1
|
Lee B, Kim M, Geem KR, Sung J. Improving Nutrient Use Efficiency of Rice Under Alternative Wetting and Drying Irrigation Combined with Slow-Release Nitrogen Fertilization. PLANTS (BASEL, SWITZERLAND) 2025; 14:1530. [PMID: 40431094 PMCID: PMC12114806 DOI: 10.3390/plants14101530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Rice (Oryza sativa L.), a key global staple crop; requires optimized nitrogen (N) and water management to achieve sustainable production under water-limited conditions while minimizing environmental pollution. Improving nitrogen use efficiency (NUE) under limited water availability is essential for sustainable rice production. This study investigated the combined effects of alternate wetting and drying (AWD) water management and slow-release fertilizer (SRF) on NUE photosynthesis; and growth in two rice cultivars; Samgwang (SG) and Milyang#360 (ML). Growth traits; including shoot and grain biomass; were significantly improved under AWD; especially when combined with SRF in the SG cultivar. Photosynthetic rate (Pn) was highest in SG under SRF + AWD treatment. Gene expression analysis revealed that AWD and SRF modulate the expression of nitrogen uptake and assimilation-related genes in a genotype-specific manner. The total nitrogen (N) content; NUE; and nitrogen uptake efficiency (NUpE) were highest under the SRF + AWD treatment. Additionally; the SRF + AWD treatment promoted carbohydrate accumulation in roots; potentially enhancing nutrient uptake under water-limited conditions. These findings highlight the combined application of SRF + AWD as a synergistic and genotype-responsive strategy that improves NUE and crop yield while conserving water and nitrogen resources. Our study provides a practical basis for integrating water and nitrogen management to improve resource efficiency and sustainability in rice cultivation.
Collapse
Affiliation(s)
| | | | - Kyoung Rok Geem
- Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
2
|
Zhang Z, Meng Y, Kong S, Du P. Tribenuron-methyl inhibited greenhouse gas emission and impacted the related functional pathways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:1357-1368. [PMID: 40037536 DOI: 10.1093/etojnl/vgaf058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/06/2025]
Abstract
This study investigates the combined effects of tribenuron-methyl and urea on soil bacterial communities, greenhouse gases emissions, and carbon (C) and nitrogen (N) cycle-related functions. High-throughput sequencing revealed significant impacts on bacterial diversity and composition, with responses varying across different concentrations, sampling times, and the presence of urea. Tribenuron-methyl inhibited bacterial diversity at early sampling times but increased diversity after 60 days in the highest treatment. The impact on bacterial phyla varied across treatments, with notable fluctuations in Proteobacteria, Chloroflexi, and Verrucomicrobiota abundance. Tribenuron-methyl also caused distinct shifts in bacterial community structure, with pronounced effects in the presence of urea. Tribenuron-methyl significantly suppressed CO2 release but had no significant effect on N2O emissions. Urea addition enhanced N2O release without altering the impact of tribenuron-methyl. Functional pathway analysis indicated that tribenuron-methyl inhibited C cycle-related enzymes, particularly without urea addition, while its effect on N cycle-related enzymes was minimal. These findings highlight the dynamic interactions between herbicides, nitrogen fertilizers, and soil microbial processes, offering insights into their ecological impacts and implications for agricultural management.
Collapse
Affiliation(s)
- Zhifan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yang Meng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuailong Kong
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Pengqiang Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
3
|
Hou D, Meng X, Qin M, Zheng E, Chen P, Meng F, Zhang C. Nitrous oxide (N2O) emission characteristics of farmland (rice, wheat, and maize) based on different fertilization strategies. PLoS One 2024; 19:e0305385. [PMID: 38976672 PMCID: PMC11230557 DOI: 10.1371/journal.pone.0305385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
Fertilizer application is the basis for ensuring high yield, high quality and high efficiency of farmland. In order to meet the demand for food with the increasing of population, the application of nitrogen fertilizer will be further increased, which will lead to problems such as N2O emission and nitrogen loss from farmland, it will easily deteriorate the soil and water environment of farmland, and will not conducive to the sustainable development of modern agriculture. However, optimizing fertilizer management is an important way to solve this problem. While, due to the differences in the study conditions (geographical location, environmental conditions, experimental design, etc.), leading to the results obtained in the literatures about the N2O emission with different nitrogen fertilizer application strategies have significant differences, which requiring further comprehensive quantitative analysis. Therefore, we analyzed the effects of nitrogen fertilizer application strategies (different fertilizer types and fertilizer application rates) on N2O emissions from the fields (rice, wheat and maize) based on the Meta-analysis using 67 published studies (including 1289 comparisons). For the three crops, inorganic fertilizer application significantly increased on-farm N2O emissions by 19.7-101.05% for all three; and organic fertilizer increased N2O emissions by 28.16% and 69.44% in wheat and maize fields, respectively, but the application of organic fertilizer in rice field significantly reduced N2O emissions by 58.1%. The results showed that overall, the application of inorganic fertilizers resulted in higher N2O emissions from farmland compared to the application of organic fertilizers. In addition, in this study, the average annual temperature, annual precipitation, soil type, pH, soil total nitrogen content, soil organic carbon content, and soil bulk weight were used as the main influencing factors of N2O emission under nitrogen fertilizer strategies, and the results of the study can provide a reference for the development of integrated management measures to control greenhouse gas emissions from agricultural soils.
