1
|
Lonare S, Gupta DN, Kaur H, Rode S, Verma S, Gubyad M, Ghosh DK, Kumar P, Sharma AK. Characterization of Cationic Amino Acid Binding Protein from Candidatus Liberibacter Asiaticus and in Silico Study to Identify Potential Inhibitor Molecules. Protein J 2024; 43:967-982. [PMID: 39306651 DOI: 10.1007/s10930-024-10233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Cationic amino acid binding protein (CLasArgBP), one of the two amino acid binding receptor in Candidatus Liberibacter asiaticus (CLas), is predominately expressed in citrus psyllids as a part of ATP-binding cassette transport system. The present study describes characterization of CLasArgBP by various biophysical techniques and in silico study, to identify potential inhibitor molecules against CLasArgBP through virtual screening and MD simulations. Further, in planta study was carried out to assess the effect of selected inhibitors on Huanglongbing infected Mosambi plants. The results showed that CLasArgBP exhibits pronounced specificity for arginine, histidine and lysine. Surface plasmon resonance (SPR) study reports highest binding affinity for arginine (Kd, 0.14 µM), compared to histidine and lysine (Kd, 15 µΜ and 26 µΜ, respectively). Likewise, Differential Scanning Calorimetry (DSC) study showed higher stability of CLasArgBP for arginine, compared to histidine and lysine. N(omega)-nitro-L-arginine, Gamma-hydroxy-L-arginine and Gigartinine emerged as lead compounds through in silico study displaying higher binding energy and stability compared to arginine. SPR reports elevated binding affinities for N(omega)-nitro-L-arginine and Gamma-hydroxy-L-arginine (Kd, 0.038 µΜ and 0.061 µΜ, respectively) relative to arginine. DSC studies showed enhanced thermal stability for CLasArgBP in complex with selected inhibitors. Circular dichroism and fluorescence studies showed pronounced conformational changes in CLasArgBP with selected inhibitors than with arginine. In planta study demonstrated a substantial decrease in CLas titer in treated plants as compared to control plants. Overall, the study provides the first comprehensive characterization of cationic amino acid binding protein from CLas, as a potential drug target to manage HLB disease.
Collapse
Affiliation(s)
- Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shalja Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
2
|
Núñez-Muñoz LA, Sánchez-García ME, Calderón-Pérez B, De la Torre-Almaraz R, Ruiz-Medrano R, Xoconostle-Cázares B. Metagenomic Analysis of Rhizospheric Bacterial Community of Citrus Trees Expressing Phloem-Directed Antimicrobials. MICROBIAL ECOLOGY 2024; 87:93. [PMID: 39008123 PMCID: PMC11249458 DOI: 10.1007/s00248-024-02408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Huanglongbing, also known as citrus greening, is currently the most devastating citrus disease with limited success in prevention and mitigation. A promising strategy for Huanglongbing control is the use of antimicrobials fused to a carrier protein (phloem protein of 16 kDa or PP16) that targets vascular tissues. This study investigated the effects of genetically modified citrus trees expressing Citrus sinensis PP16 (CsPP16) fused to human lysozyme and β-defensin-2 on the soil microbiome diversity using 16S amplicon analysis. The results indicated that there were no significant alterations in alpha diversity, beta diversity, phylogenetic diversity, differential abundance, or functional prediction between the antimicrobial phloem-overexpressing plants and the control group, suggesting minimal impact on microbial community structure. However, microbiota diversity analysis revealed distinct bacterial assemblages between the rhizosphere soil and root environments. This study helps to understand the ecological implications of crops expressing phloem-targeted antimicrobials for vascular disease management, with minimal impact on soil microbiota.
Collapse
Affiliation(s)
- Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Martín Eduardo Sánchez-García
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Rodolfo De la Torre-Almaraz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, 54090, Mexico City, Estado de México, Mexico
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
- Centro de Investigación y de Estudios Avanzados, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico.
- Centro de Investigación y de Estudios Avanzados, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
3
|
Rode S, Kaur H, Sharma M, Shah V, Singh SS, Gubyad M, Ghosh DK, Sircar D, Kumar P, Roy P, Sharma AK. Characterization of Type1 Lipid Transfer Protein from Citrus sinensis: Unraveling its potential as an antimicrobial and insecticidal agent. Int J Biol Macromol 2024; 265:130811. [PMID: 38490399 DOI: 10.1016/j.ijbiomac.2024.130811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/27/2023] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Lipid Transfer Protein1 (LTP1) is a cationic, multifaceted protein belonging to the pathogenesis-related protein (PR14) family. Despite being involved in diverse physiological processes and defense mechanisms, the precise in-vivo role of LTP1 remains undiscovered. This work presents the characterization of recombinant Citrus sinensis LTP1 (CsLTP1) along with lipid binding studies through in-silico and in-vitro approaches. CsLTP1 demonstrated great thermal and pH stability with a huge biotechnological potential. It showed in-vitro binding capacity with jasmonic acid and lipids involved in regulating plant immune responses. Gene expression profiling indicated a significant upregulation of CsLTP1 in Candidatus-infected Citrus plants. CsLTP1 disrupted the cell membrane integrity of various pathogens, making it a potent antimicrobial agent. Further, in-vivo antimicrobial and insecticidal properties of CsLTP1 have been explored. The impact of exogenous CsLTP1 treatment on rice crop metabolism for managing blight disease has been studied using GC-MS. CsLTP1 triggered crucial metabolic pathways in rice plants while controlling the blight disease. CsLTP1 effectively inhibited Helicoverpa armigera larvae by impeding mid-gut α-amylase activity and obstructing its developmental stages. This study highlights the pivotal role of CsLTP1 in plant defense by offering insights for developing multi-target therapeutic agent or disease-resistant varieties to comprehensively tackle the challenges towards crop protection.
Collapse
Affiliation(s)
- Surabhi Rode
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Harry Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Vivek Shah
- Division of Crop Protection, ICAR Central Institute for Cotton Research, Nagpur, India
| | - Shiv Shakti Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, Central Citrus Research Institute, Nagpur, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, Central Citrus Research Institute, Nagpur, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
4
|
Kumar N, Upadhyay A, Shukla S, Bajpai VK, Kieliszek M, Yadav A, Kumaravel V. Next generation edible nanoformulations for improving post-harvest shelf-life of citrus fruits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024; 18:1825-1856. [DOI: 10.1007/s11694-023-02287-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/13/2023] [Indexed: 05/14/2025]
Abstract
AbstractCitrus is one of the most widely grown fruits globally, because of its remarkable organoleptic features, nutritional content and bioactive ingredients. Microbial spoilage and other factors such as physiological disorder, mechanical and physical damage, and fruit senescence are the major factors of postharvest loss to citrus industry. The postharvest losses in citrus are directly have negative impcats on the economy, environment and healths due to production of carbon emission gases. The fungal pathogens such as Penicillium digitatum, Penicillium italicum and Geotrichum candidum are the major cause of postharvest spoilage in citrus fruits. These pathogens produce different mycotoxins such as citrinin, patulin, and tremorgenic. These mycotoxins are secondary metabolites of molds; they employ toxic effects on the healths. The acuteness of mytoxin on toxicity is dependings on the extent exposure, age and nutritional status of individual. The toxicity of mytoxins are directly related to the food safety and health concern including damage DNA, kidney damage, mutation in RNA/DNA, growth impairment in childs and immune system etc. Several attempts have been made to extend the shelf-life of citrus fruits by controlling physiological decay and fungal growth which has got limited success. In recent years, nanotechnology has emerged as a new strategy for shelf life prevention of citrus fruits. The biopolymer based nano-formulations functionalized with active compounds have shown promising results in maintaining the postharvest quality attributes of fruits and vegetables by retarding the moisture loss and oxidation. This review exclusively discloses the postharvest losses in citrus fruits and their causes. In addition, the use of biopolymer based nanoformulations functionalized with active agents and their developing technologies have been also discussed briefly. The effects of nano-formulation technologies on the postharvest shelf life of citrus is also described.The finding of this review also suggest that the natural biopolymers and bioactive compounds can be used for developing nanoformulations for extending the shelf-life of citrus fruits by minimizing the fungal growth and as an alternatives of fungicides.
Collapse
|
5
|
Makam SN, Setamou M, Alabi OJ, Day W, Cromey D, Nwugo C. Mitigation of Huanglongbing: Implications of a Biologically Enhanced Nutritional Program on Yield, Pathogen Localization, and Host Gene Expression Profiles. PLANT DISEASE 2023; 107:3996-4009. [PMID: 37415358 DOI: 10.1094/pdis-10-22-2336-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Huanglongbing (HLB, citrus greening disease), the most destructive disease affecting citrus production, is primarily linked to the gram-negative, insect-vectored, phloem-inhabiting α-proteobacterium 'Candidatus Liberibacter asiaticus' (CLas). With no effective treatment available, management strategies have largely focused on the use of insecticides in addition to the destruction of infected trees, which are environmentally hazardous and cost-prohibitive for growers, respectively. A major limitation to combating HLB is the inability to isolate CLas in axenic culture, which hinders in vitro studies and creates a need for robust in situ CLas detection and visualization methods. The aim of this study was to investigate the efficacy of a nutritional program-based approach for HLB treatment, and to explore the effectiveness of an enhanced immunodetection method to detect CLas-infected tissues. To achieve this, four different biologically enhanced nutritional programs (bENPs; P1, P2, P3, and P4) were tested on CLas-infected citrus trees. Structured illumination microscopy preceded by a modified immunolabeling process and transmission electron microscopy were used to show treatment-dependent reduction of CLas cells in phloem tissues. No sieve pore plugging was seen in the leaves of P2 trees. This was accompanied by an 80% annual increase in fruit number per tree and 1,503 (611 upregulated and 892 downregulated) differentially expressed genes. These included an MLRQ subunit gene, UDP-glucose transferase, and genes associated with the alpha-amino linolenic acid metabolism pathway in P2 trees. Taken together, the results highlight a major role for bENPs as a viable, sustainable, and cost effective option for HLB management.
Collapse
Affiliation(s)
- Srinivas N Makam
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| | - Mamoudou Setamou
- Texas A&M University-Kingsville Citrus Center, Weslaco, TX 78599
| | - Olufemi J Alabi
- Plant Pathology and Microbiology, Texas A&M AgriLife Research and Extension Center, Weslaco, TX 78596
| | - William Day
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Douglas Cromey
- The Imaging Cores Life Sciences North, Research, Innovation and Impact Department, University of Arizona, Tucson, AZ 85719
| | - Chika Nwugo
- Integrated Life Science Research Center (ILSRC), Goodyear, AZ 85338
| |
Collapse
|
6
|
Choudhary M, Pereira J, Davidson EB, Colee J, Santra S, Jones JB, Paret ML. Improved Persistence of Bacteriophage Formulation with Nano N-Acetylcysteine-Zinc Sulfide and Tomato Bacterial Spot Disease Control. PLANT DISEASE 2023; 107:3933-3942. [PMID: 37368450 DOI: 10.1094/pdis-02-23-0255-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Bacteriophages are biocontrol agents used to manage bacterial diseases. They have long been used against plant pathogenic bacteria; however, several factors impede their use as a reliable disease management strategy. Short-lived persistence on plant surfaces under field conditions results mainly from rapid degradation by exposure to ultraviolet (UV) light. Currently, there are no effective commercial formulations that protect phages from UV. The phage ΦXp06-02-1, which lyses strains of the tomato bacterial spot pathogen Xanthomonas perforans, was mixed with different concentrations of the nanomaterial N-acetylcysteine surface-coated manganese-doped zinc sulfide (NAC-ZnS; 3.5 nm). In vitro, NAC-ZnS at 10,000 μg/ml formulated phage, when exposed to UV for 1 min, provided statistically equivalent plaque-forming unit (PFU) recovery as phages that were not exposed to UV. NAC-ZnS had no negative effect on the phage's ability to lyse bacterial cells under in vitro conditions. NAC-ZnS reduced phage degradation over time in comparison with the nontreated control, whereas N-acetylcysteine-zinc oxide (NAC-ZnO) had no effect. In fluorescent light, without UV exposure, NAC-ZnO-formulated phages were more infective than NAC-ZnS-formulated phages. The nanomaterial-phage mixture did not cause any phytotoxicity when applied to tomato plants. Following exposure to sunlight, the NAC-ZnS formulation improved phage persistence in the phyllosphere by 15 times compared with nonformulated phages. NAC-ZnO-formulated phage populations were undetectable within 32 h, whereas NAC-ZnS-formulated phage populations were detected at 103 PFU/g. At 4 h of sunlight exposure, NAC-ZnS-formulated phages at 1,000 μg/ml significantly reduced tomato bacterial spot disease severity by 16.4% compared with nonformulated phages. These results suggest that NAC-ZnS can be used to improve the efficacy of phages for bacterial diseases.
Collapse
Affiliation(s)
- Manoj Choudhary
- North Florida Research and Education Center, University of Florida, Gainesville, FL, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
- ICAR - National Centre for Integrated Pest Management, PUSA, New Delhi, India
| | - Jorge Pereira
- NanoScience Technology Center, University of Central Florida, Orlando, FL, U.S.A
- Department of Chemistry, University of Central Florida, Orlando, FL, U.S.A
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, U.S.A
| | - Edwin B Davidson
- NanoScience Technology Center, University of Central Florida, Orlando, FL, U.S.A
- Department of Chemistry, University of Central Florida, Orlando, FL, U.S.A
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, U.S.A
| | - James Colee
- Statistical Consulting Unit, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, U.S.A
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, FL, U.S.A
- Department of Chemistry, University of Central Florida, Orlando, FL, U.S.A
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, U.S.A
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| | - Mathews L Paret
- North Florida Research and Education Center, University of Florida, Gainesville, FL, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
7
|
Lonare S, Sharma M, Dalal V, Gubyad M, Kumar P, Nath Gupta D, Pareek A, Tomar S, Kumar Ghosh D, Kumar P, Kumar Sharma A. Identification and evaluation of potential inhibitor molecules against TcyA from Candidatus Liberibacter asiaticus. J Struct Biol 2023; 215:107992. [PMID: 37394197 DOI: 10.1016/j.jsb.2023.107992] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Of the two putative amino acid binding periplasmic receptors of ABC transporter family in Candidatus Liberibacter asiaticus (CLas), cystine binding receptor (CLasTcyA) has been shown to mainly express in phloem of citrus plant and is a target for inhibitor development. The crystal structure of CLasTcyA in complex with substrates has been reported earlier. The present work reports the identification and evaluation of potential candidates for their inhibitory potential against CLasTcyA. Among many compounds, selected through virtual screening, and MD simulation, pimozide, clidinium, sulfasalazine and folic acid showed significantly higher affinities and stability in complex with CLasTcyA. The SPR studies with CLasTcyA revealed significantly higher binding affinities for pimozide and clidinium (Kd, 2.73 nM and 70 nM, respectively) as compared to cystine (Kd, 1.26 µM). The higher binding affinities could be attributed to significantly increased number of interactions in the binding pocket as evident from the crystal structures of CLasTcyA in complex with pimozide and clidinium as compared to cystine. The CLasTcyA possess relatively large binding pocket where bulkier inhibitors fit quite well. In planta studies, carried out to assess the effect of inhibitors on HLB infected Mosambi plants, showed significant reduction in CLas titre in plants treated with inhibitors as compared to control plants. The results showed that pimozide exhibited higher efficiency as compared to clidinium in reducing CLas titre in treated plants. Our results showed that the inhibitor development against critical proteins like CLasTcyA can be an important strategy in management of HLB.
Collapse
Affiliation(s)
- Sapna Lonare
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Monica Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Vikram Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Mrugendra Gubyad
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Pranav Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Akshay Pareek
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR Central Citrus Research Institute, Nagpur, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| |
Collapse
|
8
|
Tiwari DK. Nanomaterials as a Replacement for Traditional Agrochemicals: Strategies Towards Sustainable Agriculture. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:13-14. [PMID: 37613117 DOI: 10.1093/micmic/ozad067.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- D K Tiwari
- Consejo Nacional de Ciencia y Tecnología- El Colegio de Michoacán, Michoacán, México
- Laboratorio de Análisis y Diagnóstico del Patrimonio, El Colegio de Michoacán, Michoacán, México
| |
Collapse
|
9
|
Ghosh D, Kokane S, Savita BK, Kumar P, Sharma AK, Ozcan A, Kokane A, Santra S. Huanglongbing Pandemic: Current Challenges and Emerging Management Strategies. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010160. [PMID: 36616289 PMCID: PMC9824665 DOI: 10.3390/plants12010160] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/09/2023]
Abstract
Huanglongbing (HLB, aka citrus greening), one of the most devastating diseases of citrus, has wreaked havoc on the global citrus industry in recent decades. The culprit behind such a gloomy scenario is the phloem-limited bacteria "Candidatus Liberibacter asiaticus" (CLas), which are transmitted via psyllid. To date, there are no effective long-termcommercialized control measures for HLB, making it increasingly difficult to prevent the disease spread. To combat HLB effectively, introduction of multipronged management strategies towards controlling CLas population within the phloem system is deemed necessary. This article presents a comprehensive review of up-to-date scientific information about HLB, including currently available management practices and unprecedented challenges associated with the disease control. Additionally, a triangular disease management approach has been introduced targeting pathogen, host, and vector. Pathogen-targeting approaches include (i) inhibition of important proteins of CLas, (ii) use of the most efficient antimicrobial or immunity-inducing compounds to suppress the growth of CLas, and (iii) use of tools to suppress or kill the CLas. Approaches for targeting the host include (i) improvement of the host immune system, (ii) effective use of transgenic variety to build the host's resistance against CLas, and (iii) induction of systemic acquired resistance. Strategies for targeting the vector include (i) chemical and biological control and (ii) eradication of HLB-affected trees. Finally, a hypothetical model for integrated disease management has been discussed to mitigate the HLB pandemic.
Collapse
Affiliation(s)
- Dilip Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Sunil Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Pranav Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| | - Ali Ozcan
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
- Scientific and Technological Studies Application and Research Center, Karamanoglu Mehmetbey University, 70200 Karaman, Turkey
| | - Amol Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur 440033, India
| | - Swadeshmukul Santra
- Departments of Chemistry, Nano Science Technology Center, and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
- Correspondence: (D.G.); (A.K.S.); (S.S.)
| |
Collapse
|
10
|
Zhao W, Liu Y, Zhang P, Zhou P, Wu Z, Lou B, Jiang Y, Shakoor N, Li M, Li Y, Lynch I, Rui Y, Tan Z. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture. NANOIMPACT 2022; 28:100420. [PMID: 36038133 DOI: 10.1016/j.impact.2022.100420] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
People's desire for food has never slowed, despite the deterioration of the global agricultural environment and the threat to food security. People rely on agrochemicals to ensure normal crop growth and to relieve the existing demand pressure. Phytopathogens have acquired resistance to traditional pesticides as a result of pesticdes' abuse. Compared with traditional formulations, nano-pesticides have superior antimicrobial performance and are environmentally friendly. Zn-based nanoparticles (NPs) have shown their potential as strong antipathogen activity. However, their full potential has not been demonstrated yet. Here, we analyzed the prerequisites for the use of Zn-based NPs as nano-pesticides in agriculture including both intrinsic properties of the materials and environmental conditions. We also summarized the mechanisms of Zn-based NPs against phytopathogens including direct and indirect strategies to alleviate plant disease stress. Finally, the current challenges and future directions are highlighted to advance our understanding of this field and guide future studies.
Collapse
Affiliation(s)
- Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwanjing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pingfan Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhangguo Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China
| | - Benzhen Lou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingshu Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; China Agricultural University Professor Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China; China Agricultural University Professor Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| | - Zhiqiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
11
|
Qu G, Li Y, Zhao Z, Miao L, Wei F, Tang N, Xu Q, Nair V, Yao Y, Shen Z. Establishment and Application of a Real-Time Recombinase Polymerase Amplification Assay for the Detection of Avian Leukosis Virus Subgroup J. Front Vet Sci 2022; 9:847194. [PMID: 35873679 PMCID: PMC9301284 DOI: 10.3389/fvets.2022.847194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis caused by avian leukosis virus (ALV), belonging to the genus Alpharetrovirus of the family Retroviridae, is associated with benign and malignant tumors in hemopoietic cells in poultry. Although several methods have been developed for ALV detection, most of them are not suitable for rapid on-site testing due to instrument limitations, professional operators, or the low sensitivity of the method. Herein, we described the real-time recombinase polymerase amplification (RPA) assay for rapid detection of ALV subgroup J (ALV-J). The major viral structural glycoprotein gp85, highly specific for the subgroup, was used as the molecular target for the real-time RPA assay. The results were obtained at 38°C within 20 min, with the detection sensitivity of 10 copies/μl of standard plasmid pMD18-T-gp85 as the template per reaction. Real-time RPA was capable of ALV-J-specific detection without cross-reaction with other non-targeted avian pathogens. Of the 62 clinical samples tested, the ALV-positive rates of real-time RPA, PCR, and real-time PCR were 66.13% (41/62), 59.68% (37/62), and 67.74% (42/62), respectively. The diagnostic agreement between real-time RPA and real-time PCR was 98.39% (61/62), and the kappa value was 0.9636. The developed real-time ALV-J assay seems promising for rapid and sensitive detection of ALV-J in diagnostic laboratories. It is suitable for on-site detection, especially in a poor resource environment, thus facilitating the prevention and control of ALV-J.
