1
|
Iwegbue CMA, Odali EW, Reuben-Okoye M, Ossai CJ, Ogwu IF, Olisah C, Martincigh BS. Organochlorine pesticides and polybrominated diphenyl ethers in sediments around oil production facilities in the Escravos River basin, Nigeria: Implications for ecological and human health risk. MARINE POLLUTION BULLETIN 2025; 213:117526. [PMID: 39908948 DOI: 10.1016/j.marpolbul.2025.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/29/2024] [Accepted: 01/01/2025] [Indexed: 02/07/2025]
Abstract
Organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) are halogenated organic compounds of special interest because of their persistent, pervasive and exceptionally toxic nature. Sediments collected in the vicinity of petroleum production facilities in the Escravos River basin (ERB) of Nigeria were analyzed for 20 OCPs and 39 PBDEs by gas chromatography-mass spectrometry (GC-MS). The OCP concentrations in the ERB sediments varied from 0.69 to 10.7 ng g-1 (mean = 5.65 ng g-1), while those of the Σ39 PBDEs ranged between 0.19 and 435 ng g-1 (mean = 39.1 ng g-1). The OCP class profiles in the sediments followed the order: Drins > Chls > DDTs > Endos > HCHs, while those of the PBDEs were in the order: tetra- > penta- > hexa- > tri- > hepta- > di- > mono- > deca-BDE. The ecological risk assessment suggests rare adverse effects for OCPs in the ERB sediments and potential adverse effects for penta-BDEs in the sediments. The results from the carcinogenic risk assessment suggest that human exposure to OCPs in the majority of the sites can be of moderate carcinogenic risk, while there is no risk for exposure to PBDEs in the sediments. The source analyses reflect the prominence of historically used sources over recent inputs for OCPs, while those of PBDEs reflect products of debromination of higher BDEs and the use of penta-BDEs rather than the deca-PBE mixture in the region.
Collapse
Affiliation(s)
- Chukwujindu M A Iwegbue
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria; Advanced Research Centre, Delta State University, P.M.B. 1, Abraka, Nigeria.
| | - Eze W Odali
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria; Advanced Research Centre, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Marian Reuben-Okoye
- Department of Science Laboratory Technology, Delta State School of Marine Technology, Burutu, Delta State, Nigeria
| | - Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria; Advanced Research Centre, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Ijeoma F Ogwu
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria; Advanced Research Centre, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Chijioke Olisah
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 5/753, 625 00 Brno, Czech Republic; Institute for Coastal and Marine Research (CMR), Nelson Mandela University, P.O. Box 77000, Gqeberha, 6031, South Africa
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
2
|
Tesi GO, Okpara KE, Tesi JN, Agbozu IE, Techato K. Assessment of organophosphate pesticides in soils and vegetables from agricultural areas of Delta Central District, Nigeria. Sci Rep 2025; 15:8267. [PMID: 40064926 PMCID: PMC11894152 DOI: 10.1038/s41598-024-83518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/16/2024] [Indexed: 03/14/2025] Open
Abstract
The application of agrochemicals such as organophosphate pesticides (OPPs) has several benefits in agriculture but also poses great risks to the environment and human well-being. Thus, this study was conducted to determine the concentrations, distribution pattern, relationships, potential risks and sources of OPPs in agricultural soils and vegetables from Delta Central District (DCD) of Nigeria to provide useful information for pollution history, establishment of pollution control measures and risk management. Fourteen OPPs were determined in the soil and vegetables using a gas chromatograph-mass selective detector (GC-MSD). The ∑14 OPPs concentrations varied from 5.29 to 419 ng g-1 for soil and 0.69 to 130 ng g-1 for vegetables. On average, pirimiphos methyl (23.8 ng g-1) and diazinone (4.74 ng g-1) were the dominant OPPs in soils and vegetables respectively. The cumulative ecological risk assessed using the toxicity-exposure-ratio (TER) and risk quotient (RQ) approaches revealed that there was a high risk of OPPs to soil organisms. The increasing order of OPPs toxicity to the soil organisms was chlorpyriphos < fenitrothion < diazinone < pirimiphos methyl while the cumulative human health risk suggested there was adverse non-carcinogenic risk for children but not for adults exposed to OPPs in these agricultural soils and vegetables.
Collapse
Affiliation(s)
- Godswill Okeoghene Tesi
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Department of Chemistry, Federal University of Petroleum Resources, Effurun, Nigeria
| | - Kingsley Ezechukwu Okpara
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Institute of Geosciences and Environmental Management, Rivers State University, Nkpolu- Orowurukwu, Port Harcourt, Nigeria
| | - Juliet Ngozi Tesi
- Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, Nigeria
| | - Iwekumo Ebibofe Agbozu
- Department of Environmental Management and Toxicology, Federal University of Petroleum Resources, Effurun, Nigeria
| | - Kuaanan Techato
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
3
|
Melake BA, Alamirew TS, Endalew SM. DDT and Its Metabolites in Ethiopian Aquatic Ecosystems: Environmental and Health Implications. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241307471. [PMID: 39691351 PMCID: PMC11650647 DOI: 10.1177/11786302241307471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Background Despite its significant application, DDT and its metabolites pose a potential threat to the environment. Therefore, data on environmental and health concerns must thus be investigated. Objective The objective of this study was to assess the environmental and human health risks posed by DDT and its metabolites in Ethiopian surface waters. Methods The total amount of DDT and its metabolites consumed as a sum (∑DDT) is calculated by considering their equivalent toxicity. To calculate the human risk from drinking contaminated water, the maximum concentrations in all of Ethiopia's surface waterways were pooled. The average concentration values were added to calculate the human risk from consuming fish contaminated with ∑DDT. Similarly, ∑DDT residues in water can be used to predict the potential environmental risk. Results A higher level of ∑DDT in surface water was detected in Gilgel Gibe I hydroelectric dam reservoir and its tributaries with an average concentration of 640 ng/l. There is no health risk associated with drinking these surface waters because the concentrations of ∑DDT were below the WHO's recommended level. In fish samples, B. intermedius accumulated a higher level of ∑DDT (21.47 ng/g ww). With the exception of local infants, ∑DDT does not pose a non-carcinogenic risk to any age group. However, consuming fish contaminated with ∑DDT poses an unacceptable risk of cancer to all age categories. The risk posed by ∑DDT on aquatic species is highly likely. The bioaccumulation factor (BAF) value indicates that fish tissue does not absorb ∑DDT directly from the water. Conclusion The prevalence of ∑DDT would link to both historical pollution and their current application in vector control. Ecosystems are frequently exposed to chemical mixes later in life; thus, rather than focusing on the ideal case of exposure to a single toxin, future studies can examine the mixture toxicity of numerous organic contaminants.
