1
|
Grudzien P, Neufeld H, Ebe Eyenga M, Gaponenko V. Development of tolerance to chemokine receptor antagonists: current paradigms and the need for further investigation. Front Immunol 2023; 14:1184014. [PMID: 37575219 PMCID: PMC10420067 DOI: 10.3389/fimmu.2023.1184014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Chemokine G-protein coupled receptors are validated drug targets for many diseases, including cancer, neurological, and inflammatory disorders. Despite much time and effort spent on therapeutic development, very few chemokine receptor antagonists are approved for clinical use. Among potential reasons for the slow progress in developing chemokine receptor inhibitors, antagonist tolerance, a progressive reduction in drug efficacy after repeated administration, is likely to play a key role. The mechanisms leading to antagonist tolerance remain poorly understood. In many cases, antagonist tolerance is accompanied by increased receptor concentration on the cell surface after prolonged exposure to chemokine receptor antagonists. This points to a possible role of altered receptor internalization and presentation on the cell surface, as has been shown for agonist (primarily opioid) tolerance. In addition, examples of antagonist tolerance in the context of other G-protein coupled receptors suggest the involvement of noncanonical signal transduction in opposing the effects of the antagonists. In this review, we summarize the available progress and challenges in therapeutic development of chemokine receptor antagonists, describe the available knowledge about antagonist tolerance, and propose new avenues for future investigation of this important phenomenon. Furthermore, we highlight the modern methodologies that have the potential to reveal novel mechanisms leading to antagonist tolerance and to propel the field forward by advancing the development of potent "tolerance-free" antagonists of chemokine receptors.
Collapse
Affiliation(s)
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
2
|
Calì B, Deygas M, Munari F, Marcuzzi E, Cassará A, Toffali L, Vetralla M, Bernard M, Piel M, Gagliano O, Mastrogiovanni M, Laudanna C, Elvassore N, Molon B, Vargas P, Viola A. Atypical CXCL12 signaling enhances neutrophil migration by modulating nuclear deformability. Sci Signal 2022; 15:eabk2552. [DOI: 10.1126/scisignal.abk2552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To reach inflamed tissues from the circulation, neutrophils must overcome physical constraints imposed by the tissue architecture, such as the endothelial barrier or the three-dimensional (3D) interstitial space. In these microenvironments, neutrophils are forced to migrate through spaces smaller than their own diameter. One of the main challenges for cell passage through narrow gaps is the deformation of the nucleus, the largest and stiffest organelle in cells. Here, we showed that chemokines, the extracellular signals that guide cell migration in vivo, modulated nuclear plasticity to support neutrophil migration in restricted microenvironments. Exploiting microfabricated devices, we found that the CXC chemokine CXCL12 enhanced the nuclear pliability of mouse bone marrow–derived neutrophils to sustain their migration in 3D landscapes. This previously uncharacterized function of CXCL12 was mediated by the atypical chemokine receptor ACKR3 (also known as CXCR7), required protein kinase A (PKA) activity, and induced chromatin compaction, which resulted in enhanced cell migration in 3D. Thus, we propose that chemical cues regulate the nuclear plasticity of migrating leukocytes to optimize their motility in restricted microenvironments.
Collapse
Affiliation(s)
- Bianca Calì
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
| | - Mathieu Deygas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Fabio Munari
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Elisabetta Marcuzzi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Antonino Cassará
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Lara Toffali
- University of Verona, Department of Medicine, Division of General Pathology, Verona, Italy
| | - Massimo Vetralla
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Mathilde Bernard
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
| | - Onelia Gagliano
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Marta Mastrogiovanni
- Lymphocyte Cell Biology Unit, Department of Immunology, Institut Pasteur, INSERM-U1224, Ligue Nationale Contre le Cancer, Équipe Labellisée Ligue 2018, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris. France
| | - Carlo Laudanna
- University of Verona, Department of Medicine, Division of General Pathology, Verona, Italy
| | - Nicola Elvassore
- Venetian Institute of Molecular Medicine, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Barbara Molon
