patient, increasing the difficulty of understanding the activating or inhibiting roles of AhR ligands. We explored the role of AhR in tumor cell lines and patients using genomic data sets and discuss the extent to which AhR can be considered as a therapeutic target.
Collapse
|
14
|
Han H, Shin DY, Kim D, Kim H, Lee C, Koh Y, Hong J, Yoon SS. Induction of leukemic stem cell differentiation by aryl hydrocarbon receptor agonist and synergy with gilteritinib in FLT3-ITD + acute myeloid leukemia. Leuk Lymphoma 2020; 61:1932-1942. [PMID: 32374198 DOI: 10.1080/10428194.2020.1747062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Leukemic stem cells (LSCs) are a major cause of treatment failure and recurrence of acute myeloid leukemia (AML). Targeting LSC is essential to developing a potential cure for patients with relapsed/refractory AML. Here we investigated the effect of aryl hydrocarbon receptor (AhR) signaling on AML stem/progenitor proportion and examined the combined effect of AhR agonist and tyrosine kinase inhibitor. The AhR agonist, 6-formylindolo[3,2-b]carbazole (FICZ), significantly decreased the LSC proportion and clonogenicity and increased differentiation markers in AML primary cells. Synergistic/additive effects of FICZ and gilteritinib, FMS-like tyrosine kinase 3 (FLT3) inhibitor, were confirmed in AML cells with FLT3-ITD. We present evidence that combination of both agents inhibits FLT3 downstream molecules and degrades clonogenicity. Collectively, our results suggest that FICZ not only compels LSC differentiation, but also enhances the efficacy of gilteritinib when combined. Clinical application of this combined approach may pave a new therapeutic strategy for patients with FLT3 mutated AML.
Collapse
Affiliation(s)
- Heejoo Han
- Seoul National University College of Medicine, Seoul, Republic of Korea.,Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dongchan Kim
- Seoul National University College of Medicine, Seoul, Republic of Korea.,Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyungsuk Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chansup Lee
- Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngil Koh
- Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Junshik Hong
- Seoul National University College of Medicine, Seoul, Republic of Korea.,Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Opitz CA, Somarribas Patterson LF, Mohapatra SR, Dewi DL, Sadik A, Platten M, Trump S. The therapeutic potential of targeting tryptophan catabolism in cancer. Br J Cancer 2020; 122:30-44. [PMID: 31819194 PMCID: PMC6964670 DOI: 10.1038/s41416-019-0664-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
Based on its effects on both tumour cell intrinsic malignant properties as well as anti-tumour immune responses, tryptophan catabolism has emerged as an important metabolic regulator of cancer progression. Three enzymes, indoleamine-2,3-dioxygenase 1 and 2 (IDO1/2) and tryptophan-2,3-dioxygenase (TDO2), catalyse the first step of the degradation of the essential amino acid tryptophan (Trp) to kynurenine (Kyn). The notion of inhibiting IDO1 using small-molecule inhibitors elicited high hopes of a positive impact in the field of immuno-oncology, by restoring anti-tumour immune responses and synergising with other immunotherapies such as immune checkpoint inhibition. However, clinical trials with IDO1 inhibitors have yielded disappointing results, hence raising many questions. This review will discuss strategies to target Trp-degrading enzymes and possible down-stream consequences of their inhibition. We aim to provide comprehensive background information on Trp catabolic enzymes as targets in immuno-oncology and their current state of development. Details of the clinical trials with IDO1 inhibitors, including patient stratification, possible effects of the inhibitors themselves, effects of pre-treatments and the therapies the inhibitors were combined with, are discussed and mechanisms proposed that might have compensated for IDO1 inhibition. Finally, alternative approaches are suggested to circumvent these problems.
Collapse
Affiliation(s)
- Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany.
| | - Luis F Somarribas Patterson
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Soumya R Mohapatra
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dyah L Dewi
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Surgical Oncology, Department of Surgery - Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Saskia Trump
- Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Unit for Molecular Epidemiology, Berlin, Germany
| |
Collapse
|
16
|
Dolciami D, Ballarotto M, Gargaro M, López-Cara LC, Fallarino F, Macchiarulo A. Targeting Aryl hydrocarbon receptor for next-generation immunotherapies: Selective modulators (SAhRMs) versus rapidly metabolized ligands (RMAhRLs). Eur J Med Chem 2019; 185:111842. [PMID: 31727470 DOI: 10.1016/j.ejmech.2019.111842] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Aryl Hydrocarbon Receptor (AhR) constitutes a major network hub of genomic and non-genomic signaling pathways, connecting host's immune cells to environmental factors. It shapes innate and adaptive immune processes to environmental stimuli with species-, cell- and tissue-type dependent specificity. Although an ever increasing number of studies has thrust AhR into the limelight as attractive target for the development of next-generation immunotherapies, concerns exist on potential safety issues associated with small molecule modulation of the receptor. Selective AhR modulators (SAhRMs) and rapidly metabolized AhR ligands (RMAhRLs) are two classes of receptor agonists that are emerging as interesting lead compounds to bypass AhR-related toxicity in favor of therapeutic effects. In this article, we discuss SAhRMs and RMAhRLs reported in literature, covering concepts underlying their definitions, specific binding modes, structure-activity relationships and AhR-mediated functions.