Collapse
Affiliation(s)
- Bealemlay Abebe Melake
- School of Environmental Health Science, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Tamagnu Sintie Alamirew
- School of Environmental Health Science, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Salie Mulat Endalew
- School of Environmental Health Science, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| |
Collapse
|
4
|
Denic-Roberts H, McAdam J, Sjodin A, Davis M, Jones R, Ward MH, Hoang TD, Ma S, Zhang Y, Rusiecki JA. Endocrine disrupting chemical mixture exposure and risk of papillary thyroid cancer in U.S. military personnel: A nested case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171342. [PMID: 38428594 PMCID: PMC11034764 DOI: 10.1016/j.scitotenv.2024.171342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Single-pollutant methods to evaluate associations between endocrine disrupting chemicals (EDCs) and thyroid cancer risk may not reflect realistic human exposures. Therefore, we evaluated associations between exposure to a mixture of 18 EDCs, including polychlorinated biphenyls (PCBs), brominated flame retardants, and organochlorine pesticides, and risk of papillary thyroid cancer (PTC), the most common thyroid cancer histological subtype. We conducted a nested case-control study among U.S. military servicemembers of 652 histologically-confirmed PTC cases diagnosed between 2000 and 2013 and 652 controls, matched on birth year, sex, race/ethnicity, military component (active duty/reserve), and serum sample timing. We estimated mixture odds ratios (OR), 95% confidence intervals (95% CI), and standard errors (SE) for associations between pre-diagnostic serum EDC mixture concentrations, overall PTC risk, and risk of histological subtypes of PTC (classical, follicular), adjusted for body mass index and military branch, using quantile g-computation. Additionally, we identified relative contributions of individual mixture components to PTC risk, represented by positive and negative weights (w). A one-quartile increase in the serum mixture concentration was associated with a non-statistically significant increase in overall PTC risk (OR = 1.19; 95% CI = 0.91, 1.56; SE = 0.14). Stratified by histological subtype and race (White, Black), a one-quartile increase in the mixture was associated with increased classical PTC risk among those of White race (OR = 1.59; 95% CI = 1.06, 2.40; SE = 0.21), but not of Black race (OR = 0.95; 95% CI = 0.34, 2.68; SE = 0.53). PCBs 180, 199, and 118 had the greatest positive weights driving this association among those of White race (w = 0.312, 0.255, and 0.119, respectively). Findings suggest that exposure to an EDC mixture may be associated with increased classical PTC risk. These findings warrant further investigation in other study populations to better understand PTC risk by histological subtype and race.
Collapse
Affiliation(s)
- Hristina Denic-Roberts
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Oak Ridge Institute for Science and Education (ORISE), MD, USA
| | - Jordan McAdam
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Murtha Cancer Center Research Program, 4494 North Palmer Road, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, 1401 Rockville Pike, Rockville, MD, USA
| | - Andreas Sjodin
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health (NCEH), Division of Laboratory Sciences (DLS), Organic Analytical Toxicology Branch, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Mark Davis
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health (NCEH), Division of Laboratory Sciences (DLS), Organic Analytical Toxicology Branch, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Richard Jones
- Centers for Disease Control and Prevention (CDC), National Center for Environmental Health (NCEH), Division of Laboratory Sciences (DLS), Organic Analytical Toxicology Branch, 4770 Buford Hwy NE, Atlanta, GA 30341, USA
| | - Mary H Ward
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Thanh D Hoang
- Division of Endocrinology, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Department of Cancer Prevention and Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
5
|
Gallego JL, Shipley ER, Vlahos P, Olivero-Verbel J. Occurrence and toxicological relevance of pesticides and trace metals in agricultural soils, sediments, and water of the Sogamoso River basin, Colombia. CHEMOSPHERE 2024; 354:141713. [PMID: 38490613 DOI: 10.1016/j.chemosphere.2024.141713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Historical pesticide use in agriculture and trace metal accumulation have long term impact on soil, sediment, and water quality. This research quantifies legacy and current-use pesticides and trace metals, assessing their occurrence and toxicological implications on a watershed scale in the Sogamoso River basin, tributary of the Magdalena River in Colombia. Organochlorine pesticides (22), organophosphates (7), and azole fungicides (5), as well as trace metals cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) were analyzed in croplands and along the river. Toxic units (TU) and hazard quotients (HQ) were calculated to assess the mixture toxicity. Organochlorines were detected in 84% of soils, 100% of sediments, and 80% of water samples. Organophosphates were found in 100% of soil and sediment samples, as well as in 70% of water samples. Azole fungicides were present in 79% of soils, 60% of sediments, and in 10% of water samples. Total pesticide concentrations ranged from 214.2 to 8497.7 μg/kg in soils, 569.6-12768.2 μg/kg in sediments, and 0.2-4.1 μg/L in water. In addition, the use of partition coefficient (Kd) and organic carbon fraction (foc) allowed the distribution analysis for most of the pesticides in sediments, suspended particulate matter (SPM), and water systems, but not for soils. Concentrations of trace metals Cu, Zn, Pb, and Zn exceeded international quality guidelines for agricultural soils in 16% of the samples. Furthermore, Cu and Zn concentrations exceeded sediment quality guidelines in 50 and 90% of the samples, respectively. These findings demonstrate the broad distribution of complex mixtures of trace metals, legacy organochlorines, and current-use pesticides across the basin, indicating that conventional agriculture is a significant source of diffuse pollution. Sustainable agricultural practices are needed to mitigate adverse impacts on ecosystems and human health.
Collapse
Affiliation(s)
- Jorge L Gallego
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia; Engineering Department, University of Medellin, Medellin, 050026, Colombia.
| | - Emma R Shipley
- Department of Marine Sciences, University of Connecticut, Avery Point, 1080 Shennecossett Rd, Groton, CT 06340, United States.
| | - Penny Vlahos
- Department of Marine Sciences, University of Connecticut, Avery Point, 1080 Shennecossett Rd, Groton, CT 06340, United States.
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
6
|
Rex KR, Vinod PG, Praveen KS, Chakraborty P. Sediment-water exchange and risk assessment of pesticidal persistent organic pollutants in Bharathappuzha and Periyar Riverine region along the Arabian Sea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:144. [PMID: 38538830 DOI: 10.1007/s10653-024-01911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/11/2024] [Indexed: 04/12/2024]
Abstract
Considering the extensive agricultural practices along the perennial rivers, viz. Periyar and Bharathappuzha of Kerala in the southwest coast of India, the first comprehensive surveillance of new and legacy organochlorine pesticides (OCPs) in surface sediment was conducted. Further, the sediment-water exchange fluxes have been elucidated. Mean concentrations of total HCH, DDT and endosulfan were 0.84 ng/g, 0.42 ng/g and 0.30 ng/g for Bharathappuzha Riverine sediment (BRS) and 1.08 ng/g, 0.39 ng/g and 0.35 ng/g for Periyar Riverine sediment (PRS). The dominance α-HCH and β-HCH isomers in PRS and BRS reflect the ongoing use of technical HCH in Kerala. The calculated KSW in both rivers was very low in comparison with other Indian rivers. The average log K'OC for all the detected OCPs in both the rivers was lower than the predicted log KOC in equilibrium indicating the higher adherence of OCPs to sediment. Furthermore, fugacity fraction (fs/fw) was < 1.0 for all OCPs confirming the net deposition of OCPs into the sediment. Sediment concentrations for each of the OCPs in PRS and BRS did not surpass the threshold effect level and probable effect level as stipulated by the Canadian Council of Ministry of the Environment Guidelines. In addition, all the sites of both rivers had sediment quality guideline quotient (SQGQ) values below 0.1 indicating the absence of significant biological and ecological risks.
Collapse
Affiliation(s)
- K Ronnie Rex
- Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - P G Vinod
- GeoVin Solutions Pvt. Ltd, Thiruvananthapuram, Kerala, India
- Neuvo Chakra (OPC) Pvt. Ltd., Vasai, India
| | - K S Praveen
- Liquid Waste Management Division, Suchitwa Mission, Government of Kerala, Thiruvananthapuram, Kerala, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
- UNESCO Chair on Ecohydrology and Applied Ecology, Faculty of Biology and Environmental Protection, The University of Lodz, Lodz, Poland.
| |
Collapse
|
7
|
Muluye T, Mengistou S, Fetahi T. Assessing the ecological health of the upper and middle Awash River, Ethiopia, using benthic macroinvertebrates community structure and selected environmental variables. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:45. [PMID: 38102459 DOI: 10.1007/s10661-023-12230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Research on the Awash River focused on the upper section, while the middle and lower regions received little attention. Thus, the goal of this study was to evaluate the impact of anthropogenic activities on the upper and middle Awash River. The study took place in nine sampling locations in dry and wet seasons from September 2021 to April 2022 using a multi-habitat sampling approach. We used macroinvertebrate metrics, environmental variables, and multivariate analysis to evaluate ecological health. The highest concentrations of NO3, soluble reactive phosphorus, and total phosphorus (0.50-0.93 mg L-1) were recorded at the river-mouth of the upper Awash, while the locations below Metehara had the lowest levels of dissolved oxygen (1.81-2.33 mg L-1). Redundancy analysis indicated that dissolved oxygen, NH3, temperature, NO2, pH, TSS, NO3, and TDS influenced macroinvertebrate distribution. The presence of the sensitive groups Caenidae, Hydropsychidae, Heptageniidae, and Aeshnidae at upstream sites indicated better ecological conditions. The middle and downstream sites supported moderately tolerant and tolerant taxa demonstrating water quality impairment. The lowest Ethiopian biotic score was recorded at the river-mouth of the upper Awash. The study sites below Metehara demonstrated severe ecological impairment since highly tolerant taxa were abundant and had strong correlations with temperature, TSS, and TDS levels. Pollutants from agricultural farms and domestic and industrial wastes from Addis Ababa, Metehara, and Merti towns most likely affect the impaired sites. This study demonstrated that the middle Awash experienced substantial ecological deterioration, indicating the need for restoration works to fit the water for socio-economic development.
Collapse
Affiliation(s)
- Tesfaye Muluye
- Africa Centre of Excellence for Water Management, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Seyoum Mengistou
- Department of Zoological Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Tadesse Fetahi
- Department of Zoological Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Tesfay N, Hailu G, Habtetsion M, Woldeyohannes F. Birth prevalence and risk factors of neural tube defects in Ethiopia: a systematic review and meta-analysis. BMJ Open 2023; 13:e077685. [PMID: 37940152 PMCID: PMC10632862 DOI: 10.1136/bmjopen-2023-077685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
OBJECTIVE This study aims to estimate the prevalence of neural tube defects (NTDs) and to identify potential risk factors in the Ethiopian context. STUDY DESIGN Systematic review and meta-analysis. STUDY PARTICIPANTS A total of 611 064 participants were included in the review obtained from 42 studies. METHODS PubMed (Medline), Embase and Cochrane Library databases in combination with other potential sources of literature were systematically searched, whereby studies conducted between January 2010 and December 2022 were targeted in the review process. All observational studies were included and heterogeneity between studies was verified using Cochrane Q test statistics and I2 test statistics. Small study effects were checked using Egger's statistical test at a 5% significance level. RESULT The pooled prevalence of all NTDs per 10 000 births in Ethiopia was 71.48 (95% CI 57.80 to 86.58). The between-study heterogeneity was high (I2= 97.49%, p<0.0001). Birth prevalence of spina bifida (33.99 per 10 000) was higher than anencephaly (23.70 per 10 000), and encephalocele (4.22 per 10 000). Unbooked antenatal care (AOR 2.26, 95% CI (1.30 to 3.94)), preconception intake of folic acid (AOR 0.41, 95% CI (0.26 to 0.66)), having chronic medical illness (AOR 2.06, 95% CI (1.42 to 2.99)), drinking alcohol (AOR 2.70, 95% CI (1.89 to 3.85)), smoking cigarette (AOR 2.49, 95% CI (1.51 to 4.11)), chewing khat (AOR 3.30, 95% CI (1.88 to 5.80)), exposure to pesticides (AOR 3.87, 95% CI (2.63 to 5.71)), maternal age ≥35 (AOR 1.90, 95% CI (1.13 to 3.25)), maternal low educational status (AOR 1.60, 95% CI (1.13 to 2.24)), residing in urban areas (AOR 0.75, 95% CI (0.58 to 0.97))and family history of NTDs (AOR 2.51, 95% CI (1.36 to 4.62)) were associated with NTD cases. CONCLUSION The prevalence of NTDs in Ethiopia is seven times as high as in other Western countries where prevention measures are put in place. Heredity, maternal and environmental factors are associated with a high prevalence of NTDs. Mandatory fortification of staple food with folic acid should be taken as a priority intervention to curb the burden of NTDs. To smoothen and overlook the pace of implementation of mass fortification, screening, and monitoring surveillance systems should be in place along with awareness-raising measures. PROSPERO REGISTRATION NUMBER CRD42023413490.
Collapse
Affiliation(s)
- Neamin Tesfay
- Centre of Public Health Emergency Management, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girmay Hailu
- Centre of Public Health Emergency Management, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Medhanye Habtetsion
- Centre of Public Health Emergency Management, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Fistum Woldeyohannes
- Health Financing Program, Clinton Health Access Initiative, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Tejeda-Benítez L, Noguera K, Aga D, Olivero-Verbel J. Pesticides in sediments from Magdalena River, Colombia, are linked to reproductive toxicity on Caenorhabditis elegans. CHEMOSPHERE 2023; 339:139602. [PMID: 37480944 DOI: 10.1016/j.chemosphere.2023.139602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Pesticides are prevalent pollutants found in river sediments in agricultural regions worldwide, leading to environmental pollution and toxic effects on biota. In this study, twenty sediment samples were collected from the Magdalena River in Colombia and analyzed for forty pesticides. Methanolic extracts of the sediments were used to expose Caenorhabditis elegans for 24 h, evaluating the effects on its reproduction. The most abundant pesticides found in Magdalena River sediments were atrazine, bromacil, DDE, and chlorpyrifos. The concentrations of DDE and the sum of DDD, DDE, and DDT were above the Threshold Effect Concentration (TEC) values for freshwater sediments, indicating potential effects on aquatic organisms. The ratios of DDT/(DDE + DDD) and DDD/DDE suggest historical contributions of DDT and degradation under aerobic conditions. Several sampling sites displayed a moderate toxicity risk to biota, as calculated by the sediment quality guideline quotient (SQGQ). Nematode brood size was reduced by up to 37% after sediment extract exposure. The presence of chlordane, DDT-related compounds, and chlorpyrifos in Magdalena River sediments was associated with reproductive toxicity among C. elegans.
Collapse
Affiliation(s)
- Lesly Tejeda-Benítez
- Biomedical, Toxicological and Environmental Sciences (Biotoxam), Campus Piedra de Bolivar, University of Cartagena, Cartagena, Colombia
| | - Katia Noguera
- Department of Chemistry, University at Buffalo, Buffalo, NY, USA
| | - Diana Aga
- Department of Chemistry, University at Buffalo, Buffalo, NY, USA
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
10
|
Ciucure CT, Geana EI, Arseni M, Ionete RE. Status of different anthropogenic organic pollutants accumulated in sediments from Olt River Basin, Romania: From distribution and sources to risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163967. [PMID: 37164074 DOI: 10.1016/j.scitotenv.2023.163967] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Some organic pollutants including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) have been banned from production worldwide, but due to their toxicity and persistence are still of concern. Also, unintentional by-products of combustion and industrial processes such as polycyclic aromatic hydrocarbons (PAHs), represent a permanent threat to the safety of the environment and the population. In this study, surface sediment samples from the middle and lower Olt River Basin (ORB), Romania, including dams, the main tributaries and the confluence with Danube River were collected during seasonal sampling campaigns in 2019 and analyzed for 13 OCPs, 12 PCBs and 15 PAHs in order to evaluate the impact of the main anthropogenic activities in the area (industrial activities and agriculture) and the ecological status of the ORB. The registered levels of OCPs, PCBs and PAHs in surface sediments varied from low to significantly polluted environments, indicating a clear spatial distribution between sites based on concentrations and congener profiles correlated with the influence of anthropogenic activities in the surrounding area. Based on some molecular diagnostic ratio and multivariate statistical analysis, both non-point sources and point sources deposition by surface runoff or atmospheric deposition were identified. Overall, the contamination profile of the study area reveals significant amounts of organochlorine compounds, resulting from the industrial production of chlorinated products, including lindane, but also from the long-term agricultural use of both HCHs and DDTs, more than half of the sites having levels that pose a potential risk for benthic organisms. Therefore, levels of POPs in the hot-spots sampling locations raise numerous concerns about the safety of the environment and the population in the region, requiring immediate actions.
Collapse
Affiliation(s)
- Corina Teodora Ciucure
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI, 240050 Ramnicu Valcea, Romania
| | - Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI, 240050 Ramnicu Valcea, Romania.
| | - Maxim Arseni
- REXDAN Research Infrastructure, Faculty of Sciences and Environment, "Dunarea de Jos" University of Galati, 800201 Galati, Romania
| | - Roxana Elena Ionete
- National Research and Development Institute for Cryogenics and Isotopic Technologies - ICSI, 240050 Ramnicu Valcea, Romania
| |
Collapse
|
11
|
Lao Z, Li H, Liao Z, Liu Y, Ying G, Song A, Liu M, Liu H, Hu L. Spatiotemporal transitions of organophosphate esters (OPEs) and brominated flame retardants (BFRs) in sediments from the Pearl River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158807. [PMID: 36115395 DOI: 10.1016/j.scitotenv.2022.158807] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Recent regulations on the use of brominated flame retardants (BFRs, especially polybrominated diphenyl ethers, PBDEs) have led a sharp increase in the use of organophosphate esters (OPEs), which have become the subject of widespread environmental concern. To gain insights into their environmental transitions, we investigated the spatiotemporal trends and sources of 25 OPEs and 23 BFRs (21 PBDEs and two alternative BFRs) in sediments from the Pearl River Delta (PRD), the second economic/industrial region of China. Among them, PBDEs showed higher mean concentrations than OPEs and alt-BFRs in PRD sediments, a continual increase in most PRD areas, and positive correlations with most local socioeconomic parameters. The source analysis results indicated that all of these changes resulted from the substantial use/stock of PBDEs (especially deca-BDE) in this region, and BDE-209 displayed debromination in most sediments. OPEs demonstrated obvious increases in sediments from all major PRD rivers, especially those located in less-developed regions. This distribution might be related to the large-scale industry relocation from the central PRD area to its vicinities. Unexpectedly, decabromodiphenyl ethane (DBDPE), an important deca-BDE substitute, presented considerable declines in the PRD sediments while several novel OPEs showed considerably high proportions, especially aryl-substituted OPEs, which merit further screening analysis.