Collapse
Affiliation(s)
- Guanggang Qu
- Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, China
- *Correspondence: Guanggang Qu
| | - Yun Li
- Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zhongwei Zhao
- Shandong Lvdu Biotechnology Co., Ltd, Binzhou, China
| | - Lizhong Miao
- Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, China
| | - Feng Wei
- Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, China
| | - Na Tang
- Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, China
| | - Qingqing Xu
- Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, China
| | - Venugopal Nair
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Guildford, United Kingdom
| | - Yongxiu Yao
- The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Guildford, United Kingdom
- Yongxiu Yao
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy and UK-China Centre of Excellence for Research on Avian Diseases, Binzhou, China
- Shandong Lvdu Biotechnology Co., Ltd, Binzhou, China
- Zhiqiang Shen
| |
Collapse
|
12
|
Dutta P, Kumari A, Mahanta M, Biswas KK, Dudkiewicz A, Thakuria D, Abdelrhim AS, Singh SB, Muthukrishnan G, Sabarinathan KG, Mandal MK, Mazumdar N. Advances in Nanotechnology as a Potential Alternative for Plant Viral Disease Management. Front Microbiol 2022; 13:935193. [PMID: 35847105 PMCID: PMC9279558 DOI: 10.3389/fmicb.2022.935193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Plant viruses cause enormous losses in agricultural production accounting for about 47% of the total overall crop losses caused by plant pathogens. More than 50% of the emerging plant diseases are reported to be caused by viruses, which are inevitable or unmanageable. Therefore, it is essential to devise novel and effective management strategies to combat the losses caused by the plant virus in economically important crops. Nanotechnology presents a new tendency against the increasing challenges in the diagnosis and management of plant viruses as well as plant health. The application of nanotechnology in plant virology, known as nanophytovirology, includes disease diagnostics, drug delivery, genetic transformation, therapeutants, plant defense induction, and bio-stimulation; however, it is still in the nascent stage. The unique physicochemical properties of particles in the nanoscale allow greater interaction and it may knock out the virus particles. Thus, it opens up a novel arena for the management of plant viral diseases. The main objective of this review is to focus on the mounting collection of tools and techniques involved in the viral disease diagnosis and management and to elucidate their mode of action along with toxicological concerns.
Collapse
|
13
|
Savita BK, Dalal V, Choudhary S, Gupta DN, Das N, Tomar S, Kumar P, Roy P, Sharma AK. Characterization of recombinant pumpkin 2S albumin and mutation studies to unravel potential DNA/RNA binding site. Biochem Biophys Res Commun 2021; 580:28-34. [PMID: 34610489 DOI: 10.1016/j.bbrc.2021.09.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022]
Abstract
The native pumpkin 2S albumin, a multifunctional protein, possess a variety of potential biotechnologically exploitable properties. The present study reports the characterization of recombinant pumpkin 2S albumin (rP2SA) and unraveling of its potential DNA/RNA binding site. The purification and characterization of the rP2SA established that it retains the characteristic α-helical structure and exhibited comparable DNase, RNase, antifungal and anti-proliferative activities as native protein. In vitro studies revealed that rP2SA exhibits potent antiviral activity against chikungunya virus (CHIKV) at a non-toxic concentration with an IC50 of 114.5 μg/mL. In silico studies and site-directed mutagenesis were employed to unravel the potential DNA/RNA binding site. A strong positive charge distribution due to presence of many arginine residues in proximity of helix 5 was identified as a potential site. The two of the arginine residues, conserved in some 2S albumins, were selected for the mutation studies. The mutated forms of recombinant protein (R84A and R91A) showed a drastic reduction in DNase and RNase activities suggesting their presence at binding site and involvement in the nuclease activity. A metal binding site was also identified adjacent to DNA/RNA binding site. The present study demonstrated the structural and functional integrity of the rP2SA and reports potential antiviral activity against CHIKV. Further, potential DNA/RNA binding site was unraveled through mutation studies and bioinformatics analysis.
Collapse
Affiliation(s)
- Brajesh Kumar Savita
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Vikram Dalal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Neeladrisingha Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, India.
| |
Collapse
|
14
|
Li X, Ruan H, Zhou C, Meng X, Chen W. Controlling Citrus Huanglongbing: Green Sustainable Development Route Is the Future. FRONTIERS IN PLANT SCIENCE 2021; 12:760481. [PMID: 34868155 PMCID: PMC8636133 DOI: 10.3389/fpls.2021.760481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 05/12/2023]
Abstract
Huanglongbing (HLB) is the most severe bacterial disease of citrus crops caused by Candidatus Liberibacter spp. It causes a reduction in fruit yield, poor fruit quality, and even plants death. Due to the lack of effective medicine, HLB is also called citrus "AIDS." Currently, it is essential for the prevention and control of HLB to use antibiotics and pesticides while reducing the spread of HLB by cultivating pathogen-free seedlings, removing disease trees, and killing Asian citrus psyllid (ACP). New compounds [e.g., antimicrobial peptides (AMPs) and nanoemulsions] with higher effectiveness and less toxicity were also found and they have made significant achievements. However, further evaluation is required before these new antimicrobial agents can be used commercially. In this review, we mainly introduced the current strategies from the aspects of physical, chemical, and biological and discussed their environmental impacts. We also proposed a green and ecological strategy for controlling HLB basing on the existing methods and previous research results.
Collapse
Affiliation(s)
- Xue Li
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Huaqin Ruan
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chengqian Zhou
- Neuroscience Laboratory, Hugo Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
| | - Xiangchun Meng
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MOA), Guangzhou, China
- Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science, Institute of Laser Life Science, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
15
|
Development of a real-time RT-PCR method for the detection of Citrus tristeza virus (CTV) and its implication in studying virus distribution in planta. 3 Biotech 2021; 11:431. [PMID: 34603909 DOI: 10.1007/s13205-021-02976-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Tristeza is an economically important disease of the citrus caused by Citrus tristeza virus (CTV) of genus Closterovirus and family Closteroviridae. The disease has caused tremendous losses to citrus industry worldwide by killing millions of trees, reducing the productivity and total production. Enormous efforts have been made in many countries to prevent the viral spread and the losses caused by the disease. To understand the reason behind this scenario, studies on virus distribution and tropism in the citrus plants are needed. Different diagnostic methods are available for early CTV detection but none of them is employed for in planta virus distribution study. In this study, a TaqMan RT-PCR-based method to detect and quantify CTV in different tissues of infected Mosambi plants (Citrus sinensis) has been standardized. The assay was very sensitive with the pathogen detection limit of > 0.0595 fg of in vitro-transcribed CTV-RNA. The assay was implemented for virus distribution study and absolute CTV titer quantification in samples taken from Tristeza-infected trees. The highest virus load was observed in the midribs of the symptomatic leaf (4.1 × 107-1.4 × 108/100 mg) and the lowest in partial dead twigs (1 × 103-1.7 × 104/100 mg), and shoot tip (2.3 × 103-4.5 × 103/100 mg). Interestingly, during the peak summer months, the highest CTV load was observed in the feeder roots (3 × 107-1.1 × 108/100 mg) than in the midribs of symptomatic leaf. The viral titer was highest in symptomatic leaf midrib followed by asymptomatic leaf midrib, feeder roots, twig bark, symptomatic leaf lamella, and asymptomatic leaf lamella. Overall, high CTV titer was primarily observed in the phloem containing tissues and low CTV titer in the other tissues. The information would help in selecting tissues with higher virus titer in disease surveillance that have implication in Tristeza management in citrus.
