1
|
Petay M, Tang E, Bouderlique E, Zaworski J, Dazzi A, Letavernier E, Bazin D, Mathurin J, Deniset-Besseau A. Nano-Investigation of Mineralized Biological Samples Chemical Composition: Experimental Challenges, Constraints, and Considerations. Anal Chem 2025; 97:4954-4961. [PMID: 40028890 DOI: 10.1021/acs.analchem.4c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Understanding the chemical composition of calcifications in biological tissues at the nanoscale is crucial for deciphering their formation processes and possible pathological implications. Atomic Force Microscopy Infrared Spectroscopy (AFM-IR), by allowing IR spectroscopy at the nanoscale, is thus a promising strategy to access such highly spatially resolved chemical information. However, these specimens' inherent morphological and mechanical heterogeneities pose significant challenges for standard resonance-enhanced (RE-AFM-IR) and tapping AFM-IR acquisition modes. This study introduces a dual-mode approach combining tapping and RE-AFM-IR to address these challenges. Tapping AFM-IR is first employed to acquire the topography of the soft and rough surfaces, while RE-AFM-IR provides chemical description at the submicrometric scale through hyperspectral (HS) imaging. This dual-mode methodology is validated on different mineralized biological samples, including breast microcalcifications, revealing the local chemical heterogeneous distribution within the calcium phosphate matrice. Our results outline that dual-mode AFM-IR, coupled with HS imaging, enables robust chemical characterization of highly heterogeneous biomaterials and offers a more comprehensive description compared to conventional AFM-IR single-wavenumber mapping and local spectra.
Collapse
Affiliation(s)
- Margaux Petay
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ellie Tang
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Elise Bouderlique
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Jeremy Zaworski
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
| | - Alexandre Dazzi
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Emmanuel Letavernier
- UMR S 1155, Sorbonne Université, F-75020 Paris, France
- UMR S 1155, INSERM, F-75020 Paris, France
- Service des Explorations Fonctionnelles Multidisciplinaires, Hôpital TENON, 4 rue de la Chine, 75020 Paris, France
| | - Dominique Bazin
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Jérémie Mathurin
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique, CNRS, UMR8000, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
2
|
Kondrakhova D, Unger M, Stadler H, Zakuťanská K, Tomašovičová N, Tomečková V, Horák J, Kimákova T, Komanický V. Determination diabetes mellitus disease markers in tear fluid by photothermal AFM-IR analysis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 64:102803. [PMID: 39788273 DOI: 10.1016/j.nano.2025.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/12/2025]
Abstract
The tear fluids from three healthy individuals and three patients with diabetes mellitus were examined using atomic force microscopy-infrared spectroscopy (AFM-IR) and Fourier transform infrared spectroscopy (FTIR). The dried tear samples showed different surface morphologies: the control sample had a dense network of heart-shaped dendrites, while the diabetic sample had fern-shaped dendrites. By using the AFM-IR technique we identified spatial distribution of constituents, indicating how diabetes affects the structural characteristics of dried tears. FTIR showed that the dendritic structures gradually disappeared over time due to glucose-induced lysozyme damage. The tear fluid from diabetes mellitus patients has a higher concentration of glucose, which accelerates the breakdown of lysozyme and, as a result, the quick loss of the dendritic structure. Our study shows that analysis of dry tear fluid can be promising technique for the detection of glycated proteins that reveal long lasting hyperglycemia and diabetes mellitus.
Collapse
Affiliation(s)
- Daria Kondrakhova
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice 041 54, Slovakia
| | - Miriam Unger
- Bruker Nano Surfaces & Metrology, Östliche Rheinbrückenstrasse 49, 76187 Karlsruhe, Germany
| | - Hartmut Stadler
- Bruker Nano Surfaces & Metrology, Östliche Rheinbrückenstrasse 49, 76187 Karlsruhe, Germany
| | - Katarína Zakuťanská
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Košice 040 01, Slovakia
| | - Natália Tomašovičová
- Department of Magnetism, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Košice 040 01, Slovakia
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Jakub Horák
- Měřicí technika Morava s.r.o., Babická 619, 664 84 Zastávka, Czech Republic
| | - Tatiana Kimákova
- Department of Public Health and Hygiene, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Šrobárová 2, Košice 041 80, Slovakia
| | - Vladimír Komanický
- Institute of Physics, Department of Condensed Matter Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, Košice 041 54, Slovakia.
| |
Collapse
|
3
|
Schurman CA, Kaya S, Dole N, Luna NMM, Castillo N, Potter R, Rose JP, Bons J, King CD, Burton JB, Schilling B, Melov S, Tang S, Schaible E, Alliston T. Aging impairs the osteocytic regulation of collagen integrity and bone quality. Bone Res 2024; 12:13. [PMID: 38409111 PMCID: PMC10897167 DOI: 10.1038/s41413-023-00303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024] Open
Abstract
Poor bone quality is a major factor in skeletal fragility in elderly individuals. The molecular mechanisms that establish and maintain bone quality, independent of bone mass, are unknown but are thought to be primarily determined by osteocytes. We hypothesize that the age-related decline in bone quality results from the suppression of osteocyte perilacunar/canalicular remodeling (PLR), which maintains bone material properties. We examined bones from young and aged mice with osteocyte-intrinsic repression of TGFβ signaling (TβRIIocy-/-) that suppresses PLR. The control aged bone displayed decreased TGFβ signaling and PLR, but aging did not worsen the existing PLR suppression in male TβRIIocy-/- bone. This relationship impacted the behavior of collagen material at the nanoscale and tissue scale in macromechanical tests. The effects of age on bone mass, density, and mineral material behavior were independent of osteocytic TGFβ. We determined that the decline in bone quality with age arises from the loss of osteocyte function and the loss of TGFβ-dependent maintenance of collagen integrity.
