1
|
Xu S, Zheng ZY, Zhao GC, Lu ZH, Nie H, Wang XJ, Su BX, Jiang C, Li Q, He T, Wei TY, Zhang HP, Dong HL. The study on effects of acute exposure to high altitude hypoxia on cognitive function in lowlander. Behav Brain Res 2025; 484:115515. [PMID: 40010511 DOI: 10.1016/j.bbr.2025.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
The investigation of cognitive functions in response to high-altitude exposure has garnered increasing scientific interest. However, it remains unclear whether cognitive abilities are selectively impaired or what are the trends of the function. In this study, we examined the effects of acute exposure to 3800 m on cognition among 20 lowlanders (27.9 ± 3.08 years; 18 males) for 1 week. Cognitive functions, physiological parameters, various questionnaires, and electroencephalogram (EEG) data were assessed at 400 m (D0) and during the acute phase at 3800 m (D1, D2, D3, D5, D7). A control group consisting of 23 subjects (26.5 ± 3.17 years; 21 males) underwent identical assessments at 400 m. Our findings indicate that within two days following ascent to 3800 m, nearly all cognitive indicators exhibited impairment, but gradually improved from the 3rd day and largely recovered to the plain level on the 5th to 7th day. EEG frequency analysis also revealed significant alterations, relative power in the delta band decreased markedly by D7 compared with D0, while theta and alpha bands showed the opposite trends. Correlational analyses between EEG features and cognitive functions revealed that relative power in the delta band exhibited a negative correlation with most cognitive measures, while relative power in the theta and beta bands predominantly demonstrated positive correlations. We conclude that most cognitive functions exhibit a pattern characterized by initial decline followed by recovery at 3800 m-an observation closely linked to observed EEG changes. These findings provide valuable insights into cognitive function and EEG performance at high altitudes.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; Department of Anesthesiology, 970th Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong 264002, China
| | - Zi-Yu Zheng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; Anesthesia Clinicial Research Center (ACRC), Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Guang-Chao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhi-Hong Lu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Huang Nie
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xue-Jun Wang
- Department of Anesthesiology, Qinghai Red Cross Hospital, Xi'ning, Qinghai 810000, China
| | - Bin-Xiao Su
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Cheng Jiang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Quan Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Tao He
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Tian-Yu Wei
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Hao-Peng Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Hai-Long Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
2
|
Ramírez-delaCruz M, Ortiz-Sánchez D, Bravo-Sánchez A, Portillo J, Esteban-García P, Abián-Vicén J. Effects of different exposures to normobaric hypoxia on cognitