1
|
Yang J, Cha Y, Oh SY. Habitat prevails over host sex in influencing mycobiome structure of terrestrial isopod, Armadillidium vulgare. Microbiol Spectr 2025; 13:e0217224. [PMID: 40162752 PMCID: PMC12054099 DOI: 10.1128/spectrum.02172-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
The terrestrial isopod, a crustacean order that has successfully transitioned from aquatic to land ecosystem, functions as a soil bioengineer and plays a crucial role in ecological decomposition. While there has been comprehensive documentation of bacterial associations with isopods, suggesting their contribution to digestive processes, the fungal component of isopods remains a less-explored dimension. Expanding our fundamental exploration into terrestrial isopods, we investigated whether the fungal community in Armadillidium vulgare is more significantly influenced by host sex or habitat using high-throughput sequencing-based internal transcribed spacer region amplification. Our findings revealed that the isopod mycobiome structure and taxonomic composition are predominantly shaped by the host's habitat rather than its sex. While the fungal richness of the mycobiome varied based on isopod sex, the co-occurrence network exhibited distinct variations dependent on both habitat and host sex. Finally, we observed a complete overlap of core mycobiomes based on isopod sex and identified fungal residents that are consistently distributed in a manner specific to habitat. In conclusion, we assert that community assembly of the isopod mycobiome in an untouched ecosystem is more significantly influenced by location than sex. We contend that this offers a fundamental groundwork, laying the cornerstone for future investigations into terrestrial isopods-pivotal agents in ecological decomposition within ecosystems.IMPORTANCEThis study addresses a significant knowledge gap in the mycobiome of terrestrial isopods, an area that has received limited scientific attention despite extensive research on bacterial associations within these organisms. Using high-throughput sequencing, this study demonstrates that the habitat of Armadillidium vulgare exerts a more pronounced influence on the composition of its mycobiome compared with host sex. By examining variations in community structure, diversity, co-occurrence patterns, and identifying core mycobiomes and specialist taxa based on isopod location, this study provides crucial foundational data. These findings are essential for advancing future research on the ecological and evolutionary dynamics of fungal communities in terrestrial isopods.
Collapse
Affiliation(s)
- Jiho Yang
- Gyeongnam Bio and Anti-aging Core Facility Center, Changwon National University, Changwon, South Korea
| | - Yehyeon Cha
- Department of Biology and Microbiology, Changwon National University, Changwon, South Korea
| | - Seung-Yoon Oh
- Gyeongnam Bio and Anti-aging Core Facility Center, Changwon National University, Changwon, South Korea
- Department of Biology and Microbiology, Changwon National University, Changwon, South Korea
- Department of Biology and Chemistry, Changwon National University, Changwon, South Korea
| |
Collapse
|
2
|
Martin S, Smith C, Stewart K, Barr W, Cheslett D, O'Connor I, Swords F, Ijaz UZ, O'Dwyer K. The hepatopancreas microbiome of velvet crab, Necora puber. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70014. [PMID: 39354672 PMCID: PMC11445078 DOI: 10.1111/1758-2229.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Crustaceans are a valuable resource globally, both ecologically and economically, and investigations into their health are becoming increasingly important as exploitation rises. The microbiome plays a crucial role in crustacean immunity, and understanding its composition and structure can provide insights into the health of an organism and its interactions with various factors. In this study, we investigated the hepatopancreas microbiome of the velvet swimming crab, Necora puber, and compared its composition and structure with several study factors, including two different sampling points and infection with a paramyxid parasite, Paramarteilia canceri. To our knowledge, we provide the first description of a velvet crab microbiome, highlighting the dominance of a single microorganism, Candidatus hepatoplasma. We identified variations in microbiome composition between sampling points and discussed the possible processes affecting microbiome assembly. We also outline a core microbiome for the velvet crab hepatopancreas, consisting of 12 core phyla. Our study adds to the growing literature on crustacean microbiomes and provides a baseline for future investigations into the velvet crab microbiome and the health of this crustacean species.