Collapse
Affiliation(s)
- Charles A Schurman
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
| | - Neha Dole
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
| | - Nadja M Maldonado Luna
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA
| | - Natalia Castillo
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA
| | - Ryan Potter
- Washington University in St Louis, Department of Orthopedics, St. Louis, MO, 63130, USA
| | - Jacob P Rose
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Jordan B Burton
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Simon Tang
- Washington University in St Louis, Department of Orthopedics, St. Louis, MO, 63130, USA
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, 94143, USA.
- UC Berkeley/UCSF Graduate Program in Bioengineering, San Francisco, CA, 94143, USA.
| |
Collapse
|
4
|
Reiner E, Weston F, Pleshko N, Querido W. Application of Optical Photothermal Infrared (O-PTIR) Spectroscopy for Assessment of Bone Composition at the Submicron Scale. APPLIED SPECTROSCOPY 2023; 77:1311-1324. [PMID: 37774686 DOI: 10.1177/00037028231201427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
The molecular basis of bone structure and strength is mineralized collagen fibrils at the submicron scale (∼500 nm). Recent advances in optical photothermal infrared (O-PTIR) spectroscopy allow the investigation of bone composition with unprecedented submicron spatial resolution, which may provide new insights into factors contributing to underlying bone function. Here, we investigated (i) whether O-PTIR-derived spectral parameters correlated to standard attenuated total reflection (ATR) Fourier transform infrared spectroscopy spectral data and (ii) whether O-PTIR-derived spectral parameters, including heterogeneity of tissue, contribute to the prediction of proximal femoral bone stiffness. Analysis of serially demineralized bone powders showed a significant correlation (r = 0.96) between mineral content quantified using ATR and O-PTIR spectroscopy, indicating the validity of this technique in assessing bone mineralization. Using femoral neck sections, the principal component analysis showed that differences between O-PTIR and ATR spectra were primarily attributable to the phosphate ion (PO4) absorbance band, which was typically shifter toward higher wavenumbers in O-PTIR spectra. Additionally, significant correlations were found between hydrogen phosphate (HPO4) content (r = 0.75) and carbonate (CO3) content (r = 0.66) quantified using ATR and O-PTIR spectroscopy, strengthening the validity of this method to assess bone mineral composition. O-PTIR imaging of individual trabeculae at 500 nm pixel resolution illustrated differences in submicron composition in the femoral neck from bones with different stiffness. O-PTIR analysis showed a significant negative correlation (r = -0.71) between bone stiffness and mineral maturity, reflective of newly formed bone being an important contributor to bone function. Finally, partial least squares regression analysis showed that combining multiple O-PTIR parameters (HPO4 content and heterogeneity, collagen integrity, and CO3 content) could significantly predict proximal femoral stiffness (R2 = 0.74, error = 9.7%) more accurately than using ATR parameters. Additionally, we describe new findings in the effects of bone tissue orientation in the O-PTIR spectra. Overall, this study highlights a new application of O-PTIR spectroscopy that may provide new insights into molecular-level factors underlying bone mechanical competence.
Collapse
Affiliation(s)
- Emily Reiner
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Frank Weston
- Photothermal Spectroscopy Corporation, Santa Barbara, CA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - William Querido
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
5
|
V. D. dos Santos AC, Hondl N, Ramos-Garcia V, Kuligowski J, Lendl B, Ramer G. AFM-IR for Nanoscale Chemical Characterization in Life Sciences: Recent Developments and Future Directions. ACS MEASUREMENT SCIENCE AU 2023; 3:301-314. [PMID: 37868358 PMCID: PMC10588935 DOI: 10.1021/acsmeasuresciau.3c00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 10/24/2023]
Abstract
Despite the ubiquitous absorption of mid-infrared (IR) radiation by virtually all molecules that belong to the major biomolecules groups (proteins, lipids, carbohydrates, nucleic acids), the application of conventional IR microscopy to the life sciences remained somewhat limited, due to the restrictions on spatial resolution imposed by the diffraction limit (in the order of several micrometers). This issue is addressed by AFM-IR, a scanning probe-based technique that allows for chemical analysis at the nanoscale with resolutions down to 10 nm and thus has the potential to contribute to the investigation of nano and microscale biological processes. In this perspective, in addition to a concise description of the working principles and operating modes of AFM-IR, we present and evaluate the latest key applications of AFM-IR to the life sciences, summarizing what the technique has to offer to this field. Furthermore, we discuss the most relevant current limitations and point out potential future developments and areas for further application for fruitful interdisciplinary collaboration.