Collapse
Affiliation(s)
- Dingmu Hou
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin, China
| | - Xuanchen Meng
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin, China
| | - Mengting Qin
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin, China
| | - Ennan Zheng
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin, China
| | - Peng Chen
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Fanxiang Meng
- School of Hydraulic and Electric Power, Heilongjiang University, Harbin, China
| | - Chao Zhang
- College of Hydraulic Engineering, Zhejiang Tongji Vocational College of Science and Technology, Zhejiang, China
| |
Collapse
|
4
|
Ma Q, Tao R, Jia W, Zhu M, Ding J, Li C, Guo W, Zhou G, Zhu X. Split application of polymer-coated urea combined with common urea improved nitrogen efficiency without sacrificing wheat yield and benefits while saving 20% nitrogen input. FRONTIERS IN PLANT SCIENCE 2024; 15:1321900. [PMID: 38375082 PMCID: PMC10875009 DOI: 10.3389/fpls.2024.1321900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Controlled-release nitrogen fertilizer (CRNF) has been expected to save labor input, reduce environmental pollution, and increase yield in crop production. However, the economic feasibility is still controversial due to its high cost. To clarify the suitable application strategy of CRNF in promoting the yield, nitrogen use efficiency and income on wheat grown in paddy soil, four equal N patterns were designed in 2017-2021 with polymer-coated urea (PCU) and common urea as material, including PCU applied once pre-sowing (M1), PCU applied 60% at pre-sowing and 40% at re-greening (M2), 30% PCU and 30% urea applied at pre-sowing, 20% PCU and 20% urea applied at re-greening (M3), and urea applied at four stage (CK, Basal:tillering:jointing:booting=50%:10%:20%:20%). In addition, M4-M6, which reduced N by 10%, 20% and 30% respectively based on M3, were designed in 2019-2021 to explore their potential for N-saving and efficiency-improving. The results showed that, compared with CK, M1 did not significantly reduce yield, but decreased the average N recovery efficiency (NRE) and benefits by 1.63% and 357.71 CNY ha-1 in the four years, respectively. M2 and M3 promoted tiller-earing, delayed the decrease of leaf area index (LAI) at milk-ripening stage, and increased dry matter accumulation post-anthesis, thereby jointly increasing spike number and grain weight of wheat, which significantly increased yield and NRE compared with CK in 2017-2021. Due to the savings in N fertilizer costs, M3 achieved the highest economic benefits. With the 20% N reduction, M5 increased NRE by 16.95% on average while decreasing yield and net benefit by only 6.39% and 7.40% respectively, compared with M3. Although NRE could continue to increase, but the yield and benefits rapidly decreased after N reduction exceeds 20%. These results demonstrate that twice-split application of PCU combined with urea is conducive to achieving a joint increase in yield, NRE, and benefits. More importantly, it can also significantly improve the NRE without losing yield and benefits while saving 20% N input.