Collapse
Affiliation(s)
- Zhilang Lao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Huiru Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zicong Liao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Yishan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China
| | - Guangguo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Aimin Song
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingyang Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hehuan Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lixin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Arisekar U, Shakila RJ, Shalini R, Jeyasekaran G, Arumugam N, Almansour AI, Keerthana M, Perumal K. Bioaccumulation of organochlorine pesticide residues (OCPs) at different growth stages of pacific white leg shrimp (Penaeus vannamei): First report on ecotoxicological and human health risk assessment. CHEMOSPHERE 2022; 308:136459. [PMID: 36150495 DOI: 10.1016/j.chemosphere.2022.136459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Pesticide residues (PRs) in farmed shrimps are concerning food safety risks. Globally, India is a major exporter of pacific white leg shrimp (P. vannamei). This study was undertaken to analyze PRs in the water, sediments, shrimps, and feed at different growth stages to evaluate the ecotoxicological and human health risks. PRs in the seawater and sediments ranged from not detected (ND) to 0.027 μg/L and 0.006-12.39 μg/kg, and the concentrations were within the maximum residual limits (MRLs) and sediment quality guidelines prescribed by the World Health Organization and Canadian Environment Guidelines, respectively. PRs in shrimps at three growth stages viz. Postlarvae, juvenile, and adults, ranged from ND to 0.522 μg/kg, below the MRLs set by Codex Alimentarius Commission and European Commission. Most of the PRs in water, sediments, and shrimps did not vary significantly (p > 0.05) from days of culture (DOC-01) to DOC-90. The hazard quotient (HQ) and hazard ratio (HR) were found to be < 1, indicating that consumption of shrimps has no noncarcinogenic and carcinogenic risks. PRs in shrimp feed ranged from ND to 0.777 μg/kg and were found to be below the MRLs set by EC, which confirms that the feed fed is safe for aquaculture practices and does not biomagnify in animals. The risk quotient (RQ) and toxic unit (TU) ranged from insignificant level (ISL) to 0.509 and ISL to 0.022, indicating that PRs do not pose acute and chronic ecotoxicity to aquatic organisms. The study suggested no health risk due to PRs in shrimps cultured in India and exported to the USA, China, and Japan. However, regular monitoring of PRs is recommended to maintain a sustainable ecosystem.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute, Tamil Nadu Fisheries University, Tuticorin, 628 008, Tamil Nadu, India
| | | | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muruganantham Keerthana
- Department of Fisheries and Fishermen Welfare, Department of Fisheries (AD Office), Thoothukudi, 628 008, Tamil Nadu, India
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
13
|
Absence of significant association of trace elements in nails with urinary KIM-1 biomarker among residents of Addis Ababa in Upper Awash Basin, Ethiopia: a cross-sectional study. Biometals 2022; 35:1341-1358. [PMID: 36163536 DOI: 10.1007/s10534-022-00448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022]
Abstract
The Akaki River in the Upper Awash Basin, which flows through Addis Ababa, the capital city of Ethiopia, has been highly polluted by sewage from factories and residential areas. A population-based cross-sectional study was used to assess the association between trace elements and kidney injury from residents living in polluted areas downstream (Akaki-Kality) versus upstream (Gullele) in Sub-Cities of Addis Ababa. A total of 95 individuals (53 from Akaki-Kality and 42 from Gullele) were included in the study. Kidney injury molecule 1 (KIM-1), lead, arsenic, cadmium, cobalt, lead, manganese, zinc, iron, copper, chromium and nickel were evaluated in residents' urine and nail samples. A large proportion (74%) of the sample population contained KIM-1, including 81% residents in Akaki-Kality and 64% residents in Gullele. KIM-1 was, however, not significantly different (p = 0.05) between the two Sub-Cities, with median of 0.224 ng/mL in Akaki-Kality and 0.152 ng/mL in Gullele. Most of the analyzed elements, except Pb, As, Cd and Co, were found in all of the nail samples, with median (µg/g) in the range of 442‒714 Fe, 97.0‒246 Zn, 11.6‒24.1 Mn, 4.49‒5.85 Cu, 1.46‒1.66 Cr and 1.22‒1.41 Ni. The high incidence of KIM-1 indicates a potential for long term renal tubular damage among residents of the Sub-Cities. The concentrations of the elements in nails were, however, not significantly associated (p = 0.05) with the corresponding levels of KIM-1 in urine. Hence, the observed KIM-1 might be related to exposure to toxic substances or factors other than those included in this study.
Collapse
|
14
|
Iwegbue CMA, Oshenyen VE, Tesi GO, Olisah C, Nwajei GE, Martincigh BS. Occurrence and spatial characteristics of polychlorinated biphenyls (PCBs) in sediments from rivers in the western Niger delta of Nigeria impacted by urban and industrial activities. CHEMOSPHERE 2022; 291:132671. [PMID: 34718021 DOI: 10.1016/j.chemosphere.2021.132671] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The characteristic concentrations of 28 PCB congeners, their spatial distributions, sources, and associated risks to the ecosystem were investigated in sediments of some rivers around a glass industry and power generating plant in the Niger Delta of Nigeria. Gas chromatography-mass spectrometry (GC-MS) was applied for the identification and quantification of PCBs in sediments from these rivers. The Ʃ28 PCB concentrations (dry weight) in sediments ranged from 1520 to 3540 ng g-1 for the Afiesere River, 976-5670 ng g-1 for the Edor River, and from 1440 to 6340 ng g-1 for the Okpare River. The homologue distribution patterns in sediments from these rivers indicated that low-chlorinated (2 Cl to 5 Cl) PCBs were more dominant than high-chlorinated (6 Cl to 10 Cl) PCBs with tri-, penta- and deca-PCBs as the top homologues. The PCB source analyses suggested that the PCB contamination of these river sediments could have originated from Aroclor mixtures, paints, pigments and other inadvertent sources. The risk assessment indicated a high risk to the ecosystem.
Collapse
Affiliation(s)
| | - Violet E Oshenyen
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
15
|
Rezaei Kalantary R, Barzegar G, Jorfi S. Monitoring of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers using Monte Carlo simulation in Behbahan City, Iran. CHEMOSPHERE 2022; 286:131667. [PMID: 34325256 DOI: 10.1016/j.chemosphere.2021.131667] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 05/22/2023]
Abstract
Excessive application of pesticides to control pests and weeds leads to contaminating bodies of water and health problems for consumers. The present study was designed to investigate the concentration of pesticides in raw water originated from the Marun River as well as the treated water of the drinking water treatment plant in Behbahan City. The efficiency of each treatment process was evaluated. Moreover, the health risks caused by detectable pesticides for consumers of treated water were assessed. The target pollutants were extracted using droplet liquid-liquid microextraction and detected by a gas chromatograph-mass spectrophotometer. The results showed relatively high mean concentrations of organophosphate pesticides ranging from 0.87 to 3.229 μg/L in the river water and low concentrations of organochlorine pesticides, except for 1,3-dichloropropene with the concentration of 3.58 μg/L. Alachlor had a rather high concentration (2.44 μg/L) in the river water. The concentration of pesticides in the drinking water had been reduced to an acceptable amount. The major part of pesticides removal occurred in coagulation-flocculation and rapid sand filtration units (87 %) due to the hydrophobic nature of pesticides and the use of GAC in the filtration unit. Based on the risk assessment estimates, the total hazard quotient (THQ) for all the pesticides was much less than one. The value of THQ was higher in younger individuals and children for all the given pesticides. The highest value of THQ in children was 0.2 which was attributed to aldrin. Similarly, the carcinogenic risk (CR) of aldrin for children and teenagers was in the unsafe range (more than 10-4) while the CR for other target compounds in all the age groups was negligible (10-4-10-6 or less). The high concentration of pesticides in the river water might be concerning and therefore selling and using pesticides, especially the banned ones, should be more regulated.