Collapse
|
16
|
Kokane AD, Lawrence K, Kokane SB, Gubyad MG, Misra P, Reddy MK, Ghosh DK. Development of a SYBR Green-based RT-qPCR assay for the detection of Indian citrus ringspot virus. 3 Biotech 2021; 11:359. [PMID: 34295604 DOI: 10.1007/s13205-021-02903-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022] Open
Abstract
The Indian citrus ringspot virus (ICRSV) that causes ringspot disease, especially to 'Kinnow mandarin' hampers the sustainability of crop production. Presently, the disease is not amenable for control through host resistance or the introduction of chemicals, hence raising virus-free plants is one of the most effective approaches to manage the disease. Consequently, it is necessary to develop rapid, sensitive, specific, and early diagnostic methods for disease control. In the present study, newly designed primers targeting a 164 bp region of the ICRSV coat protein gene were used to develop and optimize a SYBR Green-based quantitative reverse transcription polymerase chain reaction (RT-qPCR) assay, for the detection of ICRSV. The RT-qPCR assay was evaluated and confirmed using viral RNA extracted from ICRSV infected plants maintained in screen house as well as field samples. The standard curves displayed a dynamic linear range across eight log units of ICRSV-cRNA copy number ranging from 9.48.1 fmol (5.709 × 109) to 0.000948 amol (5.709 × 102), with detection limit of 5.709 × 102 copies per reaction using serial tenfold diluted in vitro transcribed viral cRNA. The developed RT-qPCR is very specific to ICRSV does not react to other citrus pathogens, and approximately 100-fold more sensitive than conventional RT-PCR. Thus, this assay will be useful in laboratories, KVKs, and nurseries for the citrus budwood certification program as well as in plant quarantine stations. To our knowledge, this is the first study of the successful detection of ICRSV by RT-qPCR.
Collapse
|
17
|
Kokane AD, Kokane SB, Warghane AJ, Gubyad MG, Sharma AK, Reddy MK, Ghosh DK. A Rapid and Sensitive Reverse Transcription-Loop-Mediated Isothermal Amplification (RT-LAMP) Assay for the Detection of Indian Citrus Ringspot Virus. PLANT DISEASE 2021; 105:1346-1355. [PMID: 32990524 DOI: 10.1094/pdis-06-20-1349-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Indian citrus ringspot virus (ICRSV) is a devastating pathogen that has a particularly deleterious effect on the 'Kinnow mandarin', a commercial citrus crop cultivated in the northwest of India. ICRSV belongs to the Mandarivirus genus within the family of Alphaflexiviridae and has a positive sense single-stranded RNA (ssRNA) genome consisting of six open reading frames (ORFs). Severe cases of ICRSV result in a significant reduction in both the yield and quality of crops. Consequently, there is an urgent need to develop methods to detect ICRSV in an accurate and timely manner. Current methods involve a two-step reverse transcription polymerase chain reaction (RT-PCR) that is time consuming. Here, we describe a novel, one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the sensitive and rapid detection of ICRSV. To standardize the RT-LAMP assay, four different primers were designed and tested to target the coat protein gene of ICRSV. Amplification results were visualized by a color change after addition of SYBR Green I. The standardized RT-LAMP assay was highly specific and successfully detected all 35 ICRSV isolates tested from the Punjab and Haryana states of India. Furthermore, there was no cross-reaction with 17 isolates of five other citrus pathogens that are common in India. The ICRSV RT-LAMP assay developed in the present study is a simple, rapid, sensitive, specific technique. Moreover, the assay consists of only a single step and is more cost effective than existing methods. This is the first application of RT-LAMP for the detection of ICRSV. Our RT-LAMP assay is a powerful tool for the detection of ICRSV and will be particularly useful for large-scale indexing of field samples in diagnostic laboratories, in nurseries, and for quarantine applications.
Collapse
Affiliation(s)
- Amol D Kokane
- Plant Virology Lab, ICAR-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Sunil B Kokane
- Plant Virology Lab, ICAR-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Ashish J Warghane
- Plant Virology Lab, ICAR-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Mrugendra G Gubyad
- Plant Virology Lab, ICAR-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247 667, Uttarakhand, India
| | - M Krishna Reddy
- ICAR-Indian Institute of Horticultural Research, Bangalore-560 089, Karnataka, India
| | - Dilip Kumar Ghosh
- Plant Virology Lab, ICAR-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| |
Collapse
|
18
|
Ghosh DK, Kokane AD, Kokane SB, Tenzin J, Gubyad MG, Wangdi P, Murkute AA, Sharma AK, Gowda S. Detection and Molecular Characterization of 'C andidatus Liberibacter asiaticus' and Citrus Tristeza Virus Associated with Citrus Decline in Bhutan. PHYTOPATHOLOGY 2021; 111:870-881. [PMID: 33090079 DOI: 10.1094/phyto-07-20-0266-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Citrus, mainly mandarin (Citrus reticulata Blanco), is an economically important fruit crop in Bhutan. Despite having favorable agroclimatic conditions for citrus cultivation, the early decline of fruit-bearing orchards coupled with low crop productivity is a major concern among citrus growers. During a recent survey, an association of 'Candidatus Liberibacter asiaticus' (citrus greening) and citrus tristeza virus (CTV), either singly or as mixed infections in declined citrus trees, was recorded in all four major citrus-growing districts (Tsirang, Dagana, Zhemgang, and Sarpang). Using PCR-based diagnosis, a higher incidence of citrus greening (27.45%) and tristeza (70.58%) was observed in symptomatic field samples. Detection and characterization of 'Ca. L. asiaticus' was performed based on the 16S ribosomal DNA, prophage gene, 50S ribosomal rplA-rplJ gene, and tandem repeats of the CLIBASIA_01645 locus. Similarly, the coat protein, p23, and p18 genes were used as genetic markers for the detection and characterization of Bhutanese CTV. The 'Ca. L. asiaticus' isolates from Bhutan segregated into classes II and III based on the CLIBASIA_01645 locus, analogous to Indian isolates from the northeast region and Term-A based on the CLIBASIA_05610 locus. CTV isolates of Bhutan were observed as closely related to the VT strain, which is considered to be the most devastating. To the best of our knowledge, this is the first study on molecular characterization of 'Ca. L. asiaticus' and CTV isolates and their association with citrus decline in Bhutan.
