1
|
Shabaan AM, Embaby MS, Reyad AM. Potential application of Staphylococcus devriesei MS as a biosorbent agent for manganase, chromium, and cadmium heavy metals in contaminated water. Sci Rep 2025; 15:9774. [PMID: 40118989 PMCID: PMC11928639 DOI: 10.1038/s41598-025-91961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
This study identified one bacterial isolate as Staphylococcus devriesei, which is resistant to cadmium (Cd), manganese (Mn), and chromium (Cr) using 16S rRNA gene sequencing. Following that, the strain sequence was submitted to GenBank under accession number PQ013181. In this investigation, the biosorption potential of Staphylococcus devriesei was evaluated for the biosorption of chrmoium, cadmium, and manganese ions. The effects of pH, contact time, and initial concentration were examined in a batch-mode study. According to our findings, after 6 h at the ideal pH, Staphylococcus devriesei's maximal biosorption capabilities of Cr and Cd were 98 and 81.2%, respectively. The maximum biosorption of Mn was 95.6% after 24 h at pH 6. SEM micrographs showed that, Staphylococcus devriesei were irregular and cracked with wrinkles on the surface after absorbing the studied Cr metal ions. It was observed that the alterations in cell size occurred when the bacterium was exposed to a dose of Mn and the aggregation of cells was seen. Bacterial cells treated with Cd exhibited irregularities, featuring depressions on their surfaces, and surface wrinkles. FTIR analysis showed obvious alterations in peak positions and intensities before and after the biosorption process. Energy dispersive X-ray analysis showed extra metal depositions on the treated cell surface compared to the control. At the ultrastructural level, TEM imaging demonstrates the involvement of extracellular and intracellular precipitates and accumulated metals on the cell walls. Thus, the results of this study indicated that Staphylococcus devriesei can effectively aid in the remediation of contaminated water with moderate to light levels of Cd, Cr, and Mn.
Collapse
Affiliation(s)
- Amany M Shabaan
- Chemistry Department, Biochemistry division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Marwa S Embaby
- Chemistry Department, Biochemistry division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Amany M Reyad
- Botany Department, Faculty of Science, Fayoum University, Fayoum, Egypt.
| |
Collapse
|
2
|
Purnomo AS, Hairunnisa FW, Misdar, Maria VP, Rohmah AA, Putra SR, Putro HS, Rizqi HD. Anionic dye removal by immobilized bacteria into alginate-polyvinyl alcohol-bentonite matrix. Heliyon 2024; 10:e27871. [PMID: 38533018 PMCID: PMC10963318 DOI: 10.1016/j.heliyon.2024.e27871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Methyl orange (MO) is commonly used in the textile dyeing industry, posing serious health and environmental hazards due to its carcinogenic, mutagenic properties, and potential for bioaccumulation. Appropriate handling is needed to solve these problems by harnessing the capacity of living microorganisms and the adsorption properties of bentonite clay minerals. Although the conventional approach predominantly depends on free cells, recent study has developed other methods such as immobilization techniques. Therefore, this study aimed to investigate the efficiency of the immobilization matrix comprising sodium alginate (SA), polyvinyl alcohol (PVA), and bentonite by modifying Pseudomonas aeruginosa, Bacillus subtilis, and Ralstonia pickettii for MO removal of 50 mg/L. In the free cell technique, the results showed that the MO decreased to 43.13, 36.61, and 27.45% for each of the bacteria within 10 days at 35 °C. The bacterial immobilization technique, including live immobilized P. aeruginosa (LIPa), live immobilized B. subtilis (LIBs), and live immobilized R. pickettii (LIRp) beads also demonstrated significant efficiency, achieving MO removal rates up to 97.15, 95.65, and 66.63% within 10 days. These synthesized beads showed reusability, with LIPa, LIBs, and LIRp being used up to 4, 4, and 2 cycles, respectively. The external and internal surface conditions were observed using SEM instrument and the results showed that all components were agglomerated. Comparisons using dead bacterial biomass indicated that treatment with live bacteria consistently yielded significantly higher removal rates. These results showed the effectiveness of immobilized bacteria in MO removal, offering a promising potential in reducing pollutants.