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Pablo Vargas
- Institut Curie, PSL Research University, CNRS, UMR 144, F-75005 Paris, France
- Institut Pierre-Gilles de Gennes, PSL Research University, F-75005 Paris, France
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, F-75015 Paris, France
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| |
Collapse
|
3
|
Enten GA, Gao X, Strzelinski HR, Weche M, Liggett SB, Majetschak M. α 1B/D-adrenoceptors regulate chemokine receptor-mediated leukocyte migration via formation of heteromeric receptor complexes. Proc Natl Acad Sci U S A 2022; 119:e2123511119. [PMID: 35537053 PMCID: PMC9171806 DOI: 10.1073/pnas.2123511119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/06/2022] [Indexed: 11/18/2022] Open
Abstract
It is known that catecholamines regulate innate immune functions. The underlying mechanisms, however, are not well understood. Here we show that at least 20 members of the human chemokine receptor (CR) family heteromerize with one or more members of the α1-adrenergic receptor (AR) family in recombinant systems and that such heteromeric complexes are detectable in human monocytes and the monocytic leukemia cell line THP-1. Ligand binding to α1-ARs inhibited migration toward agonists of the CR heteromerization partners of α1B/D-ARs with high potency and 50 to 77% efficacy but did not affect migration induced by a noninteracting CR. Incomplete siRNA knockdown of α1B/D-ARs in THP-1 cells partially inhibited migration toward agonists of their CR heteromerization partners. Complete α1B-AR knockout via CRISPR-Cas9 gene editing in THP-1 cells (THP-1_ADRA1BKO) resulted in 82% reduction of α1D-AR expression and did not affect CR expression. Migration of THP-1_ADRA1BKO cells toward agonists of CR heteromerization partners of α1B/D-ARs was reduced by 82 to 95%. Our findings indicate that CR:α1B/D-AR heteromers are essential for normal function of CR heteromerization partners, provide a mechanism underlying neuroendocrine control of leukocyte trafficking, and offer opportunities to modulate leukocyte and/or cancer cell trafficking in disease processes.
Collapse
Affiliation(s)
- Garrett A. Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Hannah R. Strzelinski
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - McWayne Weche
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Stephen B. Liggett
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| |
Collapse
|
4
|
Du L, Zhao Q, Li J, Wang M, Qiao H. Expression of colorectal neoplasia differentially expressed in anaplastic thyroid carcinoma and its effect on cancer cell proliferation. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:473. [PMID: 35571426 PMCID: PMC9096416 DOI: 10.21037/atm-22-945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/08/2022] [Indexed: 11/07/2022]
Abstract
Background The incidence of anaplastic thyroid cancer (ATC) is high among human cancers. Colorectal neoplasia differentially expressed (CRNDE) is highly expressed in common tumors, and is therefore a potential molecular target for anti-tumor therapy. However, the function of CRNDE in ATC remains elusive. Methods The Gene Expression Omnibus (GEO) database was used to screen the differential expression of long-noncoding RNA (lncRNA) in ATC tissues. The Cancer Genome Atlas (TCGA) database was used to analyze the expression of CRNDE in thyroid cancer (THCA) tissues and its impact on patient prognosis. Quantitative real-time PCR (qRT-PCR) was used to determine the expression level of CRNDE in tumor and control tissues. The biological function of CRNDE in THCA was explored using TCGA RNA sequencing (RNA-seq) data analysis. ATC cell lines with low and high CRNDE expression were selected for CRNDE siRNA transfection, and the proliferation of cells was detected in each group. Results The GEO and TCGA databases analysis results showed that CRNDE was highly expressed in ATC tissues, which is related to the poor prognosis of THCA patients. Also, the expression of CRNDE in the ATC cell line, ARO (human thyroid cancer cell line), was relatively high, while the expression in sw579 is relatively low. Therefore, ARO and sw579 were chosen for CRNDE small interfering RNA (siRNA) transfection. Compared with negative control (si-NC), the expression of CRNDE in si-CRNDE-1, si-CRNDE-2, and si-CRNDE-3 was reduced, indicating that the inhibitory effect was significantly enhanced and the cell proliferation ability was reduced, and the cell cycle is arrested in the G0/G1 phase. Finally, it was found that the wnt3a, β-catenin, and cyclinD1 protein expressions of si-CRNDE-1 and si-CRNDE-2 were significantly reduced. Conclusions The high expression of CRNDE in ATC tissues may promote the proliferation of ATC cells by regulating the Wnt/β-catenin signaling pathway. CRNDE may be a potential molecular target for the treatment of ATC.
