1
|
He X, Kusuya Y, Hagiwara D, Toyotome T, Arai T, Bian C, Nagayama M, Shibata S, Watanabe A, Takahashi H. Genomic diversity of the pathogenic fungus Aspergillus fumigatus in Japan reveals the complex genomic basis of azole resistance. Commun Biol 2024; 7:274. [PMID: 38486002 PMCID: PMC10940670 DOI: 10.1038/s42003-024-05902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 02/08/2024] [Indexed: 03/18/2024] Open
Abstract
Aspergillus fumigatus is a pathogenic fungus with a global distribution. The emergence of azole-resistant A. fumigatus (ARAf) other than the TR-mutants is a problem in Japan. Additionally, the genetic diversity of A. fumigatus strains in Japan remains relatively unknown. Here we show the diversity in the A. fumigatus strains isolated in Japan as well as the complexity in the global distribution of the pathogenic strains. First, we analyzed the genome sequences of 171 strains from Japan as well as the antifungal susceptibility of these strains. Next, we conducted a population analysis of 876 strains by combining the available genomic data for strains isolated worldwide, which were grouped in six clusters. Finally, a genome-wide association study identified the genomic loci associated with ARAf strains, but not the TR-mutants. These results highlight the complexity of the genomic mechanism underlying the emergence of ARAf strains other than the TR-mutants.
Collapse
Affiliation(s)
- Xiaohui He
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Yoko Kusuya
- Biological Resource Center, National Institute of Technology and Evaluation, 2-5-8 Kazusakamatari, Kisarazu, 292-0818, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Takahito Toyotome
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11, Inadacho, Obihiro, 080-8555, Japan
| | - Teppei Arai
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Cai Bian
- BGI-Shenzhen, Yantian District, Shenzhen, 518083, China
| | - Masaki Nagayama
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Saho Shibata
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan.
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
2
|
Weaver D, Novak-Frazer L, Palmer M, Richardson M, Bromley M, Bowyer P. Development of a novel mycobiome diagnostic for fungal infection. BMC Microbiol 2024; 24:63. [PMID: 38373963 PMCID: PMC10875777 DOI: 10.1186/s12866-024-03197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/12/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Amplicon-based mycobiome analysis has the potential to identify all fungal species within a sample and hence could provide a valuable diagnostic assay for use in clinical mycology settings. In the last decade, the mycobiome has been increasingly characterised by targeting the internal transcribed spacer (ITS) regions. Although ITS targets give broad coverage and high sensitivity, they fail to provide accurate quantitation as the copy number of ITS regions in fungal genomes is highly variable even within species. To address these issues, this study aimed to develop a novel NGS fungal diagnostic assay using an alternative amplicon target. METHODS Novel universal primers were designed to amplify a highly diverse single copy and uniformly sized DNA target (Tef1) to enable mycobiome analysis on the Illumina iSeq100 which is a low cost, small footprint and simple to use next-generation sequencing platform. To enable automated analysis and rapid results, a streamlined bioinformatics workflow and sequence database were also developed. Sequencing of mock fungal communities was performed to compare the Tef1 assay and established ITS1-based method. The assay was further evaluated using clinical respiratory samples and the feasibility of using internal spike-in quantitative controls was assessed. RESULTS The Tef1 assay successfully identified and quantified Aspergillus, Penicillium, Candida, Cryptococcus, Rhizopus, Fusarium and Lomentospora species from mock communities. The Tef1 assay was also capable of differentiating closely related species such as A. fumigatus and A. fischeri. In addition, it outperformed ITS1 at identifying A. fumigatus and other filamentous pathogens in mixed fungal communities (in the presence or absence of background human DNA). The assay could detect as few as 2 haploid genome equivalents of A. fumigatus from clinical respiratory samples. Lastly, spike-in controls were demonstrated to enable semi-quantitation of A. fumigatus load in clinical respiratory samples using sequencing data. CONCLUSIONS This study has developed and tested a novel metabarcoding target and found the assay outperforms ITS1 at identifying clinically relevant filamentous fungi. The assay is a promising diagnostic candidate that could provide affordable NGS analysis to clinical mycology laboratories.
Collapse
Affiliation(s)
- Danielle Weaver
- Core Technology Facility, University of Manchester, Manchester, M13 9WU, UK
| | - Lilyann Novak-Frazer
- Core Technology Facility, University of Manchester, Manchester, M13 9WU, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Maisie Palmer
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Malcolm Richardson
- Core Technology Facility, University of Manchester, Manchester, M13 9WU, UK
- Manchester University NHS Foundation Trust, Manchester, UK
| | - Mike Bromley
- Core Technology Facility, University of Manchester, Manchester, M13 9WU, UK.
| | - Paul Bowyer
- Core Technology Facility, University of Manchester, Manchester, M13 9WU, UK.