Collapse
Affiliation(s)
- Dilip Kumar Ghosh
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Amol D Kokane
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Sunil B Kokane
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Jigme Tenzin
- National Citrus Program, Department of Agriculture, Royal Government of Bhutan, Thimphu 11001, Bhutan
| | - Mrugendra G Gubyad
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Phuntsho Wangdi
- National Citrus Repository, Department of Agriculture, Royal Government of Bhutan, Tsirang, Bhutan
| | - Ashutosh A Murkute
- Indian Council of Agricultural Research-Central Citrus Research Institute, Nagpur-440 033, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology, Roorkee - 247 667, India
| | - Siddarame Gowda
- University of Florida, Citrus Research and Education Centre, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
19
|
Post-synthesis nanostructuration of BSA-Capsaicin nanoparticles generated by sucrose excipient. Sci Rep 2021; 11:7549. [PMID: 33824363 PMCID: PMC8024356 DOI: 10.1038/s41598-021-87241-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/25/2021] [Indexed: 01/17/2023] Open
Abstract
In the pharmaceutical industry nano-hydrocolloid systems frequently coalesce or present nanoparticle aggregation after a long storage periods. Besides, the lyophilization process used to dry nanoparticles (NPs) produces loss of their original properties after dispersion. In this work we evaluated the effect on morphology and physicochemical properties of different protective excipients during drying of bovine serum albumin (BSA) NPs loaded with different concentrations of capsaicin. Capsaicin concentrations of 0, 812, 1625, 2437, and 3250 µg mL−1 were used; subsequently, NPs were dried with deionized water (DW), NaCl (DN), sucrose (DS), and not dried (ND). We found that ND, DW, and DN treatments showed a negative effect on the NPs properties; while, DS reduced the aggregation and produced the formation of isolated nanoparticles at higher concentrations of capsaicin (3250 µg mL−1), improving their circular shape, morphometrical parameters, and ζ-potential. The stability of the BSA-capsaicin NPs was associated to complex capsaicin/amino acid/water, in which GLY/GLN, ALA/HIS, ARG, THR, TYR, and Iso/CYS amino acids are involved in the restructuration of capsaicin molecules into the surface of nanoparticles during the drying process. The secondary nanostructuration in the post-synthesis stage can improve the molecular stability of the particles and the capacity of entrapping hydrophobic drugs, like capsaicin.
Collapse
|
20
|
Development of a reverse transcription recombinase polymerase based isothermal amplification coupled with lateral flow immunochromatographic assay (CTV-RT-RPA-LFICA) for rapid detection of Citrus tristeza virus. Sci Rep 2020; 10:20593. [PMID: 33244066 PMCID: PMC7693335 DOI: 10.1038/s41598-020-77692-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023] Open
Abstract
Tristeza is a highly destructive disease of citrus caused by the phloem-limited, flexuous filamentous Citrus tristeza virus (CTV) in the genus Closterovirus and the family Closteroviridae. It has been a major constraint for higher productivity and has destroyed millions of citrus trees globally. CTV is graft transmissible and spread through use of virus infected nursery plants. Therefore, virus detection by using specific and reliable diagnostic tools is very important to mitigate disease outbreaks. Currently, the standard molecular techniques for CTV detection include RT-PCR and RT-qPCR. These diagnostic methods are highly sensitive but time consuming, labor intensive and require sophisticated expensive instruments, thus not suitable for point-of-care use. In the present study, we report the development of a rapid, sensitive, robust, reliable, and highly specific reverse transcription-RPA technique coupled with a lateral flow immunochromatographic assay (CTV-RT-RPA-LFICA). RT-RPA technique was standardized to amplify the coat protein gene of CTV (CTV-p25) and detect double labeled amplicons on a sandwich immunoassay by designing specific labeled primer pair and probe combinations. The optimally performing primer set (CTRPA-F1/CTRPA-R9-Btn) and the corresponding TwistAmp nfo probe (CTRPA-Probe) was optimized for temperature and reaction time using purified cDNA and viral RNA as template. The sensitivity of the developed assay was compared with other detection techniques using in vitro-transcribed RNA. The efficacy and specificity of the assay was evaluated using CTV positive controls, healthy samples, field grown citrus plants of unknown status, and other virus and bacterial pathogens that infect citrus plants. The RT-RPA-LFICA was able to detect ≤ 141 fg of RNA when cDNA used as a template. The assay detected ≤ 0.23 ng/µl of CTV RNA when directly used as template without cross-reactivity with other citrus pathogens. Best results were achieved at the isothermal temperature of 40 °C within 15-20 min. The study demonstrated that RT-RPA-LFICA has potential to become an improved detection technique for end users in bud-wood certification and quarantine programs and a promising platform for rapid point-of-care diagnostics for citrus farmers and small nurseries in low resource settings.
Collapse
|
21
|
Kalia A, Abd-Elsalam KA, Kuca K. Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects. J Fungi (Basel) 2020; 6:E222. [PMID: 33066193 PMCID: PMC7711620 DOI: 10.3390/jof6040222] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
A facet of nanorenaissance in plant pathology hailed the research on the development and application of nanoformulations or nanoproducts for the effective management of phytopathogens deterring the growth and yield of plants and thus the overall crop productivity. Zinc nanomaterials represent a versatile class of nanoproducts and nanoenabled devices as these nanomaterials can be synthesized in quantum amounts through economically affordable processes/approaches. Further, these nanomaterials exhibit potential targeted antimicrobial properties and low to negligible phytotoxicity activities that well-qualify them to be applied directly or in a deviant manner to accomplish significant antibacterial, antimycotic, antiviral, and antitoxigenic activities against diverse phytopathogens causing plant diseases. The photo-catalytic, fluorescent, and electron generating aspects associated with zinc nanomaterials have been utilized for the development of sensor systems (optical and electrochemical biosensors), enabling quick, early, sensitive, and on-field assessment or quantification of the test phytopathogen. However, the proficient use of Zn-derived nanomaterials in the management of plant pathogenic diseases as nanopesticides and on-field sensor system demands that the associated eco- and biosafety concerns should be well discerned and effectively sorted beforehand. Current and possible utilization of zinc-based nanostructures in plant disease diagnosis and management and their safety in the agroecosystem is highlighted.
Collapse
Affiliation(s)
- Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center (ARC), Plant Pathology Research Institute, Giza 12619, Egypt;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| |
Collapse
|
22
|
Kokane SB, Kokane AD, Misra P, Warghane AJ, Kumar P, Gubyad MG, Sharma AK, Biswas KK, Ghosh DK. In-silico characterization and RNA-binding protein based polyclonal antibodies production for detection of citrus tristeza virus. Mol Cell Probes 2020; 54:101654. [PMID: 32866661 DOI: 10.1016/j.mcp.2020.101654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 01/31/2023]
Abstract
Citrus tristeza virus (CTV) is the etiologic agent of the destructive Tristeza disease, a massive impediment for the healthy citrus industry worldwide. Routine indexing of CTV is an essential component for disease surveys and citrus budwood certification for production of disease-free planting material. Therefore, the present study was carried out to develop an efficient serological assay for CTV detection based on the RNA binding protein (CTV-p23), which is translated from a subgenomic RNA (sgRNA) that accumulates at higher levels in CTV-infected plants. CTV-p23 gene was amplified, cloned and polyclonal antibodies were raised against recombinant CTV-p23 protein. The efficacy of the produced polyclonal antibodies was tested by Western blots and ELISA to develop a quick, sensitive and economically affordable CTV detection tool and was used for indexing of large number of plant samples. The evaluation results indicated that the developed CTV-p23 antibodies had an excellent diagnostic agreement with RT-PCR and would be effective for the detection of CTV in field samples. Furthermore, CTV-p23 gene specific primers designed in the present study were found 1000 times more sensitive than the reported coat protein (CTV-p25) gene specific primers for routine CTV diagnosis. In silico characterizations of CTV-p23 protein revealed the presence of key conserved amino acid residues that involved in the regulation of protein stability, suppressor activity and protein expression levels. This would provide precious ground information towards understanding the viral pathogenecity and protein level accumulation for early diagnosis of virus.