Collapse
Affiliation(s)
- Lili Du
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingsong Zhao
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingjing Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingli Wang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Qiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
DeSantis AJ, Enten GA, Gao X, Majetschak M. Chemokine receptor antagonists with α 1-adrenergic receptor blocker activity. J Basic Clin Physiol Pharmacol 2021; 33:519-523. [PMID: 34144642 DOI: 10.1515/jbcpp-2020-0523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Chemokine receptor antagonists are being explored for their therapeutic potential in various disease processes. As the chemokine (C-C motif) receptor 2 (CCR2) antagonist RS504393 is known to compete with ligand binding to α1-adrenoceptors, we tested a panel of 10 CCR antagonists for interactions with α1-adrenoceptors to evaluate potential cardiovascular activities and side-effect profiles. METHODS The PRESTO-Tango β-arrestin recruitment assay was utilized to test whether the CCR antagonists interfere with α1b-AR activation upon stimulation with phenylephrine. Pressure myography with isolated rat resistance arteries was employed to assess their effects on phenylephrine-induced vasoconstriction. The following antagonists were tested: CCR1-BX471, BX513, BI639667; CCR2-RS504393, INCB3284; CCR3-SB328437; and CCR4-AZD2098, and C021; CCR5-Maraviroc; CCR10-BI6901. The pan-α1-adrenoceptor antagonist prazosin was used as control. RESULTS Among the CCR antagonists tested, RS504393, BX513, and C021 inhibited phenylephrine-induced β-arrestin recruitment to α1b-adrenoceptor and phenylephrine-induced vasoconstriction. While RS504393 functioned as a competitive α1-adrenoceptor blocker, BX513 and C021 functioned as noncompetitive α1-adrenoceptor antagonists in both assay systems. Furthermore, RS504393, BX513, and C021 dose-dependently dilated arteries that were fully preconstricted with phenylephrine. CONCLUSIONS Our data suggest that CCR antagonists should be screened for cross-reactivity with α1-adrenoceptors to exclude potential adverse cardiovascular effects when used as anti inflammatory drugs.
Collapse
Affiliation(s)
| | - Garrett A Enten
- Departments of Surgery and Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| | - Xianlong Gao
- Department of Surgery, University of South Florida, Tampa, FL, USA
| | - Matthias Majetschak
- Departments of Surgery and Molecular Pharmacology & Physiology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
6
|
Gao X, Cheng YH, Enten GA, DeSantis AJ, Gaponenko V, Majetschak M. Regulation of the thrombin/protease-activated receptor 1 axis by chemokine (C XC motif) receptor 4. J Biol Chem 2020; 295:14893-14905. [PMID: 32839271 DOI: 10.1074/jbc.ra120.015355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Indexed: 12/17/2022] Open
Abstract
The chemokine receptor CXCR4, a G protein-coupled receptor (GPCR) capable of heteromerizing with other GPCRs, is involved in many processes, including immune responses, hematopoiesis, and organogenesis. Evidence suggests that CXCR4 activation reduces thrombin/protease-activated receptor 1 (PAR1)-induced impairment of endothelial barrier function. However, the mechanisms underlying cross-talk between CXCR4 and PAR1 are not well-understood. Using intermolecular bioluminescence resonance energy transfer and proximity ligation assays, we found that CXCR4 heteromerizes with PAR1 in the HEK293T expression system and in human primary pulmonary endothelial cells (hPPECs). A peptide analog of transmembrane domain 2 (TM2) of CXCR4 interfered with PAR1:CXCR4 heteromerization. In HTLA cells, the presence of CXCR4 reduced the efficacy of thrombin to induce β-arrestin-2 recruitment to recombinant PAR1 and enhanced thrombin-induced Ca2+ mobilization. Whereas thrombin-induced extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation occurred more transiently in the presence of CXCR4, peak ERK1/2 phosphorylation was increased when compared with HTLA cells expressing PAR1 alone. CXCR4-associated effects on thrombin-induced β-arrestin-2 recruitment to and signaling of PAR1 could be reversed by TM2. In hPPECs, TM2 inhibited thrombin-induced ERK1/2 phosphorylation and activation of Ras homolog gene family member A. CXCR4 siRNA knockdown inhibited thrombin-induced ERK1/2 phosphorylation. Whereas thrombin stimulation reduced surface expression of PAR1, CXCR4, and PAR1:CXCR4 heteromers, chemokine (CXC motif) ligand 12 stimulation reduced surface expression of CXCR4 and PAR1:CXCR4 heteromers, but not of PAR1. Finally, TM2 dose-dependently inhibited thrombin-induced impairment of hPPEC monolayer permeability. Our findings suggest that CXCR4:PAR1 heteromerization enhances thrombin-induced G protein signaling of PAR1 and PAR1-mediated endothelial barrier disruption.
Collapse
Affiliation(s)
- Xianlong Gao
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - You-Hong Cheng
- Burn and Shock Trauma Research Institute, Department of Surgery, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Garrett A Enten
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Anthony J DeSantis
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, Illinois, USA
| | - Matthias Majetschak
- Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA; Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|