| |
Collapse
|
3
|
Dubin CA, Voorhies M, Sil A, Teixeira MM, Barker BM, Brem RB. Genome Organization and Copy-Number Variation Reveal Clues to Virulence Evolution in Coccidioides posadasii. J Fungi (Basel) 2022; 8:jof8121235. [PMID: 36547568 PMCID: PMC9782707 DOI: 10.3390/jof8121235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The human fungal pathogen Coccidioides spp. causes valley fever, a treatment-refractory and sometimes deadly disease prevalent in arid regions of the western hemisphere. Fungal virulence in the mammalian host hinges on a switch between growth as hyphae and as large spherules containing infectious spores. How these virulence programs are encoded in the genome remains poorly understood. Drawing on Coccidioides genomic resources, we first discovered a new facet of genome organization in this system: spherule-gene islands, clusters of genes physically linked in the genome that exhibited specific mRNA induction in the spherule phase. Next, we surveyed copy-number variation genome-wide among strains of C. posadasii. Emerging from this catalog were spherule-gene islands with striking presence-absence differentiation between C. posadasii populations, a pattern expected from virulence factors subjected to different selective pressures across habitats. Finally, analyzing single-nucleotide differences across C. posadasii strains, we identified signatures of natural selection in spherule-expressed genes. Together, our data establish spherule-gene islands as candidate determinants of virulence and targets of selection in Coccidioides.
Collapse
Affiliation(s)
- Claire A. Dubin
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720-3102, USA
| | - Mark Voorhies
- Department of Microbiology and Immunology, UC San Francisco, San Francisco, CA 94143, USA
| | - Anita Sil
- Department of Microbiology and Immunology, UC San Francisco, San Francisco, CA 94143, USA
| | - Marcus M. Teixeira
- The Translational Genomics Research Institute (TGen)-Affiliate of City of Hope, Flagstaff, AZ 85004, USA
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
- Núcleo de Medicina Tropical, Faculdade de Medicina, Universidade de Brasília, Brasília 70910-900, Brazil
| | - Bridget M. Barker
- The Translational Genomics Research Institute (TGen)-Affiliate of City of Hope, Flagstaff, AZ 85004, USA
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Rachel B. Brem
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720-3102, USA
- Correspondence:
| |
Collapse
|
4
|
Lofgren LA, Ross BS, Cramer RA, Stajich JE. The pan-genome of Aspergillus fumigatus provides a high-resolution view of its population structure revealing high levels of lineage-specific diversity driven by recombination. PLoS Biol 2022; 20:e3001890. [PMID: 36395320 PMCID: PMC9714929 DOI: 10.1371/journal.pbio.3001890] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/01/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Aspergillus fumigatus is a deadly agent of human fungal disease where virulence heterogeneity is thought to be at least partially structured by genetic variation between strains. While population genomic analyses based on reference genome alignments offer valuable insights into how gene variants are distributed across populations, these approaches fail to capture intraspecific variation in genes absent from the reference genome. Pan-genomic analyses based on de novo assemblies offer a promising alternative to reference-based genomics with the potential to address the full genetic repertoire of a species. Here, we evaluate 260 genome sequences of A. fumigatus including 62 newly sequenced strains, using a combination of population genomics, phylogenomics, and pan-genomics. Our results offer a high-resolution assessment of population structure and recombination frequency, phylogenetically structured gene presence-absence variation, evidence for metabolic specificity, and the distribution of putative antifungal resistance genes. Although A. fumigatus disperses primarily via asexual conidia, we identified extraordinarily high levels of recombination with the lowest linkage disequilibrium decay value reported for any fungal species to date. We provide evidence for 3 primary populations of A. fumigatus, with recombination occurring only rarely between populations and often within them. These 3 populations are structured by both gene variation and distinct patterns of gene presence-absence with unique suites of accessory genes present exclusively in each clade. Accessory genes displayed functional enrichment for nitrogen and carbohydrate metabolism suggesting that populations may be stratified by environmental niche specialization. Similarly, the distribution of antifungal resistance genes and resistance alleles were often structured by phylogeny. Altogether, the pan-genome of A. fumigatus represents one of the largest fungal pan-genomes reported to date including many genes unrepresented in the Af293 reference genome. These results highlight the inadequacy of relying on a single-reference genome-based approach for evaluating intraspecific variation and the power of combined genomic approaches to elucidate population structure, genetic diversity, and putative ecological drivers of clinically relevant fungi.