Collapse
Affiliation(s)
- Adi Setyo Purnomo
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Frida Wahyu Hairunnisa
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Misdar
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Virda Putri Maria
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Alya Awinatul Rohmah
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Surya Rosa Putra
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Herdayanto Sulistyo Putro
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Hamdan Dwi Rizqi
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| |
Collapse
|
3
|
Bradu P, Biswas A, Nair C, Sreevalsakumar S, Patil M, Kannampuzha S, Mukherjee AG, Wanjari UR, Renu K, Vellingiri B, Gopalakrishnan AV. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124488-124519. [PMID: 35397034 PMCID: PMC8994424 DOI: 10.1007/s11356-022-20024-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 05/06/2023]
Abstract
This review gives concise information on green technology (GT) and Industrial Revolution 4.0 (IR 4.0). Climate change has begun showing its impacts on the environment, and the change is real. The devastating COVID-19 pandemic has negatively affected lives and the world from the deadly consequences at a social, economic, and environmental level. In order to balance this crisis, there is a need to transition toward green, sustainable forms of living and practices. We need green innovative technologies (GTI) and Internet of Things (IoT) technologies to develop green, durable, biodegradable, and eco-friendly products for a sustainable future. GTI encompasses all innovations that contribute to developing significant products, services, or processes that lower environmental harm, impact, and worsening while augmenting natural resource utilization. Sensors are typically used in IoT environmental monitoring applications to aid ecological safety by nursing air or water quality, atmospheric or soil conditions, and even monitoring species' movements and habitats. The industries and the governments are working together, have come up with solutions-the Green New Deal, carbon pricing, use of bio-based products as biopesticides, in biopharmaceuticals, green building materials, bio-based membrane filters for removing pollutants, bioenergy, biofuels and are essential for the green recovery of world economies. Environmental biotechnology, Green Chemical Engineering, more bio-based materials to separate pollutants, and product engineering of advanced materials and environmental economies are discussed here to pave the way toward the Sustainable Development Goals (SDGs) set by the UN and achieve the much-needed IR 4.0 for a greener-balanced environment and a sustainable future.
Collapse
Affiliation(s)
- Pragya Bradu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Chandralekha Nair
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Salini Sreevalsakumar
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
- Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India, 600 007
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Purnomo JS, Victor H, Dikson, Cornelia M, Pinontoan R. Decolorization potential of malachite green by Ralstonia mannitolilytica isolated from Indonesian cassava-based fermented food tapai. Arch Microbiol 2023; 205:339. [PMID: 37747508 DOI: 10.1007/s00203-023-03678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
Pollution due to textile dye effluent mishandling is hazardous to ecosystems and to the living beings inhabiting them. This can cause retarded photosynthesis, disrupted fish day/night cycles, unbalanced bacterial populations, and decreased oxygen concentration in contaminated water, leading to low habitability. In this study, we aimed to isolate and characterize the microorganisms found in Indonesian cassava-based fermented food tapai starter cultures as a source of potential microbes for the biological remediation of textile dye pollutants. Microorganisms in the tapai starter culture were screened for their decolorization activity via spread-culture inoculation on a solid growth medium supplemented with textile dyes. Isolated microorganisms were selected based on their ability to secrete textile dye-decolorizing extracellular enzymes via increased light penetration after incubation of the cell-free supernatant (CFS) containing extracellular enzymes in textile dye solutions. Isolate JSP1 was the only bacterium capable of producing malachite green (MG)-decolorizing extracellular enzymes, which enabled it to survive and decolorize MG up to 375 ppm. Moreover, isolate JSP1 CFS was able to optimally decolorize 75% of MG at 100 ppm, but its activity was diminished at concentrations > 350 ppm. Colony and cellular morphology, biochemistry, and 16S rRNA tests revealed that the isolate was of Ralstonia mannitolilytica. Therefore, R. mannitolilytica isolate JSP1 may be a potential bioremediation agent for MG.
Collapse
Affiliation(s)
- Jonathan Suciono Purnomo
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Hans Victor
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Dikson
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Melanie Cornelia
- Department of Food Technology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia
| | - Reinhard Pinontoan
- Department of Biology, Universitas Pelita Harapan, Jl. MH Thamrin 1100 Blvd, Tangerang, Indonesia.
| |
Collapse
|
5
|
Jingyi D, Chaoyang L, Yu S, Yunlin Z, Huimin H, Yingzi M, Zhenggang X. Adsorption capacity of Penicillium amphipolaria XK11 for cadmium and antimony. Arch Microbiol 2023; 205:139. [PMID: 36964410 DOI: 10.1007/s00203-023-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/12/2023] [Indexed: 03/26/2023]
Abstract
Heavy metal pollution is a global problem that affects both the environment and human health. Microorganisms play an important role in remediation. Most studies on the use of microorganisms for heavy metal remediation focus on single heavy metals. In this study, a strain of Penicillium amphipolaria, XK11 with high resistance to both antimony (Sb III) and cadmium (Cd II) was screened from the mineral slag. The strain also had a high phosphate solubilization capacity. The single-factor adsorption experiment results showed that the initial pH (pH0), adsorption time (T), and initial solution concentration (C0) all affected the adsorption of Sb and Cd by XK11. When the initial pH0 (Cd = 6, Sb = 4) and adsorption time (T = 7 d) were constant, XK11 achieved the maximum removal rate of Cd (45.6%) and Sb (34.6%). These results confirm that XK11 has potential as a biomaterial or remediation of Sb and Cd pollution.