Collapse
Affiliation(s)
- Sunil B Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India; Department of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Amol D Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Pragati Misra
- Department of Molecular & Cellular Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Ashish J Warghane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India; Faculty of Life Sciences, Mandsaur University, Mandsaur, Madhya Pradesh, India
| | - Pranav Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Mrugendra G Gubyad
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Kajal Kumar Biswas
- Plant Pathology Division, ICAR- Indian Agricultural Research Institute, Pusa, New Delhi, India
| | - Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
23
|
Naranjo E, Merfa MV, Santra S, Ozcan A, Johnson E, Cobine PA, De La Fuente L. Zinkicide Is a ZnO-Based Nanoformulation with Bactericidal Activity against Liberibacter crescens in Batch Cultures and in Microfluidic Chambers Simulating Plant Vascular Systems. Appl Environ Microbiol 2020; 86:e00788-20. [PMID: 32561578 PMCID: PMC7414956 DOI: 10.1128/aem.00788-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023] Open
Abstract
Phloem-limited bacterial "Candidatus Liberibacter" species are associated with incurable plant diseases worldwide. Antimicrobial treatments for these pathogens are challenging due to the difficulty of reaching the vascular tissue they occupy at bactericidal concentrations. Here, in vitro antimicrobial mechanisms of Zinkicide TMN110 (ZnK), a nonphytotoxic zinc oxide (ZnO)-based nanoformulation, were compared to those of bulk ZnO (b-ZnO) using as a model the only culturable species of the genus, Liberibacter crescens Minimum bactericidal concentration (MBC) determination and time-kill assays showed that ZnK has a bactericidal effect against L. crescens, whereas b-ZnO is bacteriostatic. When ZnK was used at the MBC (150 ppm), its antimicrobial mechanisms included an increase in Zn solubility, generation of intracellular reactive oxygen species, lipid peroxidation, and cell membrane disruption; all of these were of greater intensity than those of b-ZnO. Inhibition of biofilms, which are important during insect vector colonization, was stronger by ZnK than by b-ZnO at concentrations between 2.5 and 10 ppm in batch cultures; however, neither ZnK nor b-ZnO removed L. crescens preformed biofilms when applied between 100 and 400 ppm. In microfluidic chambers simulating source-to-sink phloem movement, ZnK significantly outperformed b-ZnO in Zn mobilization and bactericidal activity against L. crescens planktonic cells in sink reservoirs. In microfluidic chamber assays assessing antibiofilm activity, ZnK displayed a significantly enhanced bactericidal activity against L. crescens individual attached cells as well as preformed biofilms compared to that of b-ZnO. The superior mobility and antimicrobial activity of ZnK in microenvironments make this formulation a promising product to control plant diseases caused by "Candidatus Liberibacter" species and other plant vascular pathogens.IMPORTANCE "Candidatus Liberibacter" species are associated with incurable plant diseases that have caused billions of dollars of losses for United States and world agriculture. Chemical control of these pathogens is complicated, because their life cycle combines intracellular vascular stages in plant hosts with transmission by highly mobile insect vectors. To date, "Candidatus Liberibacter" species are mostly unculturable, except for Liberibacter crescens, a member of the genus that has been used as a model for in vitro assays. Here, we evaluated the potential of Zinkicide (ZnK) as an antimicrobial against "Candidatus Liberibacter" species in batch cultures and under flow conditions, using L. crescens as a biological model. ZnK displayed bactericidal activity against L. crescens in batch cultures and showed increased mobility and bactericidal activity in microfluidic devices resembling "Candidatus Liberibacter" species natural habitats. ZnK performance observed here against L. crescens makes this compound a promising candidate to control plant diseases caused by vascular pathogens.
Collapse
Affiliation(s)
- Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Swadeshmukul Santra
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Ali Ozcan
- NanoScience Technology Center, University of Central Florida, Orlando, Florida, USA
- Department of Chemistry, University of Central Florida, Orlando, Florida, USA
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Evan Johnson
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
24
|
Kokane SB, Bhose S, Kokane A, Gubyad M, Ghosh DK. Molecular detection, identification, and sequence analysis of ' Candidatus Liberibacter asiaticus' associated with Huanglongbing disease of citrus in North India. 3 Biotech 2020; 10:341. [PMID: 32714736 DOI: 10.1007/s13205-020-02334-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/11/2020] [Indexed: 01/20/2023] Open
Abstract
Huanglongbing (HLB, Citrus greening), caused by a phloem-limited fastidious gram-negative bacterium, "Candidatus Liberibacter spp.", is one of the devastating diseases of citrus worldwide. The pathogen belongs to the alpha-proteobacteria group and is classified on the basis of its geographical origin and 16S rRNA sequence diversity. Although the disease has been reported from all citrus growing states of India, the status and the molecular variability among the isolates from the Northern part of the country is unknown. A total of five different HLB isolates originating from Northern India showing variable symptoms were studied. The genomic regions of four different genes, i.e., 16S rRNA, intergenic 16S/23S rRNA spacer region, rplA-rplJ, and CLIBASIA_01645 were amplified by PCR, sequenced, and variations in these sequences were assessed. Analysis of 16S rRNA clearly indicated that all five isolates fit in to 'Candidatus Liberibacter asiaticus' (CLas) group. However, 16S/23S rRNA intergenic spacer region-based analysis failed to segregate these isolates beyond species level. Sequence analysis of rplA-rplJ gene and CLIBASIA_01645 loci also confirmed the existence of diversity among the 'CLas' in the surveyed areas. Further, 16S rRNA and rplA-rplJ-based SNP analysis revealed that some isolates segregated into three new lineages, two on the basis of 16Sr (16Sr-XV and 16Sr-XVI), and one based on β-rp (rp-IV), respectively. A tandem repeat number (TRN) at CLIBASIA_01645 region were TRN = 5, 6 and 13; with TRN = 6 being common in three 'CLas' isolates. Overall, the study demonstrated that all examined five HLB isolates belonged to 'CLas' group. However, these isolates showed distinct sequence variability in three out of four genomic regions. The results provide a robust framework for understanding differences in pathogenicity among different HLB isolates as it is plausibly related to their genomic variation, and evolutionary history.