Collapse
Affiliation(s)
- Lotus A. Lofgren
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Brandon S. Ross
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Robert A. Cramer
- Dartmouth Geisel School of Medicine in the Department of Microbiology and Immunology, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
5
|
Heidrich V, Beule L. Are short-read amplicons suitable for the prediction of microbiome functional potential? A critical perspective. IMETA 2022; 1:e38. [PMID: 38868716 PMCID: PMC10989910 DOI: 10.1002/imt2.38] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 06/14/2024]
Abstract
Taxonomic marker gene analysis allows uncovering taxonomic profiles of microbial communities at low cost, making it omnipresent in microbiome research. There is an ever-expanding set of tools to extract further biological information from this kind of data. In this perspective, we enunciate several concerns regarding the biological validity of predicting functional potential from taxonomic profiles, especially when they are generated by short-read sequencing. The taxonomic resolution of marker genes, intragenomic variability of marker genes, and the compositional nature of microbiome data are discussed. Combining actual measurements of microbiome functions with predicted functional potentials is proposed as a powerful approach to better understand microbiome functioning. In this context, the significance of predicted functional potentials for generating and testing hypotheses is highlighted. We argue that functions of microbiomes predicted from microbiome DNA read count data generated by short-read amplicon sequencing should not serve as the only basis to draw biological inferences.
Collapse
Affiliation(s)
- Vitor Heidrich
- Centro de Oncologia MolecularHospital Sírio‐LibanêsSão PauloBrazil
- Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
| | - Lukas Beule
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated PlantsInstitute for Ecological Chemistry, Plant Analysis and Stored Product ProtectionBerlinGermany
| |
Collapse
|
6
|
Horta MAC, Steenwyk JL, Mead ME, dos Santos LHB, Zhao S, Gibbons JG, Marcet-Houben M, Gabaldón T, Rokas A, Goldman GH. Examination of Genome-Wide Ortholog Variation in Clinical and Environmental Isolates of the Fungal Pathogen Aspergillus fumigatus. mBio 2022; 13:e0151922. [PMID: 35766381 PMCID: PMC9426589 DOI: 10.1128/mbio.01519-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is both an environmental saprobe and an opportunistic human fungal pathogen. Knowledge of genomic variation across A. fumigatus isolates is essential for understanding the evolution of pathogenicity, virulence, and resistance to antifungal drugs. Here, we investigated 206 A. fumigatus isolates (133 clinical and 73 environmental isolates), aiming to identify genes with variable presence across isolates and test whether this variation was related to the clinical or environmental origin of isolates. The PanOrtho genome of A. fumigatus consists of 13,085 ortholog groups, of which 7,773 (59.4%) are shared by all isolates (core groups) and 5,312 (40.6%) vary in their gene presence across isolates (accessory groups plus singletons). Despite differences in the distribution of orthologs across all isolates, no significant differences were observed among clinical versus environmental isolates when phylogeny was accounted for. Orthologs that differ in their distribution across isolates tend to occur at low frequency and/or be restricted to specific isolates; thus, the degree of genomic conservation between orthologs of A. fumigatus is high. These results suggest that differences in the distribution of orthologs within A. fumigatus cannot be associated with the clinical or environmental origin of isolates. IMPORTANCE Aspergillus fumigatus is a cosmopolitan species of fungus responsible for thousands of cases of invasive disease annually. Clinical and environmental isolates of A. fumigatus exhibit extensive phenotypic differences, including differences related to virulence and antifungal drug resistance. A comprehensive survey of the genomic diversity present in A. fumigatus and its relationship to the clinical or environmental origin of isolates can contribute to the prediction of the mechanisms of evolution and infection of the species. Our results suggest that there is no significant variation in ortholog distribution between clinical and environmental isolates when accounting for evolutionary history. The work supports the hypothesis that environmental and clinical isolates of A. fumigatus do not differ in their gene contents.
Collapse
Affiliation(s)
- Maria Augusta C. Horta
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Jacob L. Steenwyk
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Shu Zhao
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - John G. Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre, Barcelona, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Barcelona, Spain
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, USA
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Wang L, Ge S, Liang W, Liao W, Li W, Jiao G, Wei X, Shao G, Xie L, Sheng Z, Hu S, Tang S, Hu P. Genome-Wide Characterization Reveals Variation Potentially Involved in Pathogenicity and Mycotoxins Biosynthesis of Fusarium proliferatum Causing Spikelet Rot Disease in Rice. Toxins (Basel) 2022; 14:toxins14080568. [PMID: 36006230 PMCID: PMC9414198 DOI: 10.3390/toxins14080568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Fusarium proliferatum is the primary cause of spikelet rot disease in rice (Oryza sativa L.) in China. The pathogen not only infects a wide range of cereals, causing severe yield losses but also contaminates grains by producing various mycotoxins that are hazardous to humans and animals. Here, we firstly reported the whole-genome sequence of F. proliferatum strain Fp9 isolated from the rice spikelet. The genome was approximately 43.9 Mb with an average GC content of 48.28%, and it was assembled into 12 scaffolds with an N50 length of 4,402,342 bp. There is a close phylogenetic relationship between F. proliferatum and Fusarium fujikuroi, the causal agent of the bakanae disease of rice. The expansion of genes encoding cell wall-degrading enzymes and major facilitator superfamily (MFS) transporters was observed in F. proliferatum relative to other fungi with different nutritional lifestyles. Species-specific genes responsible for mycotoxins biosynthesis were identified among F. proliferatum and other Fusarium species. The expanded and unique genes were supposed to promote F. proliferatum adaptation and the rapid response to the host's infection. The high-quality genome of F. proliferatum strain Fp9 provides a valuable resource for deciphering the mechanisms of pathogenicity and secondary metabolism, and therefore shed light on development of the disease management strategies and detoxification of mycotoxins contamination for spikelet rot disease in rice.