Collapse
Affiliation(s)
- Roshanak Rezaei Kalantary
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Gelavizh Barzegar
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| | - Sahand Jorfi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Chen MY, Liu HY, Luo XJ, Mai BX, Lu FH. Investigating the spatial distribution of polychlorinated biphenyls in sediment in the Pearl River Delta, South China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:321. [PMID: 33945020 DOI: 10.1007/s10661-021-09072-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
One hundred forty-three surface sediment (0-5 cm depth) samples were collected from locations representing industrialized areas, less-industrialized areas, and e-waste recycling areas in the Pearl River Delta (PRD). The spatial distribution of polychlorinated biphenyls (PCBs) and their potential adverse effects on aquatic organisms were investigated. The average PCB concentration in the less-industrialized areas (background) in the PRD was approximately 10 ng/g dry weight (dw), which was generally half that found in the industrialized areas (approximately 22 ng/g dw). Severe PCB contamination, with concentrations ranging from 1000 to 26500 ng/g dw, was found in pond sediments collected from e-waste recycling areas. It is very likely that such contamination would have had adverse effects on the aquatic biota there. PCBs in the e-waste recycling areas were dominated by penta- and hex-PCB congeners, which made them significantly different from those found in other regions, where tri- and tetra-PCB congeners were predominant. Higher abundances of less chlorinated congeners were seen in the less-industrialized areas compared to the industrialized areas. Differences in the transport abilities of different congeners, together with dechlorination of higher chlorinated congeners, is the most likely reasons for this.
Collapse
Affiliation(s)
- Man-Ying Chen
- Guangdong Testing Institute of Product Quality Supervision, Guangzhou, 528300, China.
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Hong-Yin Liu
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 200433, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | | |
Collapse
|
17
|
Mehdinia A, Bateni F, Jahedi Vaighan D, Sheijooni Fumani N. Occurrence of polychlorinated biphenyl congeners in marine sediment of Makran region, Chabahr bay, Iran. MARINE POLLUTION BULLETIN 2021; 164:112038. [PMID: 33515820 DOI: 10.1016/j.marpolbul.2021.112038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
In this study, selected PCB congeners (IUPAC numbers 28, 52, 101, 138, 153, and 180) were quantified in 34 stations of Chabahr bay and around it in the Makran region of Iran. The sum of total PCB concentrations varied from below the detection limit to 485 ng kg-1 dry weight of sediment. Based on the Canadian Sediment Quality Guidelines, the effect of detected PCBs was negligible for aquatic organisms. According to the dominance of PCB 28 and 52 with average range of 62 to 100% of total PCBs, maritime transportation and atmospheric deposition appear to be the important source of PCBs in this region. Further, the presence of components of commercial products such as ClophenA50 appears to be one of the probable sources.
Collapse
Affiliation(s)
- Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science, P.O. Box: 1411554781, Tehran, Iran.
| | - Fatemeh Bateni
- Iranian National Institute for Oceanography and Atmospheric Science, P.O. Box: 1411554781, Tehran, Iran
| | - Davoud Jahedi Vaighan
- Iranian National Institute for Oceanography and Atmospheric Science, P.O. Box: 1411554781, Tehran, Iran
| | - Neda Sheijooni Fumani
- Iranian National Institute for Oceanography and Atmospheric Science, P.O. Box: 1411554781, Tehran, Iran
| |
Collapse
|
18
|
Irerhievwie GO, Iwegbue CMA, Lari B, Tesi GO, Nwajei GE, Martincigh BS. Spatial characteristics, sources, and ecological and human health risks of polychlorinated biphenyls in sediments from some river systems in the Niger Delta, Nigeria. MARINE POLLUTION BULLETIN 2020; 160:111605. [PMID: 33181918 DOI: 10.1016/j.marpolbul.2020.111605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) were quantified in sediments from the lower reaches of the Niger, Ase and Forcados Rivers in Nigeria with the aim of elucidating the sources, spatial characteristics and likely ecological and human health risks relating to exposure to PCBs in the sediments. A total of 28 PCB congeners, including 7 indicator PCBs and 12 dioxin-like PCBs, were identified and quantified after Soxhlet extraction with acetone/n-hexane/dichloromethane by gas chromatography-mass spectrometry. The Σ28 PCB concentrations in sediments from the Niger, Ase and Forcados Rivers ranged from 13.5 to 277 ng g-1, not detected to 1633 ng g-1 and 6.9 to 78.6 ng g-1 respectively. The PCB composition in sediments from these three rivers indicate the dominance of lower chlorinated (2-Cl to 5-Cl) congeners over higher chlorinated (6-Cl to 10-Cl) congeners. The ecological and human health risk assessment suggests potential risks for exposure of both organisms and humans to PCBs in sediments from these three river systems.
Collapse
Affiliation(s)
| | | | - B Lari
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria; Department of Science Laboratory Technology, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
19
|
Iwegbue CMA, Bebenimibo E, Tesi GO, Egobueze FE, Martincigh BS. Spatial characteristics and risk assessment of polychlorinated biphenyls in surficial sediments around crude oil production facilities in the Escravos River Basin, Niger Delta, Nigeria. MARINE POLLUTION BULLETIN 2020; 159:111462. [PMID: 32777544 DOI: 10.1016/j.marpolbul.2020.111462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
In this study, the concentrations of 28 polychlorinated biphenyl (PCB) congeners, including 12 dioxin-like PCBs and 7 indicator PCBs, were determined in sediments around oil production facilities in the Escravos River Basin of the Niger Delta in Nigeria. The aim was to describe the spatial patterns, sources, and ecosystem risks associated with exposure to PCBs in sediments of this river basin. Gas chromatography-mass spectrometry (GC-MS) was used to determine the concentrations of PCBs in the sediments. The Ʃ28 PCB concentrations in sediments from the Escravos River Basin ranged between 226 and 31,900 ng g-1 with a median concentration of 2300 ng g-1. The results indicated that sediments around crude oil production facilities, such as, wellheads, flow stations, and truck lines, had significantly higher levels of Ʃ28 PCBs (p < 0.05) than those collected near residential communities within the river basin. The median concentrations of PCB homologues in sediments from this river basin followed the sequence: hexaPCBs > penta-PCBs > tetra-PCBs > hepta-PCBs > tri-PCBs > di-PCBs > deca-PCBs > octa-PCBs > nona-PCBs. The risk assessment of PCBs in sediments from this river basin suggest very high potential risks for both organisms and humans.