Collapse
Affiliation(s)
- Signe Martin
- Marine and Freshwater Research Centre, Atlantic Technological University, Galway, Ireland
| | - Cindy Smith
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Kelly Stewart
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - William Barr
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | | | - Ian O'Connor
- Marine and Freshwater Research Centre, Atlantic Technological University, Galway, Ireland
| | | | - Umer Zeeshan Ijaz
- James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Katie O'Dwyer
- Marine and Freshwater Research Centre, Atlantic Technological University, Galway, Ireland
| |
Collapse
|
3
|
Timanikova N, Fletcher K, Han JW, van West P, Woodward S, Kim GH, Küpper FC, Wenzel M. Macroalgal eukaryotic microbiome composition indicates novel phylogenetic diversity and broad host spectrum of oomycete pathogens. Environ Microbiol 2024; 26:e16656. [PMID: 38818657 DOI: 10.1111/1462-2920.16656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Seaweeds are important components of marine ecosystems with emerging potential in aquaculture and as sources of biofuel, food products and pharmacological compounds. However, an increasingly recognised threat to natural and industrial seaweed populations is infection with parasitic single-celled eukaryotes from the relatively understudied oomycete lineage. Here we examine the eukaryomes of diverse brown, red and green marine macroalgae collected from polar (Baffin Island), cold-temperate (Falkland Islands) and tropical (Ascension Island) locations, with a focus on oomycete and closely related diatom taxa. Using 18S rRNA gene amplicon sequencing, we show unexpected genetic and taxonomic diversity of the eukaryomes, a strong broad-brush association between eukaryome composition and geographic location, and some evidence of association between eukaryome structure and macroalgal phylogenetic relationships (phylosymbiosis). However, the oomycete fraction of the eukaryome showed disparate patterns of diversity and structure, highlighting much weaker association with geography and no evidence of phylosymbiosis. We present several novel haplotypes of the most common oomycete Eurychasma dicksonii and report for the first time a cosmopolitan distribution and absence of host specificity of this important pathogen. This indicates rich diversity in macroalgal oomycete pathogens and highlights that these pathogens may be generalist and highly adaptable to diverse environmental conditions.
Collapse
Affiliation(s)
| | - Kyle Fletcher
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Oceanlab, University of Aberdeen, Newburgh, UK
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and Development, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jon-Wong Han
- Kongju National University, Gongju, South Chungcheong Province, South Korea
| | - Pieter van West
- Aberdeen Oomycete Laboratory, International Centre for Aquaculture Research and Development, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Steve Woodward
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Gwang-Hoon Kim
- Kongju National University, Gongju, South Chungcheong Province, South Korea
| | - Frithjof C Küpper
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- Kongju National University, Gongju, South Chungcheong Province, South Korea
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, UK
- Department of Chemistry and Biochemistry, San Diego State University, California, San Diego, California, USA
| | - Marius Wenzel
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Dragičević P, Rosado D, Bielen A, Hudina S. Host-related traits influence the microbial diversity of the invasive signal crayfish Pacifastacus leniusculus. J Invertebr Pathol 2024; 202:108039. [PMID: 38097037 DOI: 10.1016/j.jip.2023.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/22/2023]
Abstract
The microbiome influences a variety of host-environment interactions, and there is mounting evidence of its significant role in biological invasions. During invasion, shifts in microbial diversity and function can occur due to both changing characteristics of the novel environment and physiological condition of the host. The signal crayfish (Pacifastacus leniusculus) is one of the most successful crayfish invaders in Europe. During range expansion, its populations often exhibit differences in many traits along the invasion range, including sex-composition, size-structure and aggressiveness, but to date it was not studied whether crayfish traits can also drive changes in the host microbiome. Thus, we used 16S rRNA gene amplicon sequencing to examine the effects of host-related traits, namely total length (TL), body condition index (FCF), hepatosomatic index (HSI) and sex on the microbial diversity of the signal crayfish. We examined both external (exoskeletal) and internal (intestinal, hepatopancreatic, hemolymph) microbiomes of 110 signal crayfish individuals from four sites along its invasion range in the Korana River, Croatia. While sex did not exhibit a significant effect on the microbial diversity in any of the examined tissues, exoskeletal, intestinal and hemolymph microbial diversity significantly decreased with increasing crayfish size. Additionally, significant effects of signal crayfish condition (FCF, HSI) on microbial diversity were recorded in the hepatopancreas, a main energy storage organ in crayfish that supports reproduction and growth and also regulates immune response. Our findings provide a baseline for evaluating the contribution of microbiome to an invader's overall health, fitness and subsequent invasion success.