Collapse
|
8
|
Hill R, Buggs RJ, Vu DT, Gaya E. Lifestyle Transitions in Fusarioid Fungi are Frequent and Lack Clear Genomic Signatures. Mol Biol Evol 2022; 39:msac085. [PMID: 35484861 PMCID: PMC9051438 DOI: 10.1093/molbev/msac085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The fungal genus Fusarium (Ascomycota) includes well-known plant pathogens that are implicated in diseases worldwide, and many of which have been genome sequenced. The genus also encompasses other diverse lifestyles, including species found ubiquitously as asymptomatic-plant inhabitants (endophytes). Here, we produced structurally annotated genome assemblies for five endophytic Fusarium strains, including the first whole-genome data for Fusarium chuoi. Phylogenomic reconstruction of Fusarium and closely related genera revealed multiple and frequent lifestyle transitions, the major exception being a monophyletic clade of mutualist insect symbionts. Differential codon usage bias and increased codon optimisation separated Fusarium sensu stricto from allied genera. We performed computational prediction of candidate secreted effector proteins (CSEPs) and carbohydrate-active enzymes (CAZymes)-both likely to be involved in the host-fungal interaction-and sought evidence that their frequencies could predict lifestyle. However, phylogenetic distance described gene variance better than lifestyle did. There was no significant difference in CSEP, CAZyme, or gene repertoires between phytopathogenic and endophytic strains, although we did find some evidence that gene copy number variation may be contributing to pathogenicity. Large numbers of accessory CSEPs (i.e., present in more than one taxon but not all) and a comparatively low number of strain-specific CSEPs suggested there is a limited specialisation among plant associated Fusarium species. We also found half of the core genes to be under positive selection and identified specific CSEPs and CAZymes predicted to be positively selected on certain lineages. Our results depict fusarioid fungi as prolific generalists and highlight the difficulty in predicting pathogenic potential in the group.
Collapse
Affiliation(s)
- Rowena Hill
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Richard J.A. Buggs
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Dang Toan Vu
- Research Planning and International Cooperation Department, Plant Resources Center, Hanoi, Vietnam
| | - Ester Gaya
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond, United Kingdom
| |
Collapse
|
9
|
El-Kamand S, Steiner M, Ramirez C, Halliday C, Chen SCA, Papanicolaou A, Morton CO. Assessing Differences between Clinical Isolates of Aspergillus fumigatus from Cases of Proven Invasive Aspergillosis and Colonizing Isolates with Respect to Phenotype (Virulence in Tenebrio molitor Larvae) and Genotype. Pathogens 2022; 11:pathogens11040428. [PMID: 35456102 PMCID: PMC9029132 DOI: 10.3390/pathogens11040428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
The fungus Aspergillus fumigatus, the cause of invasive aspergillosis (IA), is a serious risk to transplant patients and those with respiratory diseases. Host immune suppression is considered the most important factor for the development of IA. Less is known about the importance of fungal virulence in the development of IA including the significance of variation between isolates. In this study, isolates of A. fumigatus from cases diagnosed as having proven IA or colonisation (no evidence of IA) were compared in assays to measure isolate virulence. These assays included the measurement of radial growth and protease production on agar, sensitivity to UV light and oxidative stressors, and virulence in Tenebrio molitor (mealworm) larvae. These assays did not reveal obvious differences in virulence between the two groups of isolates; this provided the impetus to conduct genomic analysis. Whole genome sequencing and analysis did not allow grouping into coloniser or IA isolates. However, focused analysis of single nucleotide polymorphisms revealed variation in three putative genes: AFUA_5G09420 (ccg-8), AFUA_4G00330, and AFUA_4G00350. These are known to be responsive to azole exposure, and ccg-8 deletion leads to azole hypersensitivity in other fungi. A. fumigatus virulence is challenging, but the findings of this study indicate that further research into the response to oxidative stress and azole exposure are required to understand the development of IA.
Collapse
Affiliation(s)
- Sam El-Kamand
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Martina Steiner
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Carl Ramirez
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
| | - Catriona Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (C.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia; (C.H.); (S.C.-A.C.)
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW 2145, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, NSW 2753, Australia
- Correspondence: (A.P.); (C.O.M.); Tel.: +61-2-4570-1385 (A.P.); +61-2-4620-3446 (C.O.M.)
| | - Charles Oliver Morton
- Western Sydney University, School of Science, Campbelltown Campus, Campbelltown, NSW 2560, Australia; (S.E.-K.); (M.S.); (C.R.)