Collapse
Affiliation(s)
| | - Nikolaus Hondl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Victoria Ramos-Garcia
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Julia Kuligowski
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
6
|
Chin KY, Ng BN, Rostam MKI, Muhammad Fadzil NFD, Raman V, Mohamed Yunus F, Mark-Lee WF, Chong YY, Qian J, Zhang Y, Qu H, Syed Hashim SA, Ekeuku SO. Effects of E'Jiao on Skeletal Mineralisation, Osteocyte and WNT Signalling Inhibitors in Ovariectomised Rats. Life (Basel) 2023; 13:life13020570. [PMID: 36836927 PMCID: PMC9961805 DOI: 10.3390/life13020570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
E'Jiao is a traditional Chinese medicine derived from donkey skin. E'Jiao is reported to suppress elevated bone remodelling in ovariectomised rats but its mechanism of action is not known. To bridge this research gap, the current study aims to investigate the effects of E'Jiao on skeletal mineralisation, osteocyte and WNT signalling inhibitors in ovariectomised rats. Female Sprague-Dawley rats (3 months old) were ovariectomised and supplemented with E'Jiao at 0.26 g/kg, 0.53 g/kg and 1.06 g/kg, or 1% calcium carbonate (w/v) in drinking water. The rats were euthanised after two months of supplementation and their bones were collected for Fourier-transform infrared spectroscopy, histomorphometry and protein analysis. Neither ovariectomy nor treatment affected the skeletal mineral/matrix ratio, osteocyte number, empty lacunar number, and Dickkopf-1 and sclerostin protein levels (p > 0.05). Rats treated with calcium carbonate had a higher Dickkopf-1 level than baseline (p = 0.002) and E'Jiao at 0.53 g/kg (p = 0.002). In conclusion, E'Jiao has no significant effect on skeletal mineralisation, osteocyte and WNT signalling inhibitors in ovariectomised rats. The skeletal effect of E'Jiao might not be mediated through osteocytes.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9145-9573
| | - Ben Nett Ng
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Muhd Khairik Imran Rostam
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Nur Farah Dhaniyah Muhammad Fadzil
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Vaishnavi Raman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Farzana Mohamed Yunus
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Wun Fui Mark-Lee
- Department of Chemistry, Faculty of Science, University Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
- Research Center for Quantum Engineering Design, Department of Physics, Faculty of Science and Technology, Universitas Airlangga, Jl. Mulyorejo, Surabaya 60115, Indonesia
| | - Yan Yi Chong
- School of Pre-University Studies, Taylor’s College, Subang Jaya 47500, Malaysia
| | - Jing Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, China
| | - Yan Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, China
| | - Haibin Qu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310030, China
| | - Syed Alhafiz Syed Hashim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Malaysia
| |
Collapse
|
7
|
Zhang J, Khanal D, Banaszak Holl MM. Applications of AFM-IR for drug delivery vector characterization: infrared, thermal, and mechanical characterization at the nanoscale. Adv Drug Deliv Rev 2023; 192:114646. [PMID: 36521685 DOI: 10.1016/j.addr.2022.114646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
The development of effective drug delivery systems requires in-depth characterization of the micro- or nanostructure of the material vectors with high spatial resolution, resulting in a deep understanding of the design-function relationship and maximum therapeutic efficacy. Atomic force microscopy-infrared spectroscopy (AFM-IR) combines the high spatial resolution of AFM and the capabilities of IR spectroscopy to identify chemical composition and it has emerged as a powerful tool for the detailed characterization of a drug delivery system at the nanoscale. In addition, the instruments also allow thermal and mechanical evaluation at the nanoscale. In this review, we highlight the applications of AFM-IR in various drug delivery systems, including polymer-based carriers, lipid-contained nanocarriers, and metal-based nanocarriers. The existing challenges as well as the future perspectives for the application of AFM-IR for drug delivery vector characterization are also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; The University of Sydney, Sydney Nano Institute, Sydney, New South Wales 2006, Australia.
| | - Mark M Banaszak Holl
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia; Department of Mechanial and Materials Engineering, School of Engineering University of Alabama at Birmingham, Birmingham, AL 35294 USA; Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink Medical School, University of Alabama at Birmingham, Birmingham, AL 35294 USA.
| |
Collapse
|
8
|
Shah FA, Jolic M, Micheletti C, Omar O, Norlindh B, Emanuelsson L, Engqvist H, Engstrand T, Palmquist A, Thomsen P. Bone without borders - Monetite-based calcium phosphate guides bone formation beyond the skeletal envelope. Bioact Mater 2023; 19:103-114. [PMID: 35441115 PMCID: PMC9005875 DOI: 10.1016/j.bioactmat.2022.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022] Open
Abstract
Calcium phosphates (CaP) represent an important class of osteoconductive and osteoinductive biomaterials. As proof-of-concept, we show how a multi-component CaP formulation (monetite, beta-tricalcium phosphate, and calcium pyrophosphate) guides osteogenesis beyond the physiological envelope. In a sheep model, hollow dome-shaped constructs were placed directly over the occipital bone. At 12 months, large amounts of bone (∼75%) occupy the hollow space with strong evidence of ongoing remodelling. Features of both compact bone (osteonal/osteon-like arrangements) and spongy bone (trabeculae separated by marrow cavities) reveal insights into function/need-driven microstructural adaptation. Pores within the CaP also contain both woven bone and vascularised lamellar bone. Osteoclasts actively contribute to CaP degradation/removal. Of the constituent phases, only calcium pyrophosphate persists within osseous (cutting cones) and non-osseous (macrophages) sites. From a translational perspective, this multi-component CaP opens up exciting new avenues for osteotomy-free and minimally-invasive repair of large bone defects and augmentation of the dental alveolar ridge.
Collapse
Affiliation(s)
- Furqan A. Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Jolic
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chiara Micheletti
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Omar Omar
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Norlindh
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Emanuelsson
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Engqvist
- Department of Engineering Sciences, Applied Materials Science Section, Uppsala University, Uppsala, Sweden
| | - Thomas Engstrand
- Department of Reconstructive Plastic Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Palander A, Fauch L, Turunen MJ, Dekker H, Schulten EAJM, Koistinen A, Bravenboer N, Kullaa A. Molecular Quantity Variations in Human-Mandibular-Bone Osteoid. Calcif Tissue Int 2022; 111:547-558. [PMID: 35978052 PMCID: PMC9613710 DOI: 10.1007/s00223-022-01017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
Osteoid is a layer of new-formed bone that is deposited on the bone border during the process of new bone formation. This deposition process is crucial for bone tissue, and flaws in it can lead to bone diseases. Certain bone diseases, i.e. medication related osteonecrosis, are overexpressed in mandibular bone. Because mandibular bone presents different properties than other bone types, the data concerning osteoid formation in other bones are inapplicable for human-mandibular bone. Previously, the molecular distribution of other bone types has been presented using Fourier-transform infrared (FTIR) spectroscopy. However, the spatial distribution of molecular components of healthy-human-mandibular-bone osteoid in relation to histologic landmarks has not been previously presented and needs to be studied in order to understand diseases that occur human-mandibular bone. This study presents for the first time the variation in molecular distribution inside healthy-human-mandibular-bone osteoid by juxtaposing FTIR data with its corresponding histologic image obtained by autofluorescence imaging of its same bone section. During new bone formation, bone-forming cells produce an osteoid constituted primarily of type I collagen. It was observed that in mandibular bone, the collagen type I increases from the osteoblast line with the distance from the osteoblasts, indicating progressive accumulation of collagen during osteoid formation. Only later inside the collagen matrix, the osteoid starts to mineralize. When the mineralization starts, the collagen accumulation diminishes whereas the collagen maturation still continues. This chemical-apposition process in healthy mandibular bone will be used in future as a reference to understand different pathologic conditions that occur in human-mandibular bone.