Collapse
Affiliation(s)
- Dai Jingyi
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Li Chaoyang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, Changsha, 410014, Hunan, China
| | - Sun Yu
- Changsha Environmental Protection College, Changsha, 410004, Hunan, China
| | - Zhao Yunlin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Huang Huimin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Ma Yingzi
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Xu Zhenggang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
- Changsha Environmental Protection College, Changsha, 410004, Hunan, China.
- College of Forestry, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Huang X, Nong X, Liang K, Chen P, Zhao Y, Jiang D, Xiong J. Efficient Mn(II) removal mechanism by Serratia marcescens QZB-1 at high manganese concentration. Front Microbiol 2023; 14:1150849. [PMID: 37180235 PMCID: PMC10172493 DOI: 10.3389/fmicb.2023.1150849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Manganese (Mn(II)) pollution has recently increased and requires efficient remediation. In this study, Serratia marcescens QZB-1, isolated from acidic red soil, exhibited high tolerance against Mn(II) (up to 364 mM). Strain QZB-1 removed a total of 98.4% of 18 mM Mn(II), with an adsorption rate of 71.4% and oxidation rate of 28.6% after incubation for 48 h. The strain synthesized more protein (PN) to absorb Mn(II) when stimulated with Mn(II). The pH value of the cultural medium continuously increased during the Mn(II) removal process. The product crystal composition (mainly MnO2 and MnCO3), Mn-O functional group, and element-level fluctuations confirmed Mn oxidation. Overall, strain QZB-1 efficiently removed high concentration of Mn(II) mainly via adsorption and showed great potential for manganese wastewater removal.
Collapse
Affiliation(s)
- Xuejiao Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, China
- *Correspondence: Xuejiao Huang,
| | - Xiaofang Nong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Kang Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Pengling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Yi Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Daihua Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jianhua Xiong
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Removal of copper by Azolla filiculoides and Lemna minor: phytoremediation potential, adsorption kinetics and isotherms. Heliyon 2022; 8:e11456. [PMID: 36406685 PMCID: PMC9668539 DOI: 10.1016/j.heliyon.2022.e11456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Phytoremediation is an eco-friendly biotechnology with low costs. The removal of copper (Cu) from polluted water by the two floating plant species Azolla filiculoides and Lemna minor was observed and recorded. Plants were exposed to different Cu (II) concentration (0.25–1.00 mg/L) and sampling time (Days 0, 1, 2, 5 and 7). Both plants can remove Cu at 1.00 mg Cu/L water, with the highest removal rates of 100% for A. filiculoides and 74% for L. minor on the fifth day of exposure. At the end of the exposure period (Day 7), the growth of A. filiculoides exposed to 1.00 mg Cu/L was inhibited by Cu, but the structure of the inner cells of A. filiculoides was well organized as compared to the initial treatment period. Regarding L. minor, Cu at 1.00 mg/L negatively impacted both the growth and morphology (shrinking of its inner structure) of this plant. This is due to the higher accumulation of Cu in L. minor (2.86 mg/g) than in A. filiculoides (1.49 mg/g). Additionally, the rate of Cu removal per dry mass of plant fitted a pseudo-second order model for both plants, whereas the adsorption equilibrium data fitted the Freundlich isotherm, indicating that Cu adsorption occurs in multiple layers. Based on the results, both species can be applied in the phytoremediation of Cu-polluted water.
Collapse
|
8
|
He L, Su R, Chen Y, Zeng P, Du L, Cai B, Zhang A, Zhu H. Integration of manganese accumulation, subcellular distribution, chemical forms, and physiological responses to understand manganese tolerance in Macleaya cordata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39017-39026. [PMID: 35306649 DOI: 10.1007/s11356-022-19562-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/26/2022] [Indexed: 04/16/2023]
Abstract
Macleaya cordata (Willd.) R. Br. are proposed for the application in phytoremediation of heavy metal-contaminated soil. In this paper, the physiological response, subcellular distribution, chemical form, ultrastructure, and manganese (Mn) absorption characteristics of M. cordata under the stress of 0, 3, 6, 9, 12, and 15 mmol/L manganese concentration were studied by sand culture experiment. The results showed that M. cordata seedlings show high tolerance to Mn stress with a concentration of less than 6 mmol/L, while higher Mn concentration showed a significant toxic effect. A low concentration of Mn (≤ 6 mmol/L) can promote the synthesis of chlorophyll and soluble protein; furthermore, superoxide dismutase and peroxidase activities responded positively. The accumulation of Mn in the inactive metabolic part (cell wall and vacuole) of M. cordata leaves might be one of the main Mn detoxification mechanism. According to the ultrastructure of M. cordata, high-concentration Mn2+ (≥ 12 mmol/L) stress can cause M. cordata cells to be distorted and deformed, black precipitates appeared in the intercellular space, mitochondria decrease, chloroplasts shrink, hungry particles increased, and starch granules decrease. The uptake ability of different tissues for Mn is leaf > root > stem, and transport coefficient decreases with the increase of Mn concentration. Clearly, M. cordata has a certain tolerance to manganese, which has the ecological application potential in Mn-polluted areas.