- Correspondence: (A.P.); (C.O.M.); Tel.: +61-2-4570-1385 (A.P.); +61-2-4620-3446 (C.O.M.)
| |
Collapse
|
10
|
Yuan Z, Druzhinina IS, Gibbons JG, Zhong Z, Van de Peer Y, Rodriguez RJ, Liu Z, Wang X, Wei H, Wu Q, Wang J, Shi G, Cai F, Peng L, Martin FM. Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus. THE ISME JOURNAL 2021; 15:3468-3479. [PMID: 34108667 PMCID: PMC8629976 DOI: 10.1038/s41396-021-01023-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023]
Abstract
Understanding how organisms adapt to extreme living conditions is central to evolutionary biology. Dark septate endophytes (DSEs) constitute an important component of the root mycobiome and they are often able to alleviate host abiotic stresses. Here, we investigated the molecular mechanisms underlying the beneficial association between the DSE Laburnicola rhizohalophila and its host, the native halophyte Suaeda salsa, using population genomics. Based on genome-wide Fst (pairwise fixation index) and Vst analyses, which compared the variance in allele frequencies of single-nucleotide polymorphisms (SNPs) and copy number variants (CNVs), respectively, we found a high level of genetic differentiation between two populations. CNV patterns revealed population-specific expansions and contractions. Interestingly, we identified a ~20 kbp genomic island of high divergence with a strong sign of positive selection. This region contains a melanin-biosynthetic polyketide synthase gene cluster linked to six additional genes likely involved in biosynthesis, membrane trafficking, regulation, and localization of melanin. Differences in growth yield and melanin biosynthesis between the two populations grown under 2% NaCl stress suggested that this genomic island contributes to the observed differences in melanin accumulation. Our findings provide a better understanding of the genetic and evolutionary mechanisms underlying the adaptation to saline conditions of the L. rhizohalophila-S. salsa symbiosis.
Collapse
Affiliation(s)
- Zhilin Yuan
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China ,grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Irina S. Druzhinina
- grid.27871.3b0000 0000 9750 7019Fungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - John G. Gibbons
- grid.266683.f0000 0001 2166 5835Department of Food Science, University of Massachusetts, Amherst, MA USA
| | - Zhenhui Zhong
- grid.256111.00000 0004 1760 2876State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China ,grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA USA
| | - Yves Van de Peer
- grid.5342.00000 0001 2069 7798Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium ,grid.511033.5VIB Center for Plant Systems Biology, Ghent, Belgium ,grid.49697.350000 0001 2107 2298Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa
| | - Russell J. Rodriguez
- grid.34477.330000000122986657Adaptive Symbiotic Technologies, University of Washington, Seattle, WA USA
| | - Zhongjian Liu
- grid.256111.00000 0004 1760 2876Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Wang
- grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Huanshen Wei
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China ,grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Qi Wu
- grid.9227.e0000000119573309State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jieyu Wang
- grid.9227.e0000000119573309Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohui Shi
- grid.9227.e0000000119573309State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cai
- grid.27871.3b0000 0000 9750 7019Fungal Genomics Laboratory (FungiG), College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Long Peng
- grid.216566.00000 0001 2104 9346State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China ,grid.216566.00000 0001 2104 9346Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Francis M. Martin
- grid.66741.320000 0001 1456 856XBeijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China ,grid.29172.3f0000 0001 2194 6418Université de Lorraine, INRAE, UMR Interactions Arbres/Micro-Organismes, Centre INRAE Grand Est Nancy, Champenoux, France
| |
Collapse
|
11
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Sterken MG, Thorpe P, Goverse A, Smant G, Helder J. Comparative genomics of two inbred lines of the potato cyst nematode Globodera rostochiensis reveals disparate effector family-specific diversification patterns. BMC Genomics 2021; 22:611. [PMID: 34380421 PMCID: PMC8359618 DOI: 10.1186/s12864-021-07914-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Potato cyst nematodes belong to the most harmful pathogens in potato, and durable management of these parasites largely depends on host-plant resistances. These resistances are pathotype specific. The current Globodera rostochiensis pathotype scheme that defines five pathotypes (Ro1 - Ro5) is both fundamentally and practically of limited value. Hence, resistant potato varieties are used worldwide in a poorly informed manner. RESULTS We generated two novel reference genomes of G. rostochiensis inbred lines derived from a Ro1 and a Ro5 population. These genome sequences comprise 173 and 189 scaffolds respectively, marking a ≈ 24-fold reduction in fragmentation as compared to the current reference genome. We provide copy number variations for 19 effector families. Four dorsal gland effector families were investigated in more detail. SPRYSECs, known to be implicated in plant defence suppression, constitute by far the most diversified family studied herein with 60 and 99 variants in Ro1 and Ro5 distributed over 18 and 26 scaffolds. In contrast, CLEs, effectors involved in feeding site induction, show strong physical clustering. The 10 and 16 variants cluster on respectively 2 and 1 scaffolds. Given that pathotypes are defined by their effectoromes, we pinpoint the disparate nature of the contributing effector families in terms of sequence diversification and loss and gain of variants. CONCLUSIONS Two novel reference genomes allow for nearly complete inventories of effector diversification and physical organisation within and between pathotypes. Combined with insights we provide on effector family-specific diversification patterns, this constitutes a basis for an effectorome-based virulence scheme for this notorious pathogen.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands.,Solynta, Dreijenlaan 2, 6703 HA, Wageningen, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological Sciences, University of St. Andrews, North Haugh, St Andrews, United Kingdom