Collapse
Affiliation(s)
| | - Ernest Bebenimibo
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Francis E Egobueze
- Environment Department, Nigerian Agip Oil Company, Rumueme, Port Harcourt, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
20
|
Ndunda EN, Wandiga SO. Spatial and temporal trends of polychlorinated biphenyls in water and sediment from Nairobi River, Kenya. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:600. [PMID: 32856117 DOI: 10.1007/s10661-020-08566-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) are chemicals that have become ubiquitous environmental pollutants due to their past use, persistence, and long-range transport thus requiring continuous monitoring. Therefore, this research was carried out to investigate spatial and temporal trends of seven indicator PCBs and two others (PCB 105 and PCB 156) in the Nairobi River. Levels of PCBs ranged from below detection limit (bdl) to 157.64 ± 1.52 ng g-1 and bdl to 718.78 ± 1.71 ng L-1 for sediment and water, respectively. PCBs 28, 138, and 153 were the most dominant contributing 33.4%, 17.9%, and 14.5% to the total PCBs in sediments and 54.6%, 19.3%, and 14.1% to the total PCBs in water. There was a general increase in ΣPCBs from 18.89 to 151.18 ng g-1 for sediments and 275.52 to 429.84 ng L-1 for water as the River flowed downstream. The dry season recorded the highest ΣPCB in sediments while the rainy season recorded the highest ΣPCBs in water, with levels exceeding the WHO water quality guidelines. Risk assessment revealed that populations living downstream are exposed to high levels of PCBs through the consumption of water. Levels of ΣPCBs downstream also exceeded the sediment quality guidelines meaning that aquatic organisms are threatened.
Collapse
Affiliation(s)
- Elizabeth N Ndunda
- Department of Physical Sciences, School of Pure and Applied Sciences, Machakos University, P.O. Box 136, Machakos, 90100, Kenya.
| | - Shem O Wandiga
- Department of Chemistry, School of Physical Sciences, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
21
|
Hwang SM, Lee HU, Kim JB, Chung MS. Validation of analytical methods for organochlorine pesticide detection in shellfish and cephalopods by GC-MS/MS. Food Sci Biotechnol 2020; 29:1053-1062. [PMID: 32670659 DOI: 10.1007/s10068-020-00748-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/26/2022] Open
Abstract
This study validated the analysis of organochlorine pesticides (OCPs) in shellfish and cephalopods using a gas chromatograph equipped with a mass spectrometry (GC-MS/MS), and monitored residual pesticide levels. The QuEChERS method was used to analyze OCPs and was validated by checking the linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, and precision. Octopus minor and Venerupis philippinarum, were purchased from four cities in the South Korean peninsula. The LOD values were 0.10-0.80 ng/g in shellfish and 0.21-0.77 ng/g in cephalopods, while the LOQ values were 0.31-2.41 ng/g in shellfish and 0.63-2.33 ng/g in cephalopods. Accuracy ranged from 83.5 to 117.4% and 79.8 to 118.4%, and precision ranged from 0.3 to 27.5% and 1.2 to 27.9%, in shellfish and cephalopods, respectively, conforming to the Codex Alimentarius Commission guidelines. Although residual OCP levels were below detection limits, the QuEChERS method may be effective for analyzing the OCPs in shellfish and cephalopods.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Food Science and Technology, Chung-Ang University, 4726 Seodongdae-ro, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546 Korea
| | - Haeng-Un Lee
- Department of Food Science and Technology, Chung-Ang University, 4726 Seodongdae-ro, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546 Korea
| | - Jung-Bok Kim
- Korea Advanced Food Research Institute, 50 Botdeul-ro, Uiwang-si, Gyeonggi-do 16001 Korea
| | - Myung-Sub Chung
- Department of Food Science and Technology, Chung-Ang University, 4726 Seodongdae-ro, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546 Korea
| |
Collapse
|
22
|
Otim O. Examining the correlation between quantifiable SVOCs and organic carbon content or particulate size in benthic sediments as a function of ocean stratum. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:812-823. [PMID: 32134069 DOI: 10.1039/c9em00555b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The raw analytical concentration values of semi-volatile organic compounds (SVOCs) in ocean sediments do not necessarily reflect the bioavailable fractions of SVOCs in the sediments due to factors such as the total organic carbon content of sediments (TOC) and the percentage of fine particles in sediments (% fines) as they are believed to affect the extraction efficiency of SVOCs from sediments. Corrective actions are therefore taken to minimize their influence on measurements. In doing so, a broad and uniform correlation is assumed to exist between the 'native' levels of SVOCs and TOC or % fines across ocean strata. However, the validity of this blanket assumption is not yet verified. In this study, we examined the strength of the assumption using DDTs, PAHs and PCBs levels in sediments from Santa Monica Bay (SMB), California, USA. (The distribution patterns of these SVOCs in SMB are known and reproducible for quality assurance.) As our results show, a uniform correlation between SVOC levels and TOC or % fines across strata is mostly absent. For example, PAH and PCB levels show negative correlation with TOC or % fines, and only in canyon sediments, DDT levels correlate positively with both TOC and % fines across at least three strata. Furthermore, the distribution of PAH molecules appears to be controlled by molecular size with smaller PAHs being found almost exclusively in the canyons. Our finding here, being the first of its kind, suggests that more work is needed to clarify the reporting of SVOC levels in ocean sediments.
Collapse
Affiliation(s)
- Ochan Otim
- Environmental Monitoring Division, City of Los Angeles, 12000 Vista Del Mar, Playa del Rey, CA 90293, USA.
| |
Collapse
|
23
|
Ukalska-Jaruga A, Smreczak B, Siebielec G. Assessment of Pesticide Residue Content in Polish Agricultural Soils. Molecules 2020; 25:molecules25030587. [PMID: 32013185 PMCID: PMC7038080 DOI: 10.3390/molecules25030587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 01/10/2023] Open
Abstract
Pesticides belong to a group of xenobiotics harmful to humans and wildlife, whose fate and activity depends on their susceptibility to degradation. Therefore, the monitoring of their residue level in agricultural soils is very important because it provides very valuable information on the actual level of soil contamination and environmental risk resulting from their application. The aim of this study was to evaluate contemporary concentrations of organochlorine (OCPs) and non-chlorinated pesticides (NCPs) in arable soils of Poland as an example of Central and Eastern European countries. The results were assessed in relation to Polish regulations, which are more restrictive compared to those of other European countries. The sampling area covered the territory of arable lands in Poland (216 sampling points). The distribution of sampling points aimed to reflect different geographical districts, conditions of agricultural production, and various soil properties. The collected soil samples were extracted with organic solvents in an accelerated solvent extractor (ASE 2000). The OCPs, including α-HCH, β-HCH, γ-HCH, and p,p’DDT, p,p’DDE, and p,p’DDD, were extracted with a hexane/acetone mixture (70:30 v/v) and determined by gas chromatography with an electron capture detector (GC-μECD). NCPs included atrazine, carbaryl, and carbofuran were extracted with a dichloromethane/acetone mixture (50:50 v/v), while maneb was extracted by intensive shaking the sample with acetone (1:1 v/v) and ethylenediamine-tertraacetic acid. The NCPs were identified by a dual mass- spectrometry (GC-MS/MS). The total content of individual OCPs ranged from 0.61 to 1031.64 µg kg−1, while the NCP concentrations were significantly lower, from 0.01 to 43.92 µg kg−1. DDTs were detected in all soils samples (p,p’DDD (23.60 µg kg−1) > p,p’DDT (18.23 µg kg−1) > p,p’DDE (4.06 µg kg−1), while HCHs were only in 4% of the analyzed samples (β-HCH (339.55 µg kg−1) > α-HCH (96.96 µg kg−1) > γ-HCH (3.04 µg kg−1)), but in higher values than DDTs. Among NCPs, higher concentration was observed for carbaryl (<0.01–28.07 µg kg−1) and atrazine (<0.01–15.85 µg kg−1), while the lower for carbofuran (<0.01–0.54 µg kg−1). Maneb was not detected in analyzed soils. Assessment of the level of soil pollution based on Polish regulations indicated that several percentages of the samples exceeded the criterion for OCPs, such as ∑3DDTs (14 samples; 6.5% of soils) and HCH congeners (α-HCH in one sample; 0.5% of soils), while NCP concentration, such as for atrazine, carbaryl and carbofuran were below the permissible levels or were not detected in the analyzed soils, e.g., maneb. The obtained results indicated that residues of the analyzed pesticides originate from historical agricultural deposition and potentially do not pose a direct threat to human and animal health. The behavior and persistence of pesticides in the soils depend on their properties. Significantly lower NCP concentration in the soils resulted from their lower hydrophobicity and higher susceptibility to leaching into the soil profile. OCPs are characterized by a high half-life time, which affect their significantly higher persistence in soils resulting from affinity to the soil organic phase.