Collapse
|
25
|
Su Y, Ashworth VETM, Geitner NK, Wiesner MR, Ginnan N, Rolshausen P, Roper C, Jassby D. Delivery, Fate, and Mobility of Silver Nanoparticles in Citrus Trees. ACS NANO 2020; 14:2966-2981. [PMID: 32141736 DOI: 10.1021/acsnano.9b07733] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Crop disease control is crucial for the sustainable development of agriculture, with recent advances in nanotechnology offering a promising solution to this pressing problem. However, the efficacy of nanoparticle (NP) delivery methods has not been fully explored, and knowledge regarding the fate and mobility of NPs within trees is still largely unknown. In this study, we evaluate the efficiency of NP delivery methods and investigate the mobility and distribution of NPs with different surface coatings (citrate (Ct), polyvinylpyrrolidone (PVP), and gum Arabic (GA)) within Mexican lime citrus trees. In contrast to the limited delivery efficiency reported for foliar and root delivery methods, petiole feeding and trunk injection are able to deliver a large amount of NPs into trees, although petiole feeding takes much longer time than trunk injection (7 days vs 2 h in citrus trees). Once NPs enter plants, steric repulsive interactions between NPs and conducting tube surfaces are predicted to facilitate NP transport throughout the plant. Compared to PVP and Ct, GA is highly effective in inhibiting the aggregation of NPs in synthetic sap and enhancing the mobility of NPs in trees. Over a 7 day experimental period, the majority of the Ag recovered from trees (10 mL, 10 ppm GA-AgNP suspension) remain throughout the trunk (81.0% on average), with a considerable amount in the roots (11.7% on average), some in branches (4.4% on average), and a limited amount in leaves (2.9% on average). Furthermore, NP concentrations during injection and tree incubation time postinjection are found to impact the distribution of Ag in tree. We also present evidence for a transport pathway that allows NPs to move from the xylem to the phloem, which disperses the NPs throughout the plant architecture, including to the roots.
Collapse
Affiliation(s)
- Yiming Su
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Vanessa E T M Ashworth
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Nicholas K Geitner
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nichole Ginnan
- Department of Plant Pathology, University of California, Riverside, California 92521, United States
| | - Philippe Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, United States
| | - Caroline Roper
- Department of Plant Pathology, University of California, Riverside, California 92521, United States
| | - David Jassby
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
Liu SH, Rawal TB, Soliman M, Lee B, Maxwell T, Rajasekaran P, Mendis HC, Labbé N, Santra S, Tetard L, Petridis L. Antimicrobial Zn-Based "TSOL" for Citrus Greening Management: Insights from Spectroscopy and Molecular Simulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6970-6977. [PMID: 31150237 DOI: 10.1021/acs.jafc.9b02466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Huanglongbing (HLB), also known as citrus greening, is a bacterial disease that poses a devastating threat to the citrus industry worldwide. To manage this disease efficiently, we developed and characterized a ternary aqueous solution (TSOL) that contains zinc nitrate, urea, and hydrogen peroxide. We report that TSOL exhibits better antimicrobial activity than commercial bactericides for growers. X-ray fluorescence analysis demonstrates that zinc is delivered to citrus leaves, where the bacteria reside. FTIR and Raman spectroscopy, molecular dynamics simulations, and density functional theory calculations elucidate the solution structure of TSOL and reveal a water-mediated interaction between Zn2+ and H2O2, which may facilitate the generation of highly reactive hydroxyl radicals contributing to superior antimicrobial activity of TSOL. Our results not only suggest TSOL as a potent antimicrobial agent to suppress bacterial growth in HLB-infected trees, but also provide a structure-property relationship that explains the superior performance of TSOL.
Collapse
Affiliation(s)
- Shih-Hsien Liu
- Center for Renewable Carbon , The University of Tennessee , Knoxville , Tennessee 37996 , United States
- UT/ORNL Center for Molecular Biophysics , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Takat B Rawal
- Department of Biochemistry & Cellular and Molecular Biology , The University of Tennessee , Knoxville , Tennessee 37996 , United States
- UT/ORNL Center for Molecular Biophysics , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Mikhael Soliman
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Briana Lee
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Tyler Maxwell
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Parthiban Rajasekaran
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Hajeewaka C Mendis
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
| | - Nicole Labbé
- Center for Renewable Carbon , The University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Swadeshmukul Santra
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
- Department of Chemistry, Department of Materials Science & Engineering and Burnett School of Biomedical Sciences , University of Central Florida , Orlando , Florida 32826 , United States
| | - Laurene Tetard
- NanoScience Technology Center , University of Central Florida , Orlando , Florida 32826 , United States
- Department of Physics , University of Central Florida , Orlando , Florida 32826 , United States
| | - Loukas Petridis
- Department of Biochemistry & Cellular and Molecular Biology , The University of Tennessee , Knoxville , Tennessee 37996 , United States
- UT/ORNL Center for Molecular Biophysics , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
27
|
Ghosh DK, Kokane SB, Kokane AD, Warghane AJ, Motghare MR, Bhose S, Sharma AK, Reddy MK. Development of a recombinase polymerase based isothermal amplification combined with lateral flow assay (HLB-RPA-LFA) for rapid detection of "Candidatus Liberibacter asiaticus". PLoS One 2018; 13:e0208530. [PMID: 30540789 PMCID: PMC6291142 DOI: 10.1371/journal.pone.0208530] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/18/2018] [Indexed: 02/01/2023] Open
Abstract
Huanglongbing (HLB) or citrus greening is highly destructive disease that is affecting the citrus industry worldwide and it has killed millions of citrus plants globally. HLB is caused by the phloem limited, Gram negative, non-culturable, alpha-proteobacterium, 'Candidatus Liberibacter asiaticus'. Currently, polymerase chain reaction (PCR) and real time PCR have been the gold standard techniques used for detection of 'Ca. L. asiaticus'. These diagnostic methods are expensive, require well equipped laboratories, not user-friendly and not suitable for on-site detection of the pathogen. In this study, a sensitive, reliable, quick and low cost recombinase polymerase based isothermal amplification combined with lateral flow assay (HLB-RPA-LFA) technique has been developed as a diagnostic tool for detection of 'Ca. L. asiaticus'. The assay was standardized by designing the specific primer pair and probe based on the conserved 16S rRNA gene of 'Ca. L. asiaticus'. The assay was optimized for temperature and reaction time by using purified DNA and crude plant extracts and the best HLB-RPA-LFA was achieved at the isothermal temperature of 38°C for 20 to 30 min. The efficacy and sensitivity of the assay was carried out by using field grown, HLB-infected, HLB-doubtful and healthy citrus cultivars including mandarin, sweet orange cv. mosambi, and acid lime. The HLB-RPA-LFA did not show cross-reactivity with other citrus pathogens and is simple, cost-effective, rapid, user-friendly and sensitive. Thus, the HLB-RPA-LFA method has great potential to provide an improved diagnostic tool for detection of 'Ca. L. asiaticus' for the farmers, nurserymen, disease surveyors, mobile plant pathology laboratories, bud-wood certification and quarantine programs.
Collapse
Affiliation(s)
- Dilip Kumar Ghosh
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Sunil B. Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Amol D. Kokane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Ashish J. Warghane
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Manali R. Motghare
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Sumit Bhose
- Plant Virology Laboratory, ICAR-Central Citrus Research Institute, Nagpur, Maharashtra, India
| | - Ashwani Kumar Sharma
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - M. Krishna Reddy
- Plant Virology Laboratory, ICAR-Indian Institute of Horticulture, Bengaluru, Karnataka, India
| |
Collapse
|