Collapse
Affiliation(s)
- Paula Dragičević
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Daniela Rosado
- S2AQUA - Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Avenida Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Kršnjavoga 25, Zagreb, Croatia
| | - Sandra Hudina
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia.
| |
Collapse
|
5
|
Rodríguez-Barreto D, Sanz-González JC, Martín MV, Arrieta JM, Almansa E. Sex-specific bacterial microbiome variation in octopus vulgaris skin. Front Microbiol 2024; 14:1233661. [PMID: 38318128 PMCID: PMC10842966 DOI: 10.3389/fmicb.2023.1233661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
Growing knowledge of the host-microbiota of vertebrates has shown the prevalence of sex-specific differences in the microbiome. However, there are virtually no studies assessing sex-associated variation in the microbiome of cephalopods. Here we assess sex-specific variation in the common octopus (Octopus vulgaris) skin microbiome using amplicon sequencing targeting the V4 hypervariable region of prokaryote 16S rRNA genes. Skin and mantle-associated mucus was collected from wild adult individuals of common Octopus (Octopus vulgaris) (9 males and 7 females of similar size). There were no significant differences in the alpha diversity of microbial communities associated with skin or mantle mucosa between sexes. However, our results clearly indicate that adult octopus males and females have a distinct microbial community composition in both skin and mantle associated mucus communities, with female microbiome being dominated by Firmicutes (48.1%), while that of males contained a majority of Proteobacteria (60.5%), with Firmicutes representing only 3.30%, not finding significant differentiation in the microbial communities between the tissues explored. The dominance of different taxa in the skin of O. vulgaris females and males (e.g., Mycoplasmatales and Lactococcus in females and Rhizobiales and Rhodobacteriales in males) suggests a sex-specific symbiosis in which those microbes benefit from easy access to distinct substrates present in female and male skin, respectively. Given the lack of differences in size between specimens of both sexes in this study, we hypothesize differences in hormone profile, as well as behavioral or ecological differences between sexes in the wild, as the main drivers of microbiome differentiation between sexes. Most knowledge of cephalopod microbiota is limited to the digestive tract and the reproductive system. However, cephalopod skin is an organ with a plethora of functions. This is a first attempt to characterize cephalopod skin microbiota and determine sex influence on it.
Collapse
Affiliation(s)
- Deiene Rodríguez-Barreto
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
- University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Juan Carlos Sanz-González
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
| | - M. Virginia Martín
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
| | - Jesús M. Arrieta
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
| | - Eduardo Almansa
- Canary Islands Oceanographic Center, Spanish Institute of Oceanography (IEO-CSIC), Santa Cruz de Tenerife, Spain
| |
Collapse
|
6
|
Panova MAZ, Varfolomeeva MA, Gafarova ER, Maltseva AL, Mikhailova NA, Granovitch AI. First insights into the gut microbiomes and the diet of the Littorina snail ecotypes, a recently emerged marine evolutionary model. Evol Appl 2023; 16:365-378. [PMID: 36793697 PMCID: PMC9923488 DOI: 10.1111/eva.13447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Microbes can play a prominent role in the evolution of their hosts, facilitating adaptation to various environments and promoting ecological divergence. The Wave and Crab ecotypes of the intertidal snail Littorina saxatilis is an evolutionary model of rapid and repeated adaptation to environmental gradients. While patterns of genomic divergence of the Littorina ecotypes along the shore gradients have been extensively studied, their microbiomes have been so far overlooked. The aim of the present study is to start filling this gap by comparing gut microbiome composition of the Wave and Crab ecotypes using metabarcoding approach. Since Littorina snails are micro-grazers feeding on the intertidal biofilm, we also compare biofilm composition (i.e. typical snail diet) in the crab and wave habitats. In the results, we found that bacterial and eukaryotic biofilm composition varies between the typical habitats of the ecotypes. Further, the snail gut bacteriome was different from outer environments, being dominated by Gammaproteobacteria, Fusobacteria, Bacteroidia and Alphaproteobacteria. There were clear differences in the gut bacterial communities between the Crab and the Wave ecotypes as well as between the Wave ecotype snails from the low and high shores. These differences were both observed in the abundances and in the presence of different bacteria, as well as at different taxonomic level, from bacterial OTU's to families. Altogether, our first insights show that Littorina snails and their associated bacteria are a promising marine system to study co-evolution of the microbes and their hosts, which can help us to predict the future for wild species in the face of rapidly changing marine environments.