Collapse
Affiliation(s)
- Langjun He
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Rongkui Su
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Yonghua Chen
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China.
| | - Peng Zeng
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Lu Du
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Bin Cai
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Aoshan Zhang
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| | - Honghong Zhu
- School of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, People's Republic of China
| |
Collapse
|
9
|
Chintalapudi VK, Kanamarlapudi RKSL, Mallu UR, Muddada S. Characterization of biosorption potential of Brevibacillus biomass isolated from contaminated water resources for removal of Pb (II) ions. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:2358-2374. [PMID: 35486460 DOI: 10.2166/wst.2022.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various activities of different industries are found to be the main reason for water pollution with heavy metals. Use of microorganisms that are tolerant even of a high concentration of metal ions could be a valuable tool for remediation of contaminated water resources. In the present study, microorganisms that showed high resistance to lead ions were isolated and evaluated for biosorption efficiency for removal of lead ions from waste water. Biochemical identification and 16S rRNA gene sequence analysis indicated that the isolated strain was Brevibacillus. The conditions of pH, biomass concentration, temperature, time, agitation and Initial concentration of metal for biosorption of Pb (II) were optimized. Based on induction coupled plasma optical emission spectroscopy (ICP-OES) analysis, the biosorption efficiency of Brevibacillus at optimized conditions of initial metal concentration of 150 μg/mL, 1 g/L of biomass dose, pH 6.0, 40 °C, for 12 h at 80 rpm was 78.58% and the biosorption capacity (qe) is 128.58 mg/g of the biosorbent. Of the three isotherm models investigated, the Freundlich isotherm model was identified as a good fit with high correlation coefficient, while kinetic data followed the pseudo first order model as best fit. Surface characterization by scanning electron microscopy (SEM) analysis revealed morphological changes with a bulged rod-shape cell having metal depositions and rough texture. The presence of lead within the cell was detected by transmission emission microscopy (TEM). The key functional groups that participate in biosorption were analyzed by Fourier transform infrared (FTIR) spectroscopy and were found to be carboxyl, hydroxyl, amino and phosphate groups. From the real-time study, it proves that the biomass of Brevibacillus can be used as a promising biosorbent for removal of metals including lead from waste water.
Collapse
Affiliation(s)
- Vinay Kumar Chintalapudi
- R V Labs, 2-14-117-55, 3rd lane extension, Syamala nagar, Guntur, Andhra Pradesh, India; Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Deemed to be University, Greenfields, Vaddeswaram, Guntur-522502, Andhra Pradesh, India E-mail:
| | - Ramya Krishna S L Kanamarlapudi
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Deemed to be University, Greenfields, Vaddeswaram, Guntur-522502, Andhra Pradesh, India E-mail:
| | - Useni Reddy Mallu
- R V Labs, 2-14-117-55, 3rd lane extension, Syamala nagar, Guntur, Andhra Pradesh, India
| | - Sudhamani Muddada
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Deemed to be University, Greenfields, Vaddeswaram, Guntur-522502, Andhra Pradesh, India E-mail:
| |
Collapse
|
10
|
Microbial treatment of Pb(II) using a newly isolated Pb(II)-resistant Methylobacterium sp. MTS1 strain. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Puglisi E, Squartini A, Terribile F, Zaccone C. Pedosedimentary and microbial investigation of a karst sequence record. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151297. [PMID: 34756896 DOI: 10.1016/j.scitotenv.2021.151297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/06/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
A 3-m thick sediment sequence, found in a limestone mine located in the south of Italy at a depth of ca. 25-30 m from the current ground level, was investigated. Samples from 5 layers were analysed by X-ray diffraction, elemental analysis, Inductively Coupled Plasma Mass Spectrometry and micromorphology. Microbial DNA was analysed by 16S rRNA gene metabarcoding. The main mineral compounds found in the 5 layers were calcite (70-80%) and clay minerals in layers #1 and #5, goethite (75%) and hematite in layer #2, manganese (66%) and iron oxides in layer #3, and almost exclusively goethite in layer #4. Micromorphology data allowed to shed light in understanding whether these sediments formed by subsequent weathering of carbonates and silicates or by migration of soil sediments from the surface, or also by the accumulation of shallow marine sediments occurring between the middle Pliocene and the lower Pleistocene, when the extreme western sector of this area underwent strong subsidence. From the microbiological point of view, upon the 16S rRNA gene analysis, these 5 layers appear to cluster in three groups. Overall, such a distribution suggests that, both in the top (#1) and in bottom layers (#4 and #5), different communities would have undergone in situ reproduction and colonization exploiting metabolically the substrate, whereas the two mid layers would have received bacterial convection by passive transport of percolating waters. At the same time, micromorphological data show that each layer preserved its distinct features to be related to the environmental condition at the time of deposition. The chemical, mineralogical and micromorphological features of the layers and the known physiology of the microbial taxa thereby encountered highlight the possible role of the latter in elucidating the occurrence of certain mineral species as well as the biogeochemistry of elements like Mn and Fe in sediment layers.