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
12
|
Chacón-Vargas K, McCarthy CO, Choi D, Wang L, Yu JH, Gibbons JG. Comparison of Two Aspergillus oryzae Genomes From Different Clades Reveals Independent Evolution of Alpha-Amylase Duplication, Variation in Secondary Metabolism Genes, and Differences in Primary Metabolism. Front Microbiol 2021; 12:691296. [PMID: 34326825 PMCID: PMC8313989 DOI: 10.3389/fmicb.2021.691296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes (bacteria, yeasts, molds), in addition to plants and animals, were domesticated for their roles in food preservation, nutrition and flavor. Aspergillus oryzae is a domesticated filamentous fungal species traditionally used during fermentation of Asian foods and beverage, such as sake, soy sauce, and miso. To date, little is known about the extent of genome and phenotypic variation of A. oryzae isolates from different clades. Here, we used long-read Oxford Nanopore and short-read Illumina sequencing to produce a highly accurate and contiguous genome assemble of A. oryzae 14160, an industrial strain from China. To understand the relationship of this isolate, we performed phylogenetic analysis with 90 A. oryzae isolates and 1 isolate of the A. oryzae progenitor, Aspergillus flavus. This analysis showed that A. oryzae 14160 is a member of clade A, in comparison to the RIB 40 type strain, which is a member of clade F. To explore genome variation between isolates from distinct A. oryzae clades, we compared the A. oryzae 14160 genome with the complete RIB 40 genome. Our results provide evidence of independent evolution of the alpha-amylase gene duplication, which is one of the major adaptive mutations resulting from domestication. Synteny analysis revealed that both genomes have three copies of the alpha-amylase gene, but only one copy on chromosome 2 was conserved. While the RIB 40 genome had additional copies of the alpha-amylase gene on chromosomes III, and V, 14160 had a second copy on chromosome II and an third copy on chromosome VI. Additionally, we identified hundreds of lineage specific genes, and putative high impact mutations in genes involved in secondary metabolism, including several of the core biosynthetic genes. Finally, to examine the functional effects of genome variation between strains, we measured amylase activity, proteolytic activity, and growth rate on several different substrates. RIB 40 produced significantly higher levels of amylase compared to 14160 when grown on rice and starch. Accordingly, RIB 40 grew faster on rice, while 14160 grew faster on soy. Taken together, our analyses reveal substantial genome and phenotypic variation within A. oryzae.
Collapse
Affiliation(s)
- Katherine Chacón-Vargas
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States.,Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Colin O McCarthy
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Dasol Choi
- Deapertment of Food Science, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, and Food Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Long Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jae-Hyuk Yu
- Department of Bacteriology, and Food Research Institute, University of Wisconsin-Madison, Madison, WI, United States.,Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - John G Gibbons
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States.,Department of Food Science, University of Massachusetts, Amherst, MA, United States.,Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
13
|
Modak TH, Literman R, Puritz JB, Johnson KM, Roberts EM, Proestou D, Guo X, Gomez-Chiarri M, Schwartz RS. Extensive genome-wide duplications in the eastern oyster ( Crassostrea virginica). Philos Trans R Soc Lond B Biol Sci 2021; 376:20200164. [PMID: 33813893 DOI: 10.1098/rstb.2020.0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genomic structural variation is an important source of genetic and phenotypic diversity, playing a critical role in evolution. The recent availability of a high-quality reference genome for the eastern oyster, Crassostrea virginica, and whole-genome sequence data of samples from across the species range in the USA, provides an opportunity to explore structural variation across the genome of this species. Our analysis shows significantly greater individual-level duplications of regions across the genome than that of most model vertebrate species. Duplications are widespread across all ten chromosomes with variation in frequency per chromosome. The eastern oyster shows a large interindividual variation in duplications as well as particular chromosomal regions with a higher density of duplications. A high percentage of duplications seen in C. virginica lie completely within genes and exons, suggesting the potential for impacts on gene function. These results support the hypothesis that structural changes may play a significant role in standing genetic variation in C. virginica, and potentially have a role in their adaptive and evolutionary success. Altogether, these results suggest that copy number variation plays an important role in the genomic variation of C. virginica. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Tejashree H Modak
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Robert Literman
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Kevin M Johnson
- Center for Coastal Marine Sciences, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, CA 93407, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.,California Sea Grant, University of California San Diego, La Jolla, CA 92093-0232, USA
| | - Erin M Roberts
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Dina Proestou
- USDA Agricultural Research Service, National Cold Water Marine Aquaculture Center, 469 CBLS, 120 Flagg Road, Kingston, RI 02881, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ 08349, USA
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| | - Rachel S Schwartz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA
| |
Collapse
|
14
|
Gasmi L, Baek S, Kim JC, Kim S, Lee MR, Park SE, Shin TY, Lee SJ, Parker BL, Kim JS. Gene diversity explains variation in biological features of insect killing fungus, Beauveria bassiana. Sci Rep 2021; 11:91. [PMID: 33420123 PMCID: PMC7794557 DOI: 10.1038/s41598-020-78910-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
Beauveria bassiana is a species complex whose isolates show considerable natural genetic variability. However, little is known about how this genetic diversity affects the fungus performance. Herein, we characterized the diversity of genes involved in various mechanisms of the infective cycle of 42 isolates that have different growth rates, thermotolerance and virulence. The analysed genes showed general genetic diversity measured as non-synonymous changes (NSC) and copy number variation (CNV), with most of them being subjected to positive episodic diversifying selection. Correlation analyses between NSC or CNV and the isolate virulence, thermotolerance and growth rate revealed that various genes shaped the biological features of the fungus. Lectin-like, mucin signalling, Biotrophy associated and chitinase genes NSCs correlated with the three biological features of B. bassiana. In addition, other genes (i.e. DNA photolyase and cyclophilin B) that had relatively conserved sequences, had variable CNs across the isolates which were correlated with the variability of either virulence or thermotolerance of B. bassiana isolates. The data obtained is important for a better understanding of population structure, ecological and potential impact when isolates are used as mycoinsecticides and can justify industrialization of new isolates.
Collapse
Affiliation(s)
- Laila Gasmi
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Sehyeon Baek
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Jong Cheol Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Sihyeon Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Mi Rong Lee
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - So Eun Park
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Tae Young Shin
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea
| | - Se Jin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA
| | - Bruce L Parker
- Entomology Research Laboratory, University of Vermont, 661 Spear Street, Burlington, VT, 05405-0105, USA
| | - Jae Su Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju, 54596, Korea.
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54596, Korea.
| |
Collapse
|
15
|
Gene Copy Number Variation Does Not Reflect Structure or Environmental Selection in Two Recently Diverged California Populations of Suillus brevipes. G3 (BETHESDA, MD.) 2020; 10:4591-4597. [PMID: 33051263 PMCID: PMC7718732 DOI: 10.1534/g3.120.401735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gene copy number variation across individuals has been shown to track population structure and be a source of adaptive genetic variation with significant fitness impacts. In this study, we report opposite results for both predictions based on the analysis of gene copy number variants (CNVs) of Suillus brevipes, a mycorrhizal fungus adapted to coastal and montane habitats in California. In order to assess whether gene copy number variation mirrored population structure and selection in this species, we investigated two previously studied locally adapted populations showing a highly differentiated genomic region encompassing a gene predicted to confer salt tolerance. In addition, we examined whether copy number in the genes related to salt homeostasis was differentiated between the two populations. Although we found many instances of CNV regions across the genomes of S. brevipes individuals, we also found CNVs did not recover population structure and known salt-tolerance-related genes were not under selection across the coastal population. Our results contrast with predictions of CNVs matching single-nucleotide polymorphism divergence and showed CNVs of genes for salt homeostasis are not under selection in S. brevipes.
Collapse
|
16
|
Greshake Tzovaras B, Segers FHID, Bicker A, Dal Grande F, Otte J, Anvar SY, Hankeln T, Schmitt I, Ebersberger I. What Is in Umbilicaria pustulata? A Metagenomic Approach to Reconstruct the Holo-Genome of a Lichen. Genome Biol Evol 2020; 12:309-324. [PMID: 32163141 PMCID: PMC7186782 DOI: 10.1093/gbe/evaa049] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
Lichens are valuable models in symbiosis research and promising sources of biosynthetic genes for biotechnological applications. Most lichenized fungi grow slowly, resist aposymbiotic cultivation, and are poor candidates for experimentation. Obtaining contiguous, high-quality genomes for such symbiotic communities is technically challenging. Here, we present the first assembly of a lichen holo-genome from metagenomic whole-genome shotgun data comprising both PacBio long reads and Illumina short reads. The nuclear genomes of the two primary components of the lichen symbiosis-the fungus Umbilicaria pustulata (33 Mb) and the green alga Trebouxia sp. (53 Mb)-were assembled at contiguities comparable to single-species assemblies. The analysis of the read coverage pattern revealed a relative abundance of fungal to algal nuclei of ∼20:1. Gap-free, circular sequences for all organellar genomes were obtained. The bacterial community is dominated by Acidobacteriaceae and encompasses strains closely related to bacteria isolated from other lichens. Gene set analyses showed no evidence of horizontal gene transfer from algae or bacteria into the fungal genome. Our data suggest a lineage-specific loss of a putative gibberellin-20-oxidase in the fungus, a gene fusion in the fungal mitochondrion, and a relocation of an algal chloroplast gene to the algal nucleus. Major technical obstacles during reconstruction of the holo-genome were coverage differences among individual genomes surpassing three orders of magnitude. Moreover, we show that GC-rich inverted repeats paired with nonrandom sequencing error in PacBio data can result in missing gene predictions. This likely poses a general problem for genome assemblies based on long reads.