Collapse
Affiliation(s)
- Quan Ma
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Rongrong Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Wenxin Jia
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
| | - Min Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Jinfeng Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Chunyan Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Wenshan Guo
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xinkai Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Yao Z, Guo H, Wang Y, Zhan Y, Zhang T, Wang R, Zheng X, Butterbach-Bahl K. A global meta-analysis of yield-scaled N 2 O emissions and its mitigation efforts for maize, wheat, and rice. GLOBAL CHANGE BIOLOGY 2024; 30:e17177. [PMID: 38348630 DOI: 10.1111/gcb.17177] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/15/2024]
Abstract
Maintaining or even increasing crop yields while reducing nitrous oxide (N2 O) emissions is necessary to reconcile food security and climate change, while the metric of yield-scaled N2 O emission (i.e., N2 O emissions per unit of crop yield) is at present poorly understood. Here we conducted a global meta-analysis with more than 6000 observations to explore the variation patterns and controlling factors of yield-scaled N2 O emissions for maize, wheat and rice and associated potential mitigation options. Our results showed that the average yield-scaled N2 O emissions across all available data followed the order wheat (322 g N Mg-1 , with the 95% confidence interval [CI]: 301-346) > maize (211 g N Mg-1 , CI: 198-225) > rice (153 g N Mg-1 , CI: 144-163). Yield-scaled N2 O emissions for individual crops were generally higher in tropical or subtropical zones than in temperate zones, and also showed a trend towards lower intensities from low to high latitudes. This global variation was better explained by climatic and edaphic factors than by N fertilizer management, while their combined effect predicted more than 70% of the variance. Furthermore, our analysis showed a significant decrease in yield-scaled N2 O emissions with increasing N use efficiency or in N2 O emissions for production systems with cereal yields >10 Mg ha-1 (maize), 6.6 Mg ha-1 (wheat) or 6.8 Mg ha-1 (rice), respectively. This highlights that N use efficiency indicators can be used as valuable proxies for reconciling trade-offs between crop production and N2 O mitigation. For all three major staple crops, reducing N fertilization by up to 30%, optimizing the timing and placement of fertilizer application or using enhanced-efficiency N fertilizers significantly reduced yield-scaled N2 O emissions at similar or even higher cereal yields. Our data-driven assessment provides some key guidance for developing effective and targeted mitigation and adaptation strategies for the sustainable intensification of cereal production.
Collapse
Affiliation(s)
- Zhisheng Yao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Haojie Guo
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yan Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yang Zhan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Tianli Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Rui Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xunhua Zheng
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Klaus Butterbach-Bahl
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, P.R. China
- Institute for Meteorology and Climate Research, Atmospheric Environmental Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
- Pioneer Center Land-CRAFT, Department of Agroecology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
6
|
Obbineni J, Kandasamy I, Vasantha WB, Smarandache F. Combining SWOT analysis and neutrosophic cognitive maps for multi-criteria decision making: a case study of organic agriculture in India. Soft comput 2023:1-22. [PMID: 37362278 PMCID: PMC10155176 DOI: 10.1007/s00500-023-08097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 06/28/2023]
Abstract
The conventional agricultural system heavily depends on chemicals and inorganic fertilizers, which cause environmental issues. Organic agriculture impacts 6 of the 17 Sustainable Developmental Goals (SDGs) of the United Nations. Strategies to develop organic agriculture have used SWOT and MCDM techniques for analysis. However, the examination of the influence of one strategy over the other strategies has yet to be investigated. This paper proposes a model that combines the existing SWOT analysis with neutrosophic cognitive maps (NCM) models to analyze interconnections among the various strategies obtained from SWOT. This research deploys the proposed SWOT-NCM model to analyze the case study of developing organic farming in Tamil Nadu, India. It offers insights into the strategy's influence over other strategies so that the best is given maximum importance while implementing organic farming. The framework captures the interconnections and ranks the strategies by order of influence, providing fresh insights by taking the farmers' perspective while working with the strategies from the SWOT analysis to model an NCM. A comparative analysis of this SWOT-NCM model with other MCDM models that use SWOT to analyze the agriculture problem, and a sensitivity analysis of the proposed model, is performed. According to our study, the best possible strategy to encourage organic farming is minimum support price (MSP) and centralized procurement. This proposed model can analyze other MCDM problems that use SWOT analysis.