Collapse
Affiliation(s)
- Marina A. Z. Panova
- Department of Marine Sciences‐TjärnöUniversity of GothenburgGothenburgSweden
- The Centre for Marine Evolutionary Biology CeMEBUniversity of GothenburgGothenburgSweden
| | | | - Elizaveta R. Gafarova
- Department of Invertebrate ZoologySt. Petersburg State UniversitySt. PetersburgRussia
| | - Arina L. Maltseva
- Department of Invertebrate ZoologySt. Petersburg State UniversitySt. PetersburgRussia
| | - Natalia A. Mikhailova
- Department of Invertebrate ZoologySt. Petersburg State UniversitySt. PetersburgRussia
- Centre of Cell TechnologiesInstitute of Cytology RASSt. PetersburgRussia
| | - Andrei I. Granovitch
- Department of Invertebrate ZoologySt. Petersburg State UniversitySt. PetersburgRussia
| |
Collapse
|
7
|
Wyness AJ, Roush D, McQuaid CD. Global distribution and diversity of marine euendolithic cyanobacteria. JOURNAL OF PHYCOLOGY 2022; 58:746-759. [PMID: 36199189 PMCID: PMC10092097 DOI: 10.1111/jpy.13288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Euendolithic, or true-boring, cyanobacteria actively erode carbonate-containing substrata in a wide range of environments and pose significant risks to calcareous marine fauna. Their boring activities cause structural damage and increase susceptibility to disease and are projected to only intensify with global climate change. Most research has, however, focused on tropical coral systems, and limited information exists on the global distribution, diversity, and substratum specificity of euendoliths. This metastudy aimed to collate existing 16S rRNA gene surveys along with novel data from the south coast of South Africa to investigate the global distribution and genetic diversity of endoliths to identify a "core endolithic cyanobacterial microbiome" and assess global diversification of euendolithic cyanobacteria. The cyanobacterial families Phormidesmiaceae, Nodosilineaceae, Nostocaceae, and Xenococcaceae were the most prevalent, found in >92% of categories surveyed. All four known euendolith clusters were detected in both intertidal and subtidal habitats, in the North Atlantic, Mediterranean, and South Pacific oceans, across temperate latitudes, and within rock, travertine tiles, coral, shell, and coralline algae substrata. Analysis of the genetic variation within clusters revealed many organisms to be unique to substratum type and location, suggesting high diversity and niche specificity. Euendoliths are known to have important effects on their hosts. This is particularly important when hosts are globally significant ecological engineers or habitat-forming species. The findings of this study indicate high ubiquity and diversity of euendolithic cyanobacteria, suggesting high adaptability, which may lead to increased community and ecosystem-level effects with changing climatic conditions favoring the biochemical mechanisms of cyanobacterial bioerosion.
