2
|
Tamargo M, Martínez-Legazpi P, Espinosa MÁ, Lyon A, Méndez I, Gutiérrez-Ibañes E, Fernández AI, Prieto-Arévalo R, González-Mansilla A, Arts T, Delhaas T, Mombiela T, Sanz-Ruiz R, Elízaga J, Yotti R, Tschöpe C, Fernández-Avilés F, Lumens J, Bermejo J. Increased Chamber Resting Tone Is a Key Determinant of Left Ventricular Diastolic Dysfunction. Circ Heart Fail 2023; 16:e010673. [PMID: 38113298 PMCID: PMC10729900 DOI: 10.1161/circheartfailure.123.010673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/22/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Twitch-independent tension has been demonstrated in cardiomyocytes, but its role in heart failure (HF) is unclear. We aimed to address twitch-independent tension as a source of diastolic dysfunction by isolating the effects of chamber resting tone (RT) from impaired relaxation and stiffness. METHODS We invasively monitored pressure-volume data during cardiopulmonary exercise in 20 patients with hypertrophic cardiomyopathy, 17 control subjects, and 35 patients with HF with preserved ejection fraction. To measure RT, we developed a new method to fit continuous pressure-volume measurements, and first validated it in a computational model of loss of cMyBP-C (myosin binding protein-C). RESULTS In hypertrophic cardiomyopathy, RT (estimated marginal mean [95% CI]) was 3.4 (0.4-6.4) mm Hg, increasing to 18.5 (15.5-21.5) mm Hg with exercise (P<0.001). At peak exercise, RT was responsible for 64% (53%-76%) of end-diastolic pressure, whereas incomplete relaxation and stiffness accounted for the rest. RT correlated with the levels of NT-proBNP (N-terminal pro-B-type natriuretic peptide; R=0.57; P=0.02) and with pulmonary wedge pressure but following different slopes at rest and during exercise (R2=0.49; P<0.001). In controls, RT was 0.0 mm Hg and 1.2 (0.3-2.8) mm Hg in HF with preserved ejection fraction patients and was also exacerbated by exercise. In silico, RT increased in parallel to the loss of cMyBP-C function and correlated with twitch-independent myofilament tension (R=0.997). CONCLUSIONS Augmented RT is the major cause of LV diastolic chamber dysfunction in hypertrophic cardiomyopathy and HF with preserved ejection fraction. RT transients determine diastolic pressures, pulmonary pressures, and functional capacity to a greater extent than relaxation and stiffness abnormalities. These findings support antimyosin agents for treating HF.
Collapse
Affiliation(s)
- María Tamargo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Pablo Martínez-Legazpi
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
- Department of Mathematical Physics and Fluids, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Spain (P.M.-L.)
| | - M. Ángeles Espinosa
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Irene Méndez
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Enrique Gutiérrez-Ibañes
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Ana I. Fernández
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Raquel Prieto-Arévalo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Ana González-Mansilla
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Teresa Mombiela
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Ricardo Sanz-Ruiz
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Jaime Elízaga
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Carsten Tschöpe
- Berlin Institute of Health/Center for Regenerative Therapy (BCRT) at Charite, and Department of Cardiology, Campus Virchow (CVK), Charité Universitätsmedizin, and DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany (C.T.)
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands (A.L., T.A., T.D., J.L.)
| | - Javier Bermejo
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Spain (M.T., P.M.-L., M.A.E., I.M., E.G.-I., A.I.F., R.P.-A., A.G.-M., T.M., R.S.-R., J.E., R.Y., F.F.-A., J.B.)
| |
Collapse
|
6
|
Lyon A, Dupuis LJ, Arts T, Crijns HJGM, Prinzen FW, Delhaas T, Heijman J, Lumens J. Differentiating the effects of β-adrenergic stimulation and stretch on calcium and force dynamics using a novel electromechanical cardiomyocyte model. Am J Physiol Heart Circ Physiol 2020; 319:H519-H530. [PMID: 32734816 DOI: 10.1152/ajpheart.00275.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cardiac electrophysiology and mechanics are strongly interconnected. Calcium is crucial in this complex interplay through its role in cellular electrophysiology and sarcomere contraction. We aim to differentiate the effects of acute β-adrenergic stimulation (β-ARS) and cardiomyocyte stretch (increased sarcomere length) on calcium-transient dynamics and force generation, using a novel computational model of cardiac electromechanics. We implemented a bidirectional coupling between the O'Hara-Rudy model of human ventricular electrophysiology and the MechChem model of sarcomere mechanics through the buffering of calcium by troponin. The coupled model was validated using experimental data from large mammals or human samples. Calcium transient and force were simulated for various degrees of β-ARS and initial sarcomere lengths. The model reproduced force-frequency, quick-release, and isotonic contraction experiments, validating the bidirectional electromechanical interactions. An increase in β-ARS increased the amplitudes of force (augmented inotropy) and calcium transient, and shortened both force and calcium-transient duration (lusitropy). An increase in sarcomere length increased force amplitude even more, but decreased calcium-transient amplitude and increased both force and calcium-transient duration. Finally, a gradient in relaxation along the thin filament may explain the nonmonotonic decay in cytosolic calcium observed with high tension. Using a novel coupled human electromechanical model, we identified differential effects of β-ARS and stretch on calcium and force. Stretch mostly contributed to increased force amplitude and β-ARS to the reduction of calcium and force duration. We showed that their combination, rather than individual contributions, is key to ensure force generation, rapid relaxation, and low diastolic calcium levels.NEW & NOTEWORTHY This work identifies the contribution of electrical and mechanical alterations to regulation of calcium and force under exercise-like conditions using a novel human electromechanical model integrating ventricular electrophysiology and sarcomere mechanics. By better understanding their individual and combined effects, this can uncover arrhythmogenic mechanisms in exercise-like situations. This publicly available model is a crucial step toward understanding the complex interplay between cardiac electrophysiology and mechanics to improve arrhythmia risk prediction and treatment.
Collapse
Affiliation(s)
- Aurore Lyon
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Lauren J Dupuis
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.,Department of Bioinformatics-BiGCaT, School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Theo Arts
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Harry J G M Crijns
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frits W Prinzen
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|