Collapse
Affiliation(s)
- Anni Palander
- Institute of Dentistry, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland.
| | - Laure Fauch
- SIB Labs, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Hannah Dekker
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, 1117, The Netherlands
| | - Engelbert A J M Schulten
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, 1117, The Netherlands
| | - Arto Koistinen
- SIB Labs, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan, Amsterdam, 1117, The Netherlands
- Division of Endocrinology and Center for Bone Quality, Department of Internal Medicine, Leiden University Medical Center, PO Box 9500, Leiden, The Netherlands
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
- SIB Labs, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| |
Collapse
|
10
|
Ahn T, Jueckstock M, Mandair GS, Henderson J, Sinder BP, Kozloff KM, Banaszak Holl MM. Matrix/mineral ratio and domain size variation with bone tissue age: A photothermal infrared study. J Struct Biol 2022; 214:107878. [PMID: 35781024 DOI: 10.1016/j.jsb.2022.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022]
Abstract
Atomic force microscopy-infrared spectroscopy (AFM-IR) and optical photothermal infrared spectroscopy (O-PTIR), which feature spectroscopic imaging spatial resolution down to ∼ 50 nm and ∼ 500 nm, respectively, were employed to characterize the nano- to microscale chemical compositional changes in bone. Since these changes are known to be age dependent, fluorescently labelled bone samples were employed. The average matrix/mineral ratio values decrease as the bone tissue matures as measured by both AFM-IR and O-PTIR, which agrees with previously published FTIR and Raman spectroscopy results. IR ratio maps obtained by AFM-IR reveal variation in matrix/mineral ratio-generating micron-scale bands running parallel to the bone surface as well as smaller domains within these bands ranging from ∼ 50 to 700 nm in size, which is consistent with the previously published length scale of nanomechanical heterogeneity. The matrix/mineral changes do not exhibit a smooth gradient with tissue age. Rather, the matrix/mineral transition occurs sharply within the length scale of 100-200 nm. O-PTIR also reveals matrix/mineral band domains running parallel to the bone surface, resulting in waves of matrix/mineral ratios progressing from the youngest to most mature tissue. Both AFM-IR and O-PTIR show a greater variation in matrix/mineral ratio value for younger tissue as compared to older tissue. Together, this data confirms O-PTIR and AFM-IR as techniques that visualize bulk spectroscopic data consistent with higher-order imaging techniques such as Raman and FTIR, while revealing novel insight into how mineralization patterns vary as bone tissue ages.
Collapse
Affiliation(s)
- Taeyong Ahn
- Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Max Jueckstock
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - James Henderson
- Center for Statistical Consultation and Research (CSCAR), University of Michigan, Ann Arbor, MI, USA
| | | | - Kenneth M Kozloff
- Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA; Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Mark M Banaszak Holl
- Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
11
|
Shan T, Huang L, Tay FR, Gu L. Retention of Intrafibrillar Minerals Improves Resin-Dentin Bond Durability. J Dent Res 2022; 101:1490-1498. [PMID: 35708474 DOI: 10.1177/00220345221103137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The concept of extrafibrillar demineralization involves selective removal of apatite crystallites from the extrafibrillar spaces of mineralized dentin without disturbing the intrafibrillar minerals within collagen. This helps avoiding activation of endogenous proteases and enables air-drying of partially demineralized dentin without causing collapse of completely demineralized collagen matrix that adversely affects resin infiltration. The objective of the present study was to evaluate the potential of quaternized carboxymethyl chitosan (QCMC)-based extrafibrillar demineralization in improving resin-dentin bond durability. Isothermal titration calorimetry indicated that QCMC synthesized by quaternization of O-carboxymethyl chitosan had moderate affinity for Ca2+ (binding constant: 8.9 × 104 M-1). Wet and dry bonding with the QCMC-based demineralization produced tensile bond strengths equivalent to the phosphoric acid (H3PO4)-based etch-and-rinse technique. Those bond strengths were maintained after thermocycling. Amide I and PO43- mappings of QCMC-conditioned dentin were performed with atomic force microscope-infrared spectroscopy (AFM-IR). Whereas H3PO4-etched dentin exhibited an extensive reduction in PO43- signals corresponding to apatite depletion, QCMC-conditioned dentin showed scattered dark areas and bright PO43- streak signals. The latter were consistent with areas identified as collagen fibrils in the amide I mapping and were suggestive of the presence of intrafibrillar minerals in QCMC-conditioned dentin. Young's modulus mapping of QCMC-demineralized dentin obtained by AFM-based amplitude modulation-frequency modulation recorded moduli that were the same order of magnitude as those in mineralized dentin and at least 1 order higher than H3PO4-etched dentin. In situ zymography of the gelatinolytic activity within hybrid layers created with QCMC conditioning revealed extremely low signals before and after thermocycling, compared with H3PO4-etched dentin for both wet and dry bonding. Confocal laser scanning microscopy identified the antibacterial potential of QCMC against Streptococcus mutans and Enterococcus faecalis biofilms. Taken together, the QCMC-based demineralization retains intrafibrillar minerals, preserves the elastic modulus of collagen fibrils, reduces endogenous proteolytic activity, and inhibits bacteria biofilms to extend dentin bond durability.