Collapse
Affiliation(s)
- Edoardo Puglisi
- Dipartimento di Scienze e Tecnologie Alimentari per una filiera agro-alimentare Sostenibile, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, University of Padova, Viale dell'Università, 16, 35020 Legnaro, Italy.
| | - Fabio Terribile
- Department of Agriculture, University of Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona 37134, Italy
| |
Collapse
|
12
|
A Computational Study of the Role of Secondary Metabolites for Mitigation of Acid Soil Stress in Cereals Using Dehydroascorbate and Mono-Dehydroascorbate Reductases. Antioxidants (Basel) 2022; 11:antiox11030458. [PMID: 35326108 PMCID: PMC8944642 DOI: 10.3390/antiox11030458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
The present study investigates the potential ameliorative role of seven secondary metabolites, viz., ascorbate (AsA), reduced glutathione (GSH), jasmonic acid (JA), salicylic acid (SA), serotonin (5-HT), indole–3–acetic acid (IAA) and gibberellic acid (GA3), for mitigation of aluminium (Al3+) and manganese (Mn2+) stress associated with acidic soils in rice, maize and wheat. The dehydroascorbate reductase (DHAR) and mono-dehydroascorbate reductase (MDHAR) of the cereals were used as model targets, and the analysis was performed using computational tools. Molecular docking approach was employed to evaluate the interaction of these ions (Al3+ and Mn2+) and the metabolites at the active sites of the two target enzymes. The results indicate that the ions potentially interact with the active sites of these enzymes and conceivably influence the AsA–GSH cycle. The metabolites showed strong interactions at the active sites of the enzymes. When the electrostatic surfaces of the metabolites and the ions were generated, it revealed that the surfaces overlap in the case of DHAR of rice and wheat, and MDHAR of rice. Thus, it was hypothesized that the metabolites may prevent the interaction of ions with the enzymes. This is an interesting approach to decipher the mechanism of action of secondary metabolites against the metal or metalloid - induced stress responses in cereals by aiming at specific targets. The findings of the present study are reasonably significant and may be the beginning of an interesting and useful approach towards comprehending the role of secondary metabolites for stress amelioration and mitigation in cereals grown under acidic soil conditions.
Collapse
|
13
|
Di Z, Chaoyang L, Mengxi Z, Yunlin Z, Zhenggang X, Guiyan Y. Curvularia coatesiae XK8, a Potential Bioadsorbent Material for Adsorbing Cd(II) and Sb(III) Compound Pollution: Characteristics and Effects. Front Microbiol 2022; 12:816312. [PMID: 35154041 PMCID: PMC8828948 DOI: 10.3389/fmicb.2021.816312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022] Open
Abstract
Soil heavy metal pollution is a common problem in mining areas. The soil of the Xikuangshan located in Lengshuijiang, Hunan Province, China contains various excessive heavy metals, especially antimony and cadmium. Previous studies have shown that heavy metal-tolerant microorganisms screened from mining areas have the potential to adsorb heavy metals. In this study, we screened out a cadmium and antimony tolerant fungus named XK8 from the slags collected from the Xikuangshan. Then, we explored the single and binary biosorption characteristics of Cd(II) and Sb(III) on it. In our results, the fungus XK8 was identified as Curvularia coatesiae XK8 by ITS sequencing analysis. Under the optimal conditions, in binary biosorption of the XK8, the main effect of the initial cadmium concentration on the cadmium removal rate of XK8 is negative, while the main effect of the initial antimony concentration, biosorption time, and initial pH on the cadmium removal rate of XK8 is positive. The initial pH has the greatest impact on the biosorption of cadmium on XK8, followed by the biosorption time; moreover, the effects of both are stronger than the coexisting ions. SAS analysis shows that under the optimal conditions, the theoretical maximum cadmium removal rate of XK8 is 100%, and the actual removal rate is 67.57%. Compared to the single biosorption with binary biosorption, the maximum biosorption capacity of XK8 for cadmium in the composite biosorption system increased to 23.6 mg g–1. It shows that under the background of high antimony, Sb(III) has a promoting effect on the biosorption of Cd(II) on XK8. In summary, a cadmium and antimony tolerant fungus with strong cadmium biosorption ability under the background of high antimony was screened out. It provides a potential microbial material for the bioremediation of heavy metal pollution.