Collapse
Affiliation(s)
- Daniela Dolciami
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Ballarotto
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy
| | - Marco Gargaro
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Luisa Carlota López-Cara
- Department of Pharmaceutical & Organic Chemistry, Faculty of Pharmacy, University of Granada, 18010, Granada, Spain
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazz.le Gambuli, 1, 06132, Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1, 06123, Perugia, Italy.
| |
Collapse
|
17
|
Song Y, Lin Q, Cai Z, Hao T, Zhang Y, Zhu X. Cysteine-rich protein 61 regulates the chemosensitivity of chronic myeloid leukemia to imatinib mesylate through the nuclear factor kappa B/Bcl-2 pathway. Cancer Sci 2019; 110:2421-2430. [PMID: 31145521 PMCID: PMC6676106 DOI: 10.1111/cas.14083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
Although the targeted tyrosine kinase inhibitor imatinib mesylate (IM) has achieved significant responses against CML in the clinical setting, a small proportion of patients fail to respond to IM treatment and their disease continues to progress, indicating resistance to IM therapy. As a secreted extracellular matrix protein, cysteine‐rich protein 61 (Cyr61) plays an important role in the resistance of solid tumors to chemotherapy, but its role in CML is unclear. In the present study, we observed that Cyr61 levels were upregulated in the plasma and bone marrow (BM) of patients with CML as well as in K562 cells. This upregulation of Cyr61 significantly decreased IM‐induced cellular apoptosis of K562 cells through nuclear factor kappa B/B‐cell lymphoma 2 pathways. Inhibition of Cyr61 restored the chemosensitivity of K562 cells to IM both in vitro and in vivo. Thus, our results showed for the first time that Cyr61 plays an important role in regulating the chemosensitivity of CML cells to IM, suggesting that selectively targeting Cyr61 directly or its relevant effector pathways may provide potential value in improving the clinical response of patients with CML to IM treatment.
Collapse
Affiliation(s)
- Yanfang Song
- Department of Laboratory Medicine, Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qing Lin
- Department of Laboratory Medicine, Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhaolian Cai
- Department of Laboratory Medicine, Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Taisen Hao
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, USA
| | - Yaohan Zhang
- Department of Laboratory Medicine, Clinical Laboratory, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xianjin Zhu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
18
|
Turhan A, Foudi A, Hwang JW, Desterke C, Griscelli F, Bennaceur-Griscelli A. Modeling malignancies using induced pluripotent stem cells: from chronic myeloid leukemia to hereditary cancers. Exp Hematol 2019; 71:61-67. [PMID: 30659851 DOI: 10.1016/j.exphem.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 11/18/2022]
Abstract
Over the last decade, the possibility of reprogramming malignant cells to a pluripotent state has been achieved in several hematological malignancies, including myeloproliferative neoplasms, myelodysplastic syndromes, and chronic myeloid leukemia (CML). It has been shown that it is readily possible to generate induced pluripotent stem cells (iPSCs) from several types of primary CML cells and to generate progenitors and differentiated cells with variable efficiency. Although these experiments have brought some new insights in the understanding of CML pathophysiology, the ultimate goal of generating induced leukemic stem cells (LSCs) with long-term multilineage potential has not yet been demonstrated. Experiments under way will determine whether additional signaling events are required to induce the emergence of bona fide LSCs. However, iPSC modeling offers the unique possibility to generate pluripotent cells harboring cancer-predisposing mutations using patient-derived noncancerous cells, as has been shown in Li-Fraumeni syndrome, BRCA-1 associated breast carcinomas, or RET-mutated medullary thyroid carcinomas. In these conditions, mutated iPSCs can then be used to study the mutational history that precedes the appearance of the malignant transformation and to develop novel drug-screening strategies. The ability to induce a successful differentiation program toward the tissue in which a given cancer develops or to generate tissue-specific cancer organoids in which the full oncogenic potential can be revealed remains a major challenge in the field. Similarly, in hematological malignancies, a significant hurdle remains due to the lack of adequate technology to induce the emergence of leukemic cells that resemble LSCs, which hinders our ability to study the mechanisms of therapy resistance.
Collapse
MESH Headings
- Animals
- Biomarkers
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Susceptibility
- Humans
- Induced Pluripotent Stem Cells/cytology
- Induced Pluripotent Stem Cells/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Models, Biological
- Neoplastic Syndromes, Hereditary/etiology
- Neoplastic Syndromes, Hereditary/metabolism
- Neoplastic Syndromes, Hereditary/pathology
- Tumor Microenvironment
Collapse
Affiliation(s)
- Ali Turhan
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, Villejuif, France; INGESTEM National iPSC Infrastructure, Villejuif, France.
| | - Adlen Foudi
- ATIP-Avenir INSERM UMR-S 935, Université Paris Sud, Villejuif, France
| | - Jin Wook Hwang
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, Villejuif, France
| | - Christophe Desterke
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, Villejuif, France
| | - Frank Griscelli
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, Villejuif, France; INGESTEM National iPSC Infrastructure, Villejuif, France; Université Paris Descartes, Faculté Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Annelise Bennaceur-Griscelli
- INSERM UMR-S 935 and ESTeam Paris Sud, Université Paris Sud, Villejuif, France; INGESTEM National iPSC Infrastructure, Villejuif, France
| |
Collapse
|