Collapse
Affiliation(s)
- T Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - L Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| | - F R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - L Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P.R. China
| |
Collapse
|
12
|
Graphene-Oxide Porous Biopolymer Hybrids Enhance In Vitro Osteogenic Differentiation and Promote Ectopic Osteogenesis In Vivo. Int J Mol Sci 2022; 23:ijms23010491. [PMID: 35008918 PMCID: PMC8745160 DOI: 10.3390/ijms23010491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Over the years, natural-based scaffolds have presented impressive results for bone tissue engineering (BTE) application. Further, outstanding interactions have been observed during the interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured bone during in vivo experimental conditions. This research hereby addresses the potential of fish gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite (GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks, alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery regarding biomineralization and morphological changes by means of qualitative and quantitative methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific bone markers determination stressed the osteogenic phenotype of the cells populating the material in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histological staining assays highlighted collagen formation and calcium deposits, which were further validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common osteoinductive agents.
Collapse
|
13
|
Souza-Monteiro D, Ferreira RDO, Eiró LG, de Oliveira Lima LA, Balbinot GS, da Paz SPA, Albuquerque ARL, Collares FM, Angélica RS, Pessanha S, do Socorro Ferraz Maia C, Lima RR. Long-term exposure to low doses of aluminum affects mineral content and microarchitecture of rats alveolar bone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45879-45890. [PMID: 33881690 DOI: 10.1007/s11356-021-13937-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Aluminum (Al) is one of the most found elements in nature in many forms, and human exposure can be quite common. Therefore, it is important to investigate the effects of exposure to Al mainly at low doses and for a prolonged period, in order to simulate human exposure in the periodontium, an important structure for support and protection of the teeth. This investigation aimed to study the aluminum chloride (AlCl3) toxicological effects in the mineral composition and micromorphology of the alveolar bone of rats. Two groups of eight male Wistar rats were used for the experiment. AlCl3 group was exposed to AlCl3 orally at a dose of 8.3 mg/kg/day for 60 days, while the control group received only distilled water. After that, the mandibles were collected and submitted to the following analyses: Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray microtomography analysis; blood was also collected for determination of Al circulating levels. Our data showed that AlCl3 was capable of increasing Al circulating levels in blood. It was able to promote changes in the mineral content and triggers significant changes in the mineralized bone microstructure, such as number and thickness of trabeculae, being associated with alveolar bone-loss.
Collapse
Affiliation(s)
- Deiweson Souza-Monteiro
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa, n1, Belém, 66075-110, Pará, Brazil
| | - Railson de Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa, n1, Belém, 66075-110, Pará, Brazil
| | - Luciana Guimarães Eiró
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa, n1, Belém, 66075-110, Pará, Brazil
| | - Leidiane Alencar de Oliveira Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa, n1, Belém, 66075-110, Pará, Brazil
| | - Gabriela Souza Balbinot
- Dental Material Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | - Fabricio Mezzomo Collares
- Dental Material Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rômulo Simões Angélica
- Laboratory of X-Ray Diffraction, Institute of Geosciences, Federal University of Pará, Belém, Pará, Brazil
| | - Sofia Pessanha
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics, NOVA School of Science and Technology, Campus Caparica, 2829-516, Caparica, Portugal
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Augusto Corrêa, n1, Belém, 66075-110, Pará, Brazil.
| |
Collapse
|
14
|
Vaissier Welborn V. Environment-controlled water adsorption at hydroxyapatite/collagen interfaces. Phys Chem Chem Phys 2021; 23:13789-13796. [PMID: 33942041 DOI: 10.1039/d1cp01028j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water contributes to the structure of bone by coupling hydroxyapatite to collagen over the hierarchical levels of tissue organization. Bone water exists in two states, bound or mobile, each accomplishing different roles. Although many experimental studies show that the amount of bound water correlates with bone strength, a molecular understanding of the interactions between hydroxyapatite, collagen and water is missing. In this work, we unveil the water adsorption properties of bone tissues at the nanoscale using advanced density functional theory methods. We demonstrate that environmental factors such as collagen conformation or degree of confinement, rather than the surface itself, dictate the adsorption mode, strength and density of water on hydroxyapatite. While the results derived in this paper come from a simplified model of bone tissues, they are consistent with experimental observations and constitute a reasonable starting point for more realistic models of bone tissues. For example, we show that environmental changes expected in aging bone lead to reduced water adsorption capabilities, which is consistent with weaker bones at the macroscale. Our findings provide a new interpretation of molecular interactions in bone tissues with the potential to impact bone repair strategies.