Collapse
Affiliation(s)
- Zhao Di
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Li Chaoyang
- Central South Inventory and Planning Institute of National Forestry and Grassland Administration, Changsha, China
| | - Zheng Mengxi
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
| | - Zhao Yunlin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- *Correspondence: Zhao Yunlin,
| | - Xu Zhenggang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
- Xu Zhenggang,
| | - Yang Guiyan
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
| |
Collapse
|
14
|
An Q, Zhang C, Zhao B, Li Z, Deng S, Wang T, Jin L. Insight into synergies between Acinetobacter sp. AL-6 and pomelo peel biochar in a hybrid process for highly efficient manganese removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148609. [PMID: 34182459 DOI: 10.1016/j.scitotenv.2021.148609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The manganese contamination of groundwater is a global issue that needs to be solved urgently. In this study, a hybrid process between pomelo peel biochar(BC) and Acinetobacter sp. AL-6 (strain AL-6) was established to remove manganese from water. The results showed that microbe-biochar composite had removed 98.19% of manganese (800 mg L-1) within 48 h. Compared with two separate systems (biochar, strain AL-6), the co-system (strain AL-6 and BC composite) had an excellent synergy effect on manganese removal. The average removal rate of manganese in the synergistic system was 14.08 mg L-1 h-1, which was 6.41 times higher than strain AL-6, 3.45 times higher than biochar, and even at 2.24 times their sum. In addition, the scanning electron microscope (SEM) and the bioassay indicated that many strains were attached to biochar and had vigorous biological activity. The FTIR results showed that the functional groups of OH, CO, CO, CH2, and CH played a vital role in removing manganese. And the correlation analysis shows that biochar with strains AL-6 has a highly synergistic effect on manganese removal. Meanwhile, the composite material can maintain excellent manganese removal efficiency under different pH conditions. Besides, in the sequence batch reactor (SBR) inoculating with the microbe-biochar composite, more than 96% of manganese was removed, which far exceeded the treatment efficiency of free bacteria in the SBR. Hence, biochar-immobilized AL-6 has great potential and can be applied to degrade manganese polluted wastewater.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China; The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing 400045, People's Republic of China.
| | - Chenyi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Tuo Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| | - Lin Jin
- College of Environment and Ecology, Chongqing University, Chongqing 400045, People's Republic of China
| |
Collapse
|
15
|
Nguyen Van P, Thi Hong Truong H, Pham TA, Le Cong T, Le T, Thi Nguyen KC. Removal of Manganese and Copper from Aqueous Solution by Yeast Papiliotrema huenov. MYCOBIOLOGY 2021; 49:507-520. [PMID: 36970636 PMCID: PMC10035953 DOI: 10.1080/12298093.2021.1968624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 06/18/2023]
Abstract
Papiliotrema huenov was previously reported to be highly tolerant of a range of extremely toxic heavy metals. This study aimed to identify the potential of P. huenov to remove manganese and copper from aqueous solution. Physical conditions which affect removal of Mn(II) and Cu(II) were determined. Optimal temperature for adsorption of both metal ions was 30 °C, and optimal pH for maximum uptake of Mn(II) and Cu(II) were 5 and 6, respectively. Under these conditions, living cells of P. huenov accumulated up to 75.58% of 110 mg/L Mn(II) and 70.5% of 128 mg/L Cu(II) over 120 h, whereas, the removal efficiency of metal ions by dead cells over 1 h was 60.3% and 56.5%, respectively. These results indicate that living cells are more effective than dead biomass for bioremediation, but that greater time is required. The experimental data extends the potential use of P. huenov in biosorption and bioaccumulation of toxic heavy metals to copper and manganese, two of the most common industrial contaminants.