Collapse
Affiliation(s)
- Jagan Obbineni
- VIT School of Agricultural Innovations and Advanced Learning (VAIAL), VIT, Tiruvalam Rd, Vellore, Tamil Nadu 632014 India
| | - Ilanthenral Kandasamy
- School of Computer Science and Engineering (SCOPE), VIT, Tiruvalam Rd, Vellore, Tamil Nadu 632014 India
| | - W. B. Vasantha
- School of Computer Science and Engineering (SCOPE), VIT, Tiruvalam Rd, Vellore, Tamil Nadu 632014 India
| | - Florentin Smarandache
- Department of Mathematics, University of New Mexico, 705 Gurley Avenue, Gallup, NM 87301 USA
| |
Collapse
|
7
|
Ma Y, Zhang S, Feng D, Duan N, Rong L, Wu Z, Shen Y. Effect of different doses of nitrogen fertilization on bioactive compounds and antioxidant activity of brown rice. Front Nutr 2023; 10:1071874. [PMID: 36819670 PMCID: PMC9936061 DOI: 10.3389/fnut.2023.1071874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Brown rice as a whole grain food is associated with various chronic diseases' reduced risks. In this study, the effects of different doses of nitrogen fertilization (0, 160, 210, 260, 315, and 420 kg N/ 100 m2) on bioactive compounds and antioxidant activity of brown rice (yanfeng47) were investigated. At nitrogen level of 210-260 kg N/100 m2, the content of TFC (302.65 mg/100 g), β-sitosterol (1762.92 mg/100 g), stigmasterol (1358.735 mg/100 g), DPPH (74.57%), and OH free radical scavenging (74.19%) was the highest. The major phenolic acid was p-hydroxybenzoic acid. There were significant positive linear relationships between TFC (0.872, 0.843), β-sitosterol (0.896, 0.657), stigmasterol (0.543, 0.771), p-hydroxybenzoic acid (0.871, 0.875), and DPPH, OH antioxidant activity. These indicated that TFC and phytosterols were the most important components in brown rice that had strong antioxidant activity. Composite score of principal components indicated 210 Kg N/100 m2 exhibited a more ideal dose of nitrogen for nutritional composition and antioxidant activity of brown rice.
Collapse
Affiliation(s)
- Yichao Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shuang Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Daguang Feng
- College of Science, Shenyang Agricultural University, Shenyang, China
| | - Nuoqi Duan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Liyan Rong
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China,*Correspondence: Zhaoxia Wu,
| | - Yixiao Shen
- College of Food Science, Shenyang Agricultural University, Shenyang, China,Yixiao Shen,
| |
Collapse
|
8
|
Guo C, Liu X, He X. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154982. [PMID: 35381236 DOI: 10.1016/j.scitotenv.2022.154982] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen fertilization (NF) is one of the common practices to increase crop production worldwide over the past several decades. Nevertheless, unreasonable NF results in massive greenhouse gas (GHG) emissions, leading to climate change and global warming. Many studies have already reported the impact of NF on crop yield, global warming potential (GWP) and greenhouse gas intensity (GHGI), but the studies were limited to only some parameters. In this study, a total of 174 studies from 16 countries were collected and then a regression analysis was conducted to obtain the appropriate N fertilization rates that enhance crop yield while reducing GWP and GHGI. After that, a meta-analysis was performed to evaluate the effects of NF on crop yield, GHGI, GWP and GHG emissions and identify NF management strategies that benefit crop yield and maintain GWP. The results showed that the suitable N fertilization rate was 180, 150, 130 and 200 kg ha-1 for wheat, maize, rice and vegetables or industrial crops, respectively. Overall, NF resulted in positive effect size in crop yield (0.56) and negative effect size in GHGI (-0.14) compared to NNF. GWP showed positive effect size (0.37) due to an increase in N2O emissions (0.91) relative to NNF, which is higher than the increase of CH4 emissions (0.01) and CO2 emissions (0.22). It was recommended that split and banded application of urea or urea plus manure is employed for cereals (especially wheat) in the arid and semi-arid regions with medium-textured and neutral or alkaline soil.
Collapse
Affiliation(s)
- Chan Guo
- College of Economics, Henan University, Kaifeng 475000, Henan, China.
| | - Xufei Liu
- College of Water Resource and Architectural Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuefei He
- College of Water Resource and Architectural Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
9
|
Effects of Water and Fertilizer Management Practices on Methane Emissions from Paddy Soils: Synthesis and Perspective. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127324. [PMID: 35742575 PMCID: PMC9223590 DOI: 10.3390/ijerph19127324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022]
Abstract
Water and fertilizer management practices are considered to have great influence on soil methane (CH4) emissions from paddy fields. However, few studies have conducted a quantitative analysis of the effects of these management practices. Here, we selected 156 observations of water management from 34 articles and 288 observations of fertilizer management from 37 articles and conducted a global meta-analysis of the effects of water and fertilizer management practices on soil CH4 emissions in paddy fields. In general, compared with traditional irrigation (long-term flooding irrigation), water-saving irrigation significantly decreased soil CH4 emissions but increased rice yield. Among the different practices, intermittent irrigation had the fewest reductions in CH4 emissions but the greatest increase in rice yield. In addition, fertilization management practices such as manure, mixed fertilizer (mixture), and straw significantly enhanced CH4 emissions. Rice yields were increased under fertilization with a mixture, traditional fertilizer, and controlled release fertilizer. Our results highlight that suitable agricultural water and fertilizer management practices are needed to effectively reduce CH4 emissions while maintaining rice yields. We also put forward some prospects for mitigating soil CH4 emissions from paddy fields in the context of global warming in the future.