Collapse
|
15
|
Taylor EA, Mileti CJ, Ganesan S, Kim JH, Donnelly E. Measures of Bone Mineral Carbonate Content and Mineral Maturity/Crystallinity for FT-IR and Raman Spectroscopic Imaging Differentially Relate to Physical-Chemical Properties of Carbonate-Substituted Hydroxyapatite. Calcif Tissue Int 2021; 109:77-91. [PMID: 33710382 DOI: 10.1007/s00223-021-00825-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/12/2021] [Indexed: 12/31/2022]
Abstract
Bone mineral carbonate content assessed by vibrational spectroscopy relates to fracture incidence, and mineral maturity/ crystallinity (MMC) relates to tissue age. As FT-IR and Raman spectroscopy become more widely used to characterize the chemical composition of bone in pre-clinical and translational studies, their bone mineral outcomes require improved validation to inform interpretation of spectroscopic data. In this study, our objectives were (1) to relate Raman and FT-IR carbonate:phosphate ratios calculated through direct integration of peaks to gold-standard analytical measures of carbonate content and underlying subband ratios; (2) to relate Raman and FT-IR MMC measures to gold-standard analytical measures of crystal size in chemical standards and native bone powders. Raman and FT-IR direct integration carbonate:phosphate ratios increased with carbonate content (Raman: p < 0.01, R2 = 0.87; FT-IR: p < 0.01, R2 = 0.96) and Raman was more sensitive to carbonate content than the FT-IR (Raman slope + 95% vs FT-IR slope, p < 0.01). MMC increased with crystal size for both Raman and FT-IR (Raman: p < 0.01, R2 = 0.76; FT-IR p < 0.01, R2 = 0.73) and FT-IR was more sensitive to crystal size than Raman (c-axis length: slope FT-IR MMC + 111% vs Raman MMC, p < 0.01). Additionally, FT-IR but not Raman spectroscopy detected differences in the relationship between MMC and crystal size of carbonated hydroxyapatite (CHA) vs poorly crystalline hydroxyapatites (HA) (slope CHA + 87% vs HA, p < 0.01). Combined, these results contribute to the ability of future studies to elucidate the relationships between carbonate content and fracture and provide insight to the strengths and limitations of FT-IR and Raman spectroscopy of native bone mineral.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Cassidy J Mileti
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sandhya Ganesan
- Department of Materials Science Engineering, Cornell University, 227 Bard Hall, Ithaca, NY, 14853, USA
| | - Joo Ho Kim
- Department of Materials Science Engineering, Cornell University, 227 Bard Hall, Ithaca, NY, 14853, USA
| | - Eve Donnelly
- Department of Materials Science Engineering, Cornell University, 227 Bard Hall, Ithaca, NY, 14853, USA.
- Research Division, Hospital for Special Surgery, New York, NY, 10021, USA.
| |
Collapse
|
16
|
Querido W, Kandel S, Pleshko N. Applications of Vibrational Spectroscopy for Analysis of Connective Tissues. Molecules 2021; 26:922. [PMID: 33572384 PMCID: PMC7916244 DOI: 10.3390/molecules26040922] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Advances in vibrational spectroscopy have propelled new insights into the molecular composition and structure of biological tissues. In this review, we discuss common modalities and techniques of vibrational spectroscopy, and present key examples to illustrate how they have been applied to enrich the assessment of connective tissues. In particular, we focus on applications of Fourier transform infrared (FTIR), near infrared (NIR) and Raman spectroscopy to assess cartilage and bone properties. We present strengths and limitations of each approach and discuss how the combination of spectrometers with microscopes (hyperspectral imaging) and fiber optic probes have greatly advanced their biomedical applications. We show how these modalities may be used to evaluate virtually any type of sample (ex vivo, in situ or in vivo) and how "spectral fingerprints" can be interpreted to quantify outcomes related to tissue composition and quality. We highlight the unparalleled advantage of vibrational spectroscopy as a label-free and often nondestructive approach to assess properties of the extracellular matrix (ECM) associated with normal, developing, aging, pathological and treated tissues. We believe this review will assist readers not only in better understanding applications of FTIR, NIR and Raman spectroscopy, but also in implementing these approaches for their own research projects.
Collapse
Affiliation(s)
| | | | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA; (W.Q.); (S.K.)
| |
Collapse
|
17
|
Taylor EA, Donnelly E. Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone 2020; 139:115490. [PMID: 32569874 DOI: 10.1016/j.bone.2020.115490] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
As the application of Raman spectroscopy to study bone has grown over the past decade, making it a peer technology to FTIR spectroscopy, it has become critical to understand their complimentary roles. Recent technological advancements have allowed these techniques to collect grids of spectra in a spatially resolved fashion to generate compositional images. The advantage of imaging with these techniques is that it allows the heterogenous bone tissue composition to be resolved and quantified. In this review we compare, for non-experts in the field of vibrational spectroscopy, the instrumentation and underlying physical principles of FTIR imaging (FTIRI) and Raman imaging. Additionally, we discuss the strengths and limitations of FTIR and Raman spectroscopy, address sample preparation, and discuss outcomes to provide researchers insight into which techniques are best suited for a given research question. We then briefly discuss previous applications of FTIRI and Raman imaging to characterize bone tissue composition and relationships of compositional outcomes with mechanical performance. Finally, we discuss emerging technical developments in FTIRI and Raman imaging which provide new opportunities to identify changes in bone tissue composition with disease, age, and drug treatment.
Collapse
Affiliation(s)
- Erik A Taylor
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, United States of America; Research division, Hospital for Special Surgery, New York, NY, United States of America.
| |
Collapse
|
18
|
Bolger MW, Romanowicz GE, Kohn DH. Advancements in composition and structural characterization of bone to inform mechanical outcomes and modelling. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 11:76-84. [PMID: 32864522 DOI: 10.1016/j.cobme.2019.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Advancements in imaging, computing, microscopy, chromatography, spectroscopy and biological manipulations of animal models, have allowed for a more thorough examination of the hierarchical structure and composition of the skeleton. The ability to map cellular and molecular changes to nano-scale chemical composition changes (mineral, collagen cross-links) and structural changes (porosity, lacuno-canalicular network) to whole bone mechanics is at the forefront of an exciting era of discovery. In addition, there is increasing ability to genetically mimic phenotypes of human disease in animal models to study these structural and compositional changes. Combined, these recent developments have increased the ability to understand perturbations at multiple length scales to better realize the structure-function relationship in bone and inform biomechanical models. The intent of this review is to describe the multiple scales at which bone can characterized, highlighting new techniques such that structural, compositional, and biological changes can be incorporated into biomechanical modeling.