Collapse
Affiliation(s)
- Phu Nguyen Van
- Institute of Biotechnology, Hue University, Hue, Vietnam
| | | | - Tuan Anh Pham
- Department of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Tuan Le Cong
- Department of Environmental Science, University of Sciences, Hue University, Hue, Vietnam
| | - Tien Le
- Department of Parasitology, Faculty of Science, BIOCEV, Charles University, Vestec, Czech Republic
| | | |
Collapse
|
16
|
Rizvi A, Ahmed B, Zaidi A, Khan MS. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:801. [PMID: 33263175 DOI: 10.1007/s10661-020-08758-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/16/2020] [Indexed: 05/22/2023]
Abstract
Heavy metals discharge at an unrestrained rate from various industries into the environment pose serious human health problems. Considering this, the present study aimed at exploring the metal biosorbing potentials of bacterial strains recovered from polluted soils. The bacterial strains (CPSB1, BM2 and CAZ3) belonging to genera Pseudomonas, Bacillus and Azotobacter expressing multi-metal tolerance ability were identified to species level as P. aeruginosa, B. subtilis and A. chroococcum, respectively, by 16S rRNA partial gene sequence analysis. The biosorption of cadmium, chromium, copper, nickel, lead and zinc by three dead bacterial genera were studied as a function of metal concentration, variable pH of the medium and reaction (contact) time. The three bacterial strains exhibited a tremendous metal removal ability which continued even at the highest tested concentration of some metals. Later, a decline in the percentage of biosorbed metals was recorded as the metal concentration was increased with the simultaneous generation of a driving force to overcome mass transfer resistance for movement of metal ions between the solution and the surface of adsorbent. Among test bacteria, B. subtilis biosorbed a maximum of 96% chromium at 25 μg mL-1 while the maximum percentage (91%) of biosorbed metals recorded at 400 μg Cd mL-1 was observed for P. aeruginosa. The sorption of metal ions by dead biomass of three bacterial genera at optimum conditions followed the order-(i) B. subtilis BM2: Pb > Cu > Ni > Cd > Cr, (ii) A. chroococcum CAZ3: Cr > Cd > Cu > Ni > Pb and (iii) P. aeruginosa CPSB1: Cd > Cr > Ni > Cu > Pb > Zn. It was found that the optimum pH for metal adsorption ranged between pH 8 and 9 which, however, declined substantially at pH 5.0 for all three bacterial strains. In general, the biosorption of Cd, Cr, Cu, Ni and Pb by B. subtilis and A. chroococcum and such metals along with Zn by P. aeruginosa occurred maximally up to 60 min of bacterial growth. The adsorption data with regard to five metals provide an outstanding fit to the Langmuir and Freundlich isotherms. The biosorptive ability of three bacterial genera correlated strongly (r2 > 0.9) with each metal. The bacteria belonging to two Gram-negative genera Pseudomonas (P. aeruginosa) and Azotobacter (A. chroococcum) and one Gram-positive genus Bacillus (B. subtilis) demonstrated exceptional metal removal efficiency and, hence, provides a comprehensive understanding of metal-bacteria sorption process which in effect paves the way for detoxifying/removing metals from contaminated environment.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Bilal Ahmed
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Almas Zaidi
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
17
|
Huang H, Zhao Y, Xu Z, Ding Y, Zhou X, Dong M. A high Mn(II)-tolerance strain, Bacillus thuringiensis HM7, isolated from manganese ore and its biosorption characteristics. PeerJ 2020; 8:e8589. [PMID: 32742761 PMCID: PMC7363044 DOI: 10.7717/peerj.8589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/17/2020] [Indexed: 12/04/2022] Open
Abstract
Microorganisms play a significant part in detoxifying and immobilizing excessive metals. The present research isolated a strain (HM7) with high Mn(II) tolerance from Mn(II)-contaminated soil samples. The 16S rDNA sequence analysis showed that HM7 had a 99% similarity to Bacillus thuringiensis, which can survive under a high concentration 4,000 mg/L of Mn(II), and the highest removal rate was up to 95.04% at the concentration of 400 mg/L. The highest Mn(II) removal rate was detected at the contact time 72 h, temperature 30 °C, and pH 5.0, while the differences in strain growth and Mn(II) removal rate among different inoculation doses were insignificant. Scanning electron microscopy indicated B. thuringiensis HM7 cells appeared irregular and cracked under Mn(II) stress. Fourier transform infrared exhibited that functional groups like carboxyl, hydroxyl, amino, sulfhydryl groups, and amide bands might take part in the complexation of Mn(II). In addition, HM7 suggested the ability of indoleacetic acid production, siderophore production, and P’ solubilization potential. Therefore, HM7 might have a potential to promote metal absorption by changing the form of heavy metals, and the experiments supported the application of B. thuringiensis HM7 as a biological adsorbent in Mn(II) contaminated environment remediation.