Collapse
|
10
|
Management Strategies to Mitigate N2O Emissions in Agriculture. Life (Basel) 2022; 12:life12030439. [PMID: 35330190 PMCID: PMC8949344 DOI: 10.3390/life12030439] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
The concentration of greenhouse gases (GHGs) in the atmosphere has been increasing since the beginning of the industrial revolution. Nitrous oxide (N2O) is one of the mightiest GHGs, and agriculture is one of the main sources of N2O emissions. In this paper, we reviewed the mechanisms triggering N2O emissions and the role of agricultural practices in their mitigation. The amount of N2O produced from the soil through the combined processes of nitrification and denitrification is profoundly influenced by temperature, moisture, carbon, nitrogen and oxygen contents. These factors can be manipulated to a significant extent through field management practices, influencing N2O emission. The relationships between N2O occurrence and factors regulating it are an important premise for devising mitigation strategies. Here, we evaluated various options in the literature and found that N2O emissions can be effectively reduced by intervening on time and through the method of N supply (30–40%, with peaks up to 80%), tillage and irrigation practices (both in non-univocal way), use of amendments, such as biochar and lime (up to 80%), use of slow-release fertilizers and/or nitrification inhibitors (up to 50%), plant treatment with arbuscular mycorrhizal fungi (up to 75%), appropriate crop rotations and schemes (up to 50%), and integrated nutrient management (in a non-univocal way). In conclusion, acting on N supply (fertilizer type, dose, time, method, etc.) is the most straightforward way to achieve significant N2O reductions without compromising crop yields. However, tuning the rest of crop management (tillage, irrigation, rotation, etc.) to principles of good agricultural practices is also advisable, as it can fetch significant N2O abatement vs. the risk of unexpected rise, which can be incurred by unwary management.
Collapse
|
11
|
Liu J, Desjardins RL, Wang S, Worth DE, Qian B, Shang J. Climate impact from agricultural management practices in the Canadian Prairies: Carbon equivalence due to albedo change. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113938. [PMID: 34688049 DOI: 10.1016/j.jenvman.2021.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
It is generally accepted that land use and land management practices impact climate change through sequestration of carbon in soils, but modulation of surface energy budget can also be important. Using Landsat data to characterize cropland albedos in Canada's three prairie soil zones, this study estimates the atmospheric carbon equivalent drawdown of albedo radiative forcing for three management practices: 1) moving from conventional tillage to no-till, 2) eliminating summer fallow in crop rotations, and 3) growing crops with higher albedos. In a 50-year time horizon, conversion from conventional tillage to no-till results in a total equivalent atmospheric CO2 (CO2-eq) drawdown of 1.0-1.5 kg m-2, and conversion from summer fallow to crops results in CO2-eq drawdown of 1.1-2.4 kg m-2. Conversion of summer fallow to crops results in different magnitudes of CO2-eq drawdown depending on specific crops. Lentils, peas, and canola have relatively higher albedo than that of spring wheat and flax; hence, a larger magnitude of CO2-eq drawdown results when they replace summer fallow in the rotation. For the management changes from 1990 to 2019 for the whole Canadian Prairies, albedo changes induced a CO2-eq drawdown of about 179.3 ± 20.9 Tg due to increased area of no-till, and 101.6 ± 9.5 Tg due to reduced area under fallow. The study shows that the magnitudes of CO2-eq drawdown due to albedo change are comparable to that due to soil carbon sequestration. Therefore, it is important to account for cropland albedo changes in assessing the potential of agricultural management practices to mitigate climate change.