Collapse
Affiliation(s)
- Bastian Greshake Tzovaras
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- Lawrence Berkeley National Laboratory, Berkeley, California
- Center for Research & Interdisciplinarity, Université de Paris, France
| | - Francisca H I D Segers
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Anne Bicker
- Institute for Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Germany
| | - Francesco Dal Grande
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, The Netherlands
| | - Thomas Hankeln
- Institute for Organismic and Molecular Evolution, Molecular Genetics and Genome Analysis, Johannes Gutenberg University Mainz, Germany
| | - Imke Schmitt
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
- Molecular Evolutionary Biology Group, Institute of Ecology, Diversity, and Evolution, Goethe University Frankfurt, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| |
Collapse
|
17
|
Grant JR, Pilotte N, Williams SA. A Case for Using Genomics and a Bioinformatics Pipeline to Develop Sensitive and Species-Specific PCR-Based Diagnostics for Soil-Transmitted Helminths. Front Genet 2019; 10:883. [PMID: 31608116 PMCID: PMC6768101 DOI: 10.3389/fgene.2019.00883] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
The balance of expense and ease of use vs. specificity and sensitivity in diagnostic assays for helminth disease is an important consideration, with expense and ease often winning out in endemic areas where funds and sophisticated equipment may be scarce. In this review, we argue that molecular diagnostics, specifically new assays that have been developed with the aid of next-generation sequence data and robust bioinformatic tools, more than make up for their expense with the benefit of a clear and precise assessment of the situation on the ground. Elimination efforts associated with the London Declaration and the World Health Organization (WHO) 2020 Roadmap have resulted in areas of low disease incidence and reduced infection burdens. An accurate assessment of infection levels is critical for determining where and when the programs can be successfully ended. Thus, more sensitive assays are needed in locations where elimination efforts are approaching a successful conclusion. Although microscopy or more general PCR targets have a role to play, they can mislead and cause study results to be confounded. Hyper-specific qPCR assays enable a more definitive assessment of the situation in the field, as well as of shifting dynamics and emerging diseases.
Collapse
Affiliation(s)
- Jessica R. Grant
- Department of Biological Sciences, Smith College, Northampton, MA, United States
| | - Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, MA, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, MA, United States
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
18
|
The Human Lung Mycobiome in Chronic Respiratory Disease: Limitations of Methods and Our Current Understanding. CURRENT FUNGAL INFECTION REPORTS 2019. [DOI: 10.1007/s12281-019-00347-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Polar bear evolution is marked by rapid changes in gene copy number in response to dietary shift. Proc Natl Acad Sci U S A 2019; 116:13446-13451. [PMID: 31209046 DOI: 10.1073/pnas.1901093116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polar bear (Ursus maritimus) and brown bear (Ursus arctos) are recently diverged species that inhabit vastly differing habitats. Thus, analysis of the polar bear and brown bear genomes represents a unique opportunity to investigate the evolutionary mechanisms and genetic underpinnings of rapid ecological adaptation in mammals. Copy number (CN) differences in genomic regions between closely related species can underlie adaptive phenotypes and this form of genetic variation has not been explored in the context of polar bear evolution. Here, we analyzed the CN profiles of 17 polar bears, 9 brown bears, and 2 black bears (Ursus americanus). We identified an average of 318 genes per individual that showed evidence of CN variation (CNV). Nearly 200 genes displayed species-specific CN differences between polar bear and brown bear species. Principal component analysis of gene CN provides strong evidence that CNV evolved rapidly in the polar bear lineage and mainly resulted in CN loss. Olfactory receptors composed 47% of CN differentiated genes, with the majority of these genes being at lower CN in the polar bear. Additionally, we found significantly fewer copies of several genes involved in fatty acid metabolism as well as AMY1B, the salivary amylase-encoding gene in the polar bear. These results suggest that natural selection shaped patterns of CNV in response to the transition from an omnivorous to primarily carnivorous diet during polar bear evolution. Our analyses of CNV shed light on the genomic underpinnings of ecological adaptation during polar bear evolution.
Collapse
|