Collapse
Affiliation(s)
- Huimin Huang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Ding
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiaomei Zhou
- School of Material and Chemical Engineering, Hunan City University, Yiyang, Hunan, China
| | - Meng Dong
- School of Material and Chemical Engineering, Hunan City University, Yiyang, Hunan, China
| |
Collapse
|
18
|
Zhang M, Chen Y, Du L, Wu Y, Liu Z, Han L. The potential of Paulownia fortunei seedlings for the phytoremediation of manganese slag amended with spent mushroom compost. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110538. [PMID: 32244118 DOI: 10.1016/j.ecoenv.2020.110538] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/19/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
The use of phytoremediation was an efficient strategy for the restoration of mine slag and the addition of modifier was favorable for improving the phytoremediation efficiency. Herein, spent mushroom compost (SMC) was added in manganese (Mn) slag to reveal the phytoremediation potential of Paulownia fortunei seedlings. The transportation, subcellular distribution and chemical forms of Mn in P. fortunei, the diurnal variation of photosynthesis and antioxidant enzyme activities in P. fortunei leaves were measured to reveal the effect of SMC (mass ratios of 10%, M+) on the phytoremediation of Mn slag. Results showed that the addition of SMC increased the accumulation content of Mn by 408.54% due to the increased biomass of P. fortunei seedlings. After SMC amendment, the maximum net photosynthetic rate (Pn) increased and the superoxide dismutase (SOD) activities decreased significantly (p < 0.05), which was beneficial to the tolerance of leaves to Mn stress. SMC amendment maintained the cell structural integrity of P. fortunei seedlings observed by transmission electron microscope (TEM). Additionally, SMC amendment decreased the damage level of Mn to the cell of P. fortunei seedlings by using function groups (-CH3 and -COOH) to bond Mn in the cell walls and vacuoles. SMC amendment reduced the Mn toxicity to P. fortunei seedlings and improved the phytoremediation capacity.
Collapse
Affiliation(s)
- Mengying Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonghua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Lu Du
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Yangfeng Wu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA
| | - Liangze Han
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| |
Collapse
|
19
|
Krishna Kanamarlapudi SLR, Muddada S. Structural Changes of Bacillus subtilis Biomass on Biosorption of Iron (II) from Aqueous Solutions: Isotherm and Kinetic Studies. Pol J Microbiol 2019; 68:549-558. [PMID: 31880898 PMCID: PMC7260699 DOI: 10.33073/pjm-2019-057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 11/05/2022] Open
Abstract
Various microbial biomasses have been employed as biosorbents. Bacterial biomass has added advantages because of easy in production at a low cost. The study investigated the biosorption of iron from aqueous solutions by Bacillus subtilis. An optimum biosorption capacity of 7.25 mg of the metal per gram of the biosorbent was obtained by the Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) under the experimental conditions of initial metal concentration of 100 mg/l, pH 4.5, and biomass dose of 1 g/l at 30°C for 24 hrs. The data showed the best fit with the Freundlich isotherm model while following pseudo-first-order kinetics. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) analysis confirmed iron biosorption as precipitates on the bacterial surface, and as a peak in the EDX spectrum. The functional hydroxyl, carboxyl, and amino groups that are involved in biosorption were revealed by the Fourier Transform Infrared spectroscopy (FTIR). The amorphous nature of the biosorbent for biosorption was indicated by the X-ray Diffraction (XRD) analysis. The biomass of B. subtilis exhibited a point zero charge (pHpzc) at 2.0. Various microbial biomasses have been employed as biosorbents. Bacterial biomass has added advantages because of easy in production at a low cost. The study investigated the biosorption of iron from aqueous solutions by Bacillus subtilis. An optimum biosorption capacity of 7.25 mg of the metal per gram of the biosorbent was obtained by the Inductive Coupled Plasma Optical Emission Spectroscopy (ICP-OES) under the experimental conditions of initial metal concentration of 100 mg/l, pH 4.5, and biomass dose of 1 g/l at 30°C for 24 hrs. The data showed the best fit with the Freundlich isotherm model while following pseudo-first-order kinetics. Scanning Electron Microscope (SEM) and Energy Dispersive X-ray (EDX) analysis confirmed iron biosorption as precipitates on the bacterial surface, and as a peak in the EDX spectrum. The functional hydroxyl, carboxyl, and amino groups that are involved in biosorption were revealed by the Fourier Transform Infrared spectroscopy (FTIR). The amorphous nature of the biosorbent for biosorption was indicated by the X-ray Diffraction (XRD) analysis. The biomass of B. subtilis exhibited a point zero charge (pHpzc) at 2.0.
Collapse
Affiliation(s)
| | - Sudhamani Muddada
- Department of Biotechnology , Koneru Lakshmaiah Education Foundation (KLEF) , Greenfields, Vaddeswaram, Guntur, Andhra Pradesh , India
| |
Collapse
|