Collapse
|
24
|
Olisah C, Adeniji AO, Okoh OO, Okoh AI. Occurrence and risk evaluation of organochlorine contaminants in surface water along the course of Swartkops and Sundays River Estuaries, Eastern Cape Province, South Africa. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2777-2801. [PMID: 31177475 DOI: 10.1007/s10653-019-00336-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Organochlorine contaminants were analysed in surface water from Sundays (SDE) and Swartkops Estuaries (SWE), Eastern Cape Province, which is among the largest estuaries in South Africa. The concentration of Σ18OCPs ranged from 16.7 to 249.2 ng/L in autumn, 19.9-81.4 ng/L in winter, 43.6-126.8 ng/L in spring and 68.3-199.9 ng/L in summer for SDE, whereas in SWE, the values varied from 20.9 to 259.7 ng/L in autumn, 58.9-263.9 ng/L in winter, 3.2-183.6 ng/L in spring and 118.0-188.9 ng/L in summer. Among all OCPs, α-HCH, β-HCH, p,p'-DDE, p,p'-DDT, endrin, dieldrin and endrin aldehyde were predominant in surface water samples from SDE and SWE. Furthermore, the mean concentration of polychlorinated biphenyls (PCBs) ranged from 126.7 ng/L in winter to 151.0 ng/L in spring for SDE and 249.0 ng/L in spring to 727.6 ng/L in winter for SWE. Tri- and tetra-PCBs dominated the PCB homologue profile. Hierarchical cluster analysis grouped the study sites into three regions from least polluted to most polluted, indicated that SWE is more polluted compared to SDE, probably due to the influx of agricultural and industrial effluents. Carcinogenic and non-carcinogenic risk assessment revealed that the water from both estuaries is not safe for drinking, although suitable for bathing.
Collapse
Affiliation(s)
- Chijioke Olisah
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Alice, 5700, South Africa.
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa.
| | - Abiodun O Adeniji
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Alice, 5700, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| | - Omobola O Okoh
- Department of Pure and Applied Chemistry, University of Fort Hare, Alice, 5700, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Alice, 5700, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Alice, 5700, South Africa
- SAMRC, Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
25
|
Otim O. To freeze, or not to freeze: the impact of subzero temperature on quantifying organic contaminants in ocean sediments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1580-1595. [PMID: 31410418 DOI: 10.1039/c9em00288j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Assessing the extent of ocean bed contamination by anthropogenic organic chemicals requires collecting and preserving the native state of sediments. The latter is particularly important since most sediment analyses are performed away from the sites of samples collection. Preservation, however, is presumptuous since commonly used sediment handling practices such as freezing are structurally disruptive, the impacts of which are not well understood. In this study, the impact of freezing on quantifying the total organic carbon (TOC) contents and the extent of PAH, DDT and PCB contamination in 17 split-paired sediment samples was investigated. The samples were collected from the Santa Monica Bay, California (USA). One-half of each split-pair was frozen at -20 °C and the other half was refrigerated at 4 °C for up to 11 days. The results suggest that no significant differences exist between the frozen and the refrigerated datasets for PCBs (F1,28 = 4.01, p > 0.05), DDTs (n = 16, t-Stat < t-Critical, p > 0.05) or TOC (n = 16, t-Stat < t-Critical, p > 0.05). The results however show that less PAHs were detected in the frozen sediments (F1,24 = 8.18, p < 0.05) than in the refrigerated sediments; the larger PAHs were affected the most. Interestingly, while benzo[a]pyrene, a large PAH molecule, was affected by this apparent temperature-induced difference, its structural isomer, benzo[e]pyrene, was not. Even more interesting was the finding that while non-coplanar PCBs were affected similarly, the coplanar PCBs were not. Overall, sediment freezing within this study's timeframe appears to offer little contextual advantage over sediment refrigeration.
Collapse
Affiliation(s)
- Ochan Otim
- Environmental Monitoring Division, Playa Del Rey, City of Los Angeles, California 90293, USA.
| |
Collapse
|
26
|
Wu Z, Han W, Yang X, Li Y, Wang Y. The occurrence of polybrominated diphenyl ether (PBDE) contamination in soil, water/sediment, and air. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23219-23241. [PMID: 31270770 DOI: 10.1007/s11356-019-05768-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
As a kind of brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs) are extensively used in different types of electronic equipment, furniture, plastics, and textiles. PBDEs are ubiquitous environmental contaminants that may impact human health and ecosystems. Here we highlight recent findings on the occurrence, contamination status, and transport of PBDEs in soil, water/sediment, and air. Four aspects are discussed in detail: (1) sources of PBDEs to the environment; (2) occurrence and transport of PBDEs in soil; (3) PBDEs in aquatic ecosystems (water/sediment) and their water-sediment partitioning; and (4) the occurrence of PBDEs in the atmosphere and their gas-particle partitioning. Future prospects for the investigation on PBDEs occurrence are also discussed based on current scientific and practical needs.
Collapse
Affiliation(s)
- Zhineng Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wei Han
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
27
|
Olisah C, Okoh OO, Okoh AI. Global evolution of organochlorine pesticides research in biological and environmental matrices from 1992 to 2018: A bibliometric approach. EMERGING CONTAMINANTS 2019; 5:157-167. [DOI: 10.1016/j.emcon.2019.05.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|