Collapse
Affiliation(s)
- Morgan W Bolger
- Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Genevieve E Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| |
Collapse
|
19
|
Mechanobiologically induced bone-like nodules: Matrix characterization from micro to nanoscale. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102256. [PMID: 32615337 DOI: 10.1016/j.nano.2020.102256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
Abstract
In bone tissue engineering, stem cells are known to form inhomogeneous bone-like nodules on a micrometric scale. Herein, micro- and nano-infrared (IR) micro-spectroscopies were used to decipher the chemical composition of the bone-like nodule. Histological and immunohistochemical analyses revealed a cohesive tissue with bone-markers positive cells surrounded by dense mineralized type-I collagen. Micro-IR gathered complementary information indicating a non-mature collagen at the top and periphery and a mature collagen within the nodule. Atomic force microscopy combined to IR (AFM-IR) analyses showed distinct spectra of "cell" and "collagen" rich areas. In contrast to the "cell" area, spectra of "collagen" area revealed the presence of carbohydrate moieties of collagen and/or the presence of glycoproteins. However, it was not possible to determine the collagen maturity, due to strong bands overlapping and/or possible protein orientation effects. Such findings could help developing protocols to allow a reliable characterization of in vitro generated complex bone tissues.
Collapse
|
20
|
Morsch S, Lyon S, Edmondson S, Gibbon S. Reflectance in AFM-IR: Implications for Interpretation and Remote Analysis of the Buried Interface. Anal Chem 2020; 92:8117-8124. [PMID: 32412736 PMCID: PMC7467426 DOI: 10.1021/acs.analchem.9b05793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AFM-IR combines the chemical sensitivity of infrared spectroscopy with the lateral resolution of scanning probe microscopy, allowing nanoscale chemical analysis of almost any organic material under ambient conditions. As a result, this versatile technique is rapidly gaining popularity among materials scientists. Here, we report a previously overlooked source of data and artifacts in AFM-IR analysis; reflection from the buried interface. Periodic arrays of gold on glass are used to show that the overall signal in AFM-IR is affected by the wavelength-dependent reflectivity and thermal response of the underlying substrate. Excitingly, this demonstrates that remote analysis of heterogeneities at the buried interface is possible alongside that of an overlying organic film. On the other hand, AFM-IR users should carefully consider the composition and topography of underlying substrates when interpreting nanoscale infrared data. The common practice of generating ratio images, or indeed the normalization of AFM-IR spectra, should be approached with caution in the presence of substrate heterogeneity or variable sample thickness.
Collapse
Affiliation(s)
- Suzanne Morsch
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Stuart Lyon
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Steve Edmondson
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Simon Gibbon
- AkzoNobel, Stoneygate Lane, Felling, Gateshead, Tyne and Wear NE10 0JY, United Kingdom
| |
Collapse
|
21
|
Kurouski D, Dazzi A, Zenobi R, Centrone A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem Soc Rev 2020; 49:3315-3347. [PMID: 32424384 PMCID: PMC7675782 DOI: 10.1039/c8cs00916c] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms. Here we review two such methods, namely photothermal induced resonance (PTIR), also known as AFM-IR and tip-enhanced Raman spectroscopy (TERS). AFM-IR and TERS fundamentals will be reviewed in detail together with their recent crucial advances. The most recent applications, now spanning across materials science, nanotechnology, biology, medicine, geology, optics, catalysis, art conservation and other fields are also discussed. Even though AFM-IR and TERS have developed independently and have initially targeted different applications, rapid innovation in the last 5 years has pushed the performance of these, in principle spectroscopically complimentary, techniques well beyond initial expectations, thus opening new opportunities for their convergence. Therefore, subtle differences and complementarity will be highlighted together with emerging trends and opportunities.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
22
|
Gieroba B, Krysa M, Wojtowicz K, Wiater A, Pleszczyńska M, Tomczyk M, Sroka-Bartnicka A. The FT-IR and Raman Spectroscopies as Tools for Biofilm Characterization Created by Cariogenic Streptococci. Int J Mol Sci 2020; 21:E3811. [PMID: 32471277 PMCID: PMC7313032 DOI: 10.3390/ijms21113811] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Fourier transform infrared (FT-IR) and Raman spectroscopy and mapping were applied to the analysis of biofilms produced by bacteria of the genus Streptococcus. Bacterial biofilm, also called dental plaque, is the main cause of periodontal disease and tooth decay. It consists of a complex microbial community embedded in an extracellular matrix composed of highly hydrated extracellular polymeric substances and is a combination of salivary and bacterial proteins, lipids, polysaccharides, nucleic acids, and inorganic ions. This study confirms the value of Raman and FT-IR spectroscopies in biology, medicine, and pharmacy as effective tools for bacterial product characterization.
Collapse
Affiliation(s)
- Barbara Gieroba
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (B.G.); (M.K.); (K.W.)
| | - Mikolaj Krysa
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (B.G.); (M.K.); (K.W.)
| | - Kinga Wojtowicz
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (B.G.); (M.K.); (K.W.)
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.W.); (M.P.)
| | - Małgorzata Pleszczyńska
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (A.W.); (M.P.)
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Białystok, ul. Mickiewicza 2a, 15-230 Białystok, Poland;
| | - Anna Sroka-Bartnicka
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (B.G.); (M.K.); (K.W.)