Collapse
Affiliation(s)
- Jiangui Liu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A0C6, Canada.
| | - Raymond L Desjardins
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A0C6, Canada.
| | - Shusen Wang
- Canada Centre for Remote Sensing, Natural Resources Canada, Ottawa, Ontario, K1A0E6, Canada
| | - Devon E Worth
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A0C6, Canada
| | - Budong Qian
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A0C6, Canada
| | - Jiali Shang
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A0C6, Canada
| |
Collapse
|
12
|
Shakoor A, Arif MS, Shahzad SM, Farooq TH, Ashraf F, Altaf MM, Ahmed W, Tufail MA, Ashraf M. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil? - A global meta-analysis. ENVIRONMENTAL RESEARCH 2021; 202:111789. [PMID: 34333013 DOI: 10.1016/j.envres.2021.111789] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Greenhouse gaseous (GHGs) emissions from cropland soils are one of the major contributors to global warming. However, the extent and pattern of these climatic breakdowns are usally determined by the management practices in-place. The use of biochar on cropland soils holds a great promise for increasing the overall crop productivity. Nevertheless, biochar application to agricultural soils has grown in popularity as a strategy to off-set the negative feedback associated with agriculture GHGs emissions, i.e., CO2 (carbon dioxide), CH4 (methane), and N2O (nitrous oxide). Despite increasing efforts to uncover the potential of biochar to mitigate the farmland GHGs effects, there has been little synthesis of how different types of biochar affect GHGs fluxes from cropland soils under varied experimental conditions. Here, we presented a meta-analysis of the interactions between biochar and GHGs emissions across global cropland soils, with field experiments showing the strongest GHG mitigation potential, i.e. CO2 (RR = -0.108) and CH4 (RR = -0.399). The biochar pyrolysis temperature, feedstock, C: N ratio, and pH were also found to be important factors influencing GHGs emissions. A prominent reduction in N2O (RR = -0.13) and CH4 (RR = -1.035) emissions was observed in neutral soils (pH = 6.6-7.3), whereas acidic soils (pH ≤ 6.5) accounted for the strongest mitigation effect on CO2 compared to N2O and CH4 emissions. We also found that a biochar application rate of 30 t ha-1 was best for mitigating GHGs emissions while achieving optimal crop yield. According to our meta-analysis, maize crop receiving biochar amendment showed a significant mitigation potential for CO2, N2O, and CH4 emissions. On the other hand, the use of biochar had shown significant impact on the global warming potential (GWP) of total GHGs emissions. The current data synthesis takes the lead in analyzing emissions status and mitigation potential for three of the most common GHGs from cropland soils and demonstrates that biochar application can significantly reduce the emissions budget from agriculture.
Collapse
Affiliation(s)
- Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - Muhammad Saleem Arif
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | - Taimoor Hassan Farooq
- Bangor College China, a Joint Unit of Bangor University, Wales, UK and Central South University of Forestry and Technology, Changsha 410004, China
| | - Fatima Ashraf
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Mohsin Altaf
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Waqas Ahmed
- Guangdong Provincial Key Laboratory for Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Muhammad Aammar Tufail
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123, Trento, Italy
| | - Muhammad Ashraf
- Department of Soil Science, Faculty of Agriculture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| |
Collapse
|
13
|
Wang X, Lu P, Yang P, Ren S. Effects of fertilizer and biochar applications on the relationship among soil moisture, temperature, and N 2O emissions in farmland. PeerJ 2021; 9:e11674. [PMID: 34322320 PMCID: PMC8300497 DOI: 10.7717/peerj.11674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Background Di-nitrogen oxide (N2O) emissions from soil may lead to nonpoint-source pollution in farmland. Improving the C and N content in the soil is an excellent strategy to reduce N2O emission and mitigate soil N loss. However, this method lacks a unified mathematical index or standard to evaluate its effect. Methods To quantify the impact of soil improvement (C and N) on N2O emissions, we conducted a 2-year field experiment using biochar as carbon source and fertilizer as nitrogen source, setting three treatments (fertilization (300 kg N ha−1), fertilization + biochar (30 t ha−1), control). Results Results indicate that after biochar application, the average soil water content above 20 cm increased by ∼26% and 26.92% in 2019, and ∼10% and 12.49% in 2020. The average soil temperature above 20 cm also increased by ∼2% and 3.41% in 2019. Fertigation significantly promotes the soil N2O emissions, and biochar application indeed inhibited the cumulation by approximately 52.4% in 2019 and 33.9% in 2020, respectively. N2O emissions strongly depend on the deep soil moisture and temperature (20–80 cm), in addition to the surface soil moisture and temperature (0–20 cm). Therefore, we established an exponential model between the soil moisture and N2O emissions based on theoretical analysis. We find that the N2O emissions exponentially increase with increasing soil moisture regardless of fertilization or biochar application. Furthermore, the coefficient a < 0 means that N2O emissions initially increase and then decrease. The aRU < aCK indicates that fertilization does promote the rate of N2O emissions, and the aBRU > aRU indicates that biochar application mitigates this rate induced by fertilization. This conclusion can be verified by the sensitivity coefficient (SCB of 1.02 and 14.74; SCU of 19.18 and 20.83). Thus, we believe the model can quantify the impact of soil C and N changes on N2O emissions. We can conclude that biochar does significantly reduce N2O emissions from farmland.
Collapse
Affiliation(s)
- Xiao Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
| | - Ping Lu
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Peiling Yang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
| | - Shumei Ren
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
14
|
Shakoor A, Shahzad SM, Chatterjee N, Arif MS, Farooq TH, Altaf MM, Tufail MA, Dar AA, Mehmood T. Nitrous oxide emission from agricultural soils: Application of animal manure or biochar? A global meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112170. [PMID: 33607561 DOI: 10.1016/j.jenvman.2021.112170] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Organic amendments (animal manure and biochar) to agricultural soils may enhance soil organic carbon (SOC) contents, improve soil fertility and crop productivity but also contribute to global warming through nitrous oxide (N2O) emission. However, the effects of organic amendments on N2O emissions from agricultural soils seem variable among numerous research studies and remains uncertain. Here, eighty-five publications (peer-reviewed) were selected to perform a meta-analysis study. The results of this meta-analysis study show that the application of animal manure enhanced N2O emissions by 17.7%, whereas, biochar amendment significantly mitigated N2O emissions by 19.7%. Moreover, coarse textured soils increased [lnRR‾ = 182.6%, 95% confidence interval (CI) = 151.4%, 217.7%] N2O emission after animal manure, in contrast, N2O emission mitigated by 7.0% from coarse textured soils after biochar amendment. In addition, this study found that 121-320 kg N ha-1 and ⩽ 30 T ha-1 application rates of animal manure and biochar mitigated N2O emissions by 72.3% and 22.5%, respectively. Soil pH also played a vital role in regulating the N2O emissions after organic amendments. Furthermore, > 10 soil C: N ratios increased N2O emissions by 121.4% and 27.6% after animal and biochar amendments, respectively. Overall, animal manure C: N ratios significantly enhanced N2O emissions, while, biochar C: N ratio had not shown any effect on N2O emissions. Overall, average N2O emission factors (EFs) for animal manure and biochar amendments were 0.46% and -0.08%, respectively. Thus, the results of this meta-analysis study provide scientific evidence about how organic amendments such as animal manure and biochar regulating the N2O emission from agricultural soils.
Collapse
Affiliation(s)
- Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | | | - Muhammad Saleem Arif
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Taimoor Hassan Farooq
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Muhammad Mohsin Altaf
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou, 570228, PR China
| | - Muhammad Aammar Tufail
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, 38010, Italy; Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123, Trento, Italy
| | - Afzal Ahmed Dar
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian, China
| | - Tariq Mehmood
- College of Environment, Hohai University, 210098, Nanjing, China
| |
Collapse
|
15
|
Lan T, Zhang H, Han Y, Deng O, Tang X, Luo L, Zeng J, Chen G, Wang C, Gao X. Regulating CH 4, N 2O, and NO emissions from an alkaline paddy field under rice-wheat rotation with controlled release N fertilizer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:18246-18259. [PMID: 33409996 DOI: 10.1007/s11356-020-11846-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Controlled release fertilizer (CRF) has been shown to increase crop yield and N use efficiency (NUE) compared with traditional chemical fertilizer (TF). However, few studies examined the effects of CRF on CH4, N2O, and NO emissions simultaneously in alkaline paddy fields under rice-wheat rotation. In the present study, we conducted a 2-year field experiment to compare the effects of different CRF application strategies on these gas emissions with those of TF and explored the effects of CRF on global warming potential (GWP), crop yields, and greenhouse gas emission intensity (GHGI). Results showed that CRF can reduce 0.98-14.3%, 13.3-21.1%, and 8.22-16.3% of CH4, N2O, and NO emissions, respectively, in the studied alkaline paddy field. CRF reduce CH4 emission probably by regulating soil NH4+ concentration. CRF reduce N2O and NO emissions probably by regulating inorganic N content in the studied alkaline paddy soil. CRF had the same effect on annual crop yield as TF, especially when CRF was applied twice in each season and had the same N application rate as TF. Annual crop yields and the agronomic efficiency of N (AEN) increased by 8.24% and 21.6%, respectively. On the average of the two rice-wheat rotation cycles, GHGI significantly decreased by up to 14.1% after the application of CRF as relative to that after the application of TF (P < 0.05). These results suggest that CRF is an environment-friendly N fertilization strategy for mitigating GWP and ensuring high crop yield in an alkaline paddy field under rice-wheat rotation.
Collapse
Affiliation(s)
- Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Heng Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yong Han
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, China
| | - Ouping Deng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
16
|
Shakoor A, Shahbaz M, Farooq TH, Sahar NE, Shahzad SM, Altaf MM, Ashraf M. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142299. [PMID: 33182198 DOI: 10.1016/j.scitotenv.2020.142299] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
No-tillage (NT) practice is extensively adopted with aims to improve soil physical conditions, carbon (C) sequestration and to alleviate greenhouse gases (GHGs) emissions without compromising crop yield. However, the influences of NT on GHGs emissions and crop yields remains inconsistent. A global meta-analysis was performed by using fifty peer-reviewed publications to assess the effectiveness of soil physicochemical properties, nitrogen (N) fertilization, type and duration of crop, water management and climatic zones on GHGs emissions and crop yields under NT compared to conventional tillage (CT) practices. The outcome reveals that compared to CT, NT increased CO2, N2O, and CH4 emissions by 7.1, 12.0, and 20.8%, respectively. In contrast, NT caused up to 7.6% decline in global warming potential as compared to CT. However, absence of difference in crop yield was observed both under NT and CT practices. Increasing N fertilization rates under NT improved crop yield and GHGs emission up to 23 and 58%, respectively, compared to CT. Further, NT practices caused an increase of 16.1% CO2 and 14.7% N2O emission in the rainfed areas and up to 54.0% CH4 emission under irrigated areas as compared to CT practices. This meta-analysis study provides a scientific basis for evaluating the effects of NT on GHGs emissions and crop yields, and also provides basic information to mitigate the GHGs emissions that are associated with NT practice.
Collapse
Affiliation(s)
- Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198 Lleida, Spain.
| | - Muhammad Shahbaz
- Centre for Environmental and Climate Research, Lund University, 223 62 Lund, Sweden
| | - Taimoor Hassan Farooq
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Najam E Sahar
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Sher Muhammad Shahzad
- Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha 40100, Punjab, Pakistan
| | - Muhammad Mohsin Altaf
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou 570228, PR China
| | - Muhammad Ashraf
- Department of Soil Science, Faculty of Agriculture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| |
Collapse
|
17
|
Shakoor A, Ashraf F, Shakoor S, Mustafa A, Rehman A, Altaf MM. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38513-38536. [PMID: 32770337 DOI: 10.1007/s11356-020-10151-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Carbon dioxide (CO2) is mainly universal greenhouse gas associated with climate change. However, beyond CO2, some other greenhouse gases (GHGs) like methane (CH4) and nitrous oxide (N2O), being two notable gases, contribute to global warming. Since 1900, the concentrations of CO2 and non-CO2 GHG emissions have been elevating, and due to the effects of the previous industrial revolution which is responsible for climate forcing. Globally, emissions of CO2, CH4, and N2O from agricultural sectors are increasing as around 1% annually. Moreover, deforestation also contributes 12-17% of total global GHGs. Perhaps, the average temperature is likely to increase globally, at least 2 °C by 2100-by mid-century. These circumstances are responsible for climate forcing, which is the source of various human health diseases and environmental risks. From agricultural soils, rhizospheric microbial communities have a significant role in the emissions of greenhouse gases. Every year, microbial communities release approximately 1.5-3 billion tons of carbon into the atmospheric environment. Microbial nitrification, denitrification, and respiration are the essential processes that affect the nitrogen cycle in the terrestrial environment. In the twenty-first century, climate change is the major threat faced by human beings. Climate change adversely influences human health to cause numerous diseases due to their direct association with climate change. This review highlights the different anthropogenic GHG emission sources, the response of microbial communities to climate change, climate forcing potential, and mitigation strategies through different agricultural management approaches and microbial communities.
Collapse
Affiliation(s)
- Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| | - Fatima Ashraf
- Department of Chemistry, Lahore College for Women University, Lahore, Pakistan
| | - Saba Shakoor
- Department of Zoology, The Women University Multan, Multan, Pakistan
| | - Adnan Mustafa
- National Engineering Laboratory for Improving Quality of Arable Land, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Mohsin Altaf
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Ecology and Environment, Hainan University, Haikou, 570228, People's Republic of China
| |
Collapse
|