Collapse
Affiliation(s)
- Adam J. Wyness
- Coastal Research GroupDepartment of Zoology and EntomologyRhodes UniversityMakhanda (Grahamstown)South Africa6139
- School of Biology and Environmental SciencesUniversity of MpumalangaMbombelaSouth Africa1200
| | - Daniel Roush
- Center for Fundamental and Applied MicrobiomicsBiodesign InstituteArizona State UniversityTempeArizona85287USA
| | - Christopher D. McQuaid
- Coastal Research GroupDepartment of Zoology and EntomologyRhodes UniversityMakhanda (Grahamstown)South Africa6139
| |
Collapse
|
8
|
Bates KA, Higgins C, Neiman M, King KC. Turning the tide on sex and the microbiota in aquatic animals. HYDROBIOLOGIA 2022; 850:3823-3835. [PMID: 37662671 PMCID: PMC10468917 DOI: 10.1007/s10750-022-04862-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 09/05/2023]
Abstract
Sex-based differences in animal microbiota are increasingly recognized as of biological importance. While most animal biomass is found in aquatic ecosystems and many water-dwelling species are of high economic and ecological value, biological sex is rarely included as an explanatory variable in studies of the aquatic animal microbiota. In this opinion piece, we argue for greater consideration of host sex in studying the microbiota of aquatic animals, emphasizing the many advancements that this information could provide in the life sciences, from the evolution of sex to aquaculture.
Collapse
Affiliation(s)
- Kieran A. Bates
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| | - Chelsea Higgins
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IW 52245 USA
- Department of Gender, Women’s, and Sexuality Studies, University of Iowa, Iowa City, IW 52245 USA
| | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford, OX1 3SZ UK
| |
Collapse
|
9
|
Oliveira JMM, Henriques I, Read DS, Gweon HS, Morgado RG, Peixoto S, Correia A, Soares AMVM, Loureiro S. Gut and faecal bacterial community of the terrestrial isopod Porcellionides pruinosus: potential use for monitoring exposure scenarios. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2096-2108. [PMID: 34553289 DOI: 10.1007/s10646-021-02477-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
This work aimed to characterize the gut and faeces bacterial communities (BC) of Porcellionides pruinosus using high-throughput sequencing. Isopods were collected from the field and kept in laboratory conditions similar to those normally applied in ecotoxicology tests. Faeces and purged guts of isopods (n = 3 × 30) were analysed by pyrosequencing the V3-V4 region of 16 S rRNA encoding gene. Results showed that gut and faecal BCs were dominated by Proteobacteria, particularly by an OTU (Operational Taxonomic Unit) affiliated to genus Coxiella. Diversity and richness values were statistically higher for faecal BC, mainly due to the occurrence of several low-abundance phylotypes. These results may reflect faecal carriage of bacterial groups that cannot settle in the gut. BCs of P. pruinosus comprised: (1) common members of the soil microbiota, (2) bacterial symbionts, (3) bacteria related to host metabolic/ecological features, and (4) bacterial etiological agents. Comparison of BC of this isopod species with the BC from other invertebrates revealed common bacterial groups across taxa. The baseline information provided by this work will assist the design and data interpretation of future ecotoxicological or biomonitoring assays where the analysis of P. pruinosus BC should be included as an additional indicator. CAPSULE: Terrestrial isopods bacterial communities might support ecotoxicological assays and biomonitoring processes as a valuable tool.
Collapse
Affiliation(s)
- Jacinta M M Oliveira
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Isabel Henriques
- University of Coimbra, CESAM & Department of Life Sciences, Faculty of Sciences and Technology, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal.
| | - Daniel S Read
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| | - Hyun S Gweon
- Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
- School of Biological Sciences, University of Reading, Whiteknights, Reading, Berkshire, RG6 6AH, UK
| | - Rui G Morgado
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Sara Peixoto
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - António Correia
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Susana Loureiro
- CESAM- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
10
|
Bredon M, Depuydt E, Brisson L, Moulin L, Charles C, Haenn S, Moumen B, Bouchon D. Effects of Dysbiosis and Dietary Manipulation on the Digestive Microbiota of a Detritivorous Arthropod. Microorganisms 2021; 9:microorganisms9010148. [PMID: 33440837 PMCID: PMC7826753 DOI: 10.3390/microorganisms9010148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
The crucial role of microbes in the evolution, development, health, and ecological interactions of multicellular organisms is now widely recognized in the holobiont concept. However, the structure and stability of microbiota are highly dependent on abiotic and biotic factors, especially in the gut, which can be colonized by transient bacteria depending on the host’s diet. We studied these impacts by manipulating the digestive microbiota of the detritivore Armadillidium vulgare and analyzing the consequences on its structure and function. Hosts were exposed to initial starvation and then were fed diets that varied the different components of lignocellulose. A total of 72 digestive microbiota were analyzed according to the type of the diet (standard or enriched in cellulose, lignin, or hemicellulose) and the period following dysbiosis. The results showed that microbiota from the hepatopancreas were very stable and resilient, while the most diverse and labile over time were found in the hindgut. Dysbiosis and selective diets may have affected the host fitness by altering the structure of the microbiota and its predicted functions. Overall, these modifications can therefore have effects not only on the holobiont, but also on the “eco-holobiont” conceptualization of macroorganisms.