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
23
|
Esteve E, Luque Y, Waeytens J, Bazin D, Mesnard L, Jouanneau C, Ronco P, Dazzi A, Daudon M, Deniset-Besseau A. Nanometric Chemical Speciation of Abnormal Deposits in Kidney Biopsy: Infrared-Nanospectroscopy Reveals Heterogeneities within Vancomycin Casts. Anal Chem 2020; 92:7388-7392. [PMID: 32406230 DOI: 10.1021/acs.analchem.0c00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infrared (IR) spectromicroscopy allows chemical mapping of a kidney biopsy. It is particularly interesting for chemical speciation of abnormal tubular deposits and calcification. In 2017, using IR spectromicroscopy, we described a new entity called vancomycin cast nephropathy. However, despite recent progresses, the IR microspectrometer spatial resolution is intrinsically limited by diffraction (a few micrometers). Combining atomic force microscopy and IR lasers (AFMIR) allows acquisition of infrared absorption spectra with a resolution and sensitivity in between 10 and 100 nm. Here we show that AFMIR can be used on standard paraffin embedded kidney biopsies. Vancomycin cast could be identified in a damaged tubule. Interestingly unlike standard IR spectromicroscopy, AFMIR revealed heterogeneity of the deposits and established that vancomycin coprecipitated with phosphate containing molecules. These findings highlight the high potential of this approach with nanometric spatial resolution which opens new perspectives for studies on drug-induced nephritis, nanocrystals, and local lipid or carbohydrates alterations.
Collapse
Affiliation(s)
- Emmanuel Esteve
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Nephrology and Dialysis Department, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Yosu Luque
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Jehan Waeytens
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France.,Structure et Fonction des Membranes Biologiques, Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/02, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Dominique Bazin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Laurent Mesnard
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Chantal Jouanneau
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Nephrology and Dialysis Department, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Alexandre Dazzi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Michel Daudon
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Ariane Deniset-Besseau
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| |
Collapse
|
24
|
Pathological Mineralization: The Potential of Mineralomics. MATERIALS 2019; 12:ma12193126. [PMID: 31557841 PMCID: PMC6804219 DOI: 10.3390/ma12193126] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022]
Abstract
Pathological mineralization has been reported countless times in the literature and is a well-known phenomenon in the medical field for its connections to a wide range of diseases, including cancer, cardiovascular, and neurodegenerative diseases. The minerals involved in calcification, however, have not been directly studied as extensively as the organic components of each of the pathologies. These have been studied in isolation and, for most of them, physicochemical properties are hitherto not fully known. In a parallel development, materials science methods such as electron microscopy, spectroscopy, thermal analysis, and others have been used in biology mainly for the study of hard tissues and biomaterials and have only recently been incorporated in the study of other biological systems. This review connects a range of soft tissue diseases, including breast cancer, age-related macular degeneration, aortic valve stenosis, kidney stone diseases, and Fahr’s syndrome, all of which have been associated with mineralization processes. Furthermore, it describes how physicochemical material characterization methods have been used to provide new information on such pathologies. Here, we focus on diseases that are associated with calcium-composed minerals to discuss how understanding the properties of these minerals can provide new insights on their origins, considering that different conditions and biological features are required for each type of mineral to be formed. We show that mineralomics, or the study of the properties and roles of minerals, can provide information which will help to improve prevention methods against pathological mineral build-up, which in the cases of most of the diseases mentioned in this review, will ultimately lead to new prevention or treatment methods for the diseases. Importantly, this review aims to highlight that chemical composition alone cannot fully support conclusions drawn on the nature of these minerals.
Collapse
|
25
|
Limirio PHJO, Soares PBF, Emi ETP, Lopes CDCA, Rocha FS, Batista JD, Rabelo GD, Dechichi P. Ionizing radiation and bone quality: time-dependent effects. Radiat Oncol 2019; 14:15. [PMID: 30670063 PMCID: PMC6343359 DOI: 10.1186/s13014-019-1219-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Background The aim of this study was to evaluate the ionizing radiation (IR) effects on rat bone 30 and 60 days after irradiation. Methods Wistar rats were submitted to IR (30 Gy) on the left leg and were euthanized after 30 and 60 days. The legs were divided into four groups according to the treatment and euthanization time: C30 and C60 (right leg–without IR), IR30 and IR60 (left leg-with IR). Results CT analysis showed more radiodensity in C60 compared with other groups, and IR60 showed more radiodensity than IR30. In histomorphometric analysis, C30 showed lower bone matrix values compared with IR30 and C60. Lacunarity analyses showed more homogeneous bone channel distribution in C30 than IR30. ATR-FTIR showed decrease in ratio of mature and immature crosslinks in IR30 compared with C30. Crystallinity Index was decrease in IR60 compared with C60. The Amide III + Collagen/HA ratio was increased in C60 compared with C30; however this ratio decreased in IR60 compared with IR30. Biomechanical analysis showed lower values in IR groups in both time. Conclusions IR damaged bone quality and decreased stiffness. Moreover, the results suggested that the deleterious effects of IR increased in the late time points.
Collapse
Affiliation(s)
- Pedro Henrique Justino Oliveira Limirio
- Integrated Dental Clinic Program, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38.400-902, Brazil
| | - Priscilla Barbosa Ferreira Soares
- Integrated Dental Clinic Program, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38.400-902, Brazil
| | - Eduardo Tadashi Pinto Emi
- Integrated Dental Clinic Program, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38.400-902, Brazil
| | - Camila de Carvalho Almança Lopes
- Integrated Dental Clinic Program, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38.400-902, Brazil
| | - Flaviana Soares Rocha
- Integrated Dental Clinic Program, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38.400-902, Brazil
| | - Jonas Dantas Batista
- Integrated Dental Clinic Program, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38.400-902, Brazil
| | - Gustavo Davi Rabelo
- Faculty of Dentistry, Federal University of Juiz de Fora, Faculdade de Odontologia - Campus Universitário - Bairro Martelos -, Juiz de Fora, Minas Gerais, 36036-300, Brazil
| | - Paula Dechichi
- Integrated Dental Clinic Program, Faculty of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38.400-902, Brazil.
| |
Collapse
|
26
|
Fourier Transform Infrared Spectroscopy of Bone Tissue: Bone Quality Assessment in Preclinical and Clinical Applications of Osteoporosis and Fragility Fracture. Clin Rev Bone Miner Metab 2019. [DOI: 10.1007/s12018-018-9255-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|