Collapse
Affiliation(s)
- Marius Bredon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Elisabeth Depuydt
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Lucas Brisson
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Laurent Moulin
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l’Eau, R&D Biologie, F-94200 Ivry sur Seine, France; (L.M.); (C.C.); (S.H.)
| | - Ciriac Charles
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l’Eau, R&D Biologie, F-94200 Ivry sur Seine, France; (L.M.); (C.C.); (S.H.)
- Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, F-94700 Maisons-Alfort, France
| | - Sophie Haenn
- Eau de Paris, Direction de la Recherche et du Développement pour la Qualité de l’Eau, R&D Biologie, F-94200 Ivry sur Seine, France; (L.M.); (C.C.); (S.H.)
| | - Bouziane Moumen
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
| | - Didier Bouchon
- UMR CNRS 7267, Ecologie et Biologie des Interactions, Université de Poitiers, F-86073 Poitiers, France; (M.B.); (E.D.); (L.B.); (B.M.)
- Correspondence: ; Tel.: +33-(0)5-49-45-38-95; Fax: +33-(0)5-49-45-40-15
| |
Collapse
|
11
|
Bredon M, Herran B, Bertaux J, Grève P, Moumen B, Bouchon D. Isopod holobionts as promising models for lignocellulose degradation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:49. [PMID: 32190114 PMCID: PMC7071664 DOI: 10.1186/s13068-020-01683-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND Isopods have colonized all environments, partly thanks to their ability to decompose the organic matter. Their enzymatic repertoire, as well as the one of their associated microbiota, has contributed to their colonization success. Together, these holobionts have evolved several interesting life history traits to degrade the plant cell walls, mainly composed of lignocellulose. It has been shown that terrestrial isopods achieve lignocellulose degradation thanks to numerous and diverse CAZymes provided by both the host and its microbiota. Nevertheless, the strategies for lignocellulose degradation seem more diversified in isopods, in particular in aquatic species which are the least studied. Isopods could be an interesting source of valuable enzymes for biotechnological industries of biomass conversion. RESULTS To provide new features on the lignocellulose degradation in isopod holobionts, shotgun sequencing of 36 metagenomes of digestive and non-digestive tissues was performed from several populations of four aquatic and terrestrial isopod species. Combined to the 15 metagenomes of an additional species from our previous study, as well as the host transcriptomes, this large dataset allowed us to identify the CAZymes in both the host and the associated microbial communities. Analyses revealed the dominance of Bacteroidetes and Proteobacteria in the five species, covering 36% and 56% of the total bacterial community, respectively. The identification of CAZymes and new enzymatic systems for lignocellulose degradation, such as PULs, cellulosomes and LPMOs, highlights the richness of the strategies used by the isopods and their associated microbiota. CONCLUSIONS Altogether, our results show that the isopod holobionts are promising models to study lignocellulose degradation. These models can provide new enzymes and relevant lignocellulose-degrading bacteria strains for the biotechnological industries of biomass conversion.
Collapse
Affiliation(s)
- Marius Bredon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Benjamin Herran
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Joanne Bertaux
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Pierre Grève
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Didier Bouchon
- Laboratoire Ecologie et Biologie des Interactions-UMR CNRS 7267, Ecologie et Biologie des Interactions-Bâtiment B8-B35, Université de Poitiers, 5 rue Albert Turpin, TSA 51106, 86073 Poitiers Cedex 9, France
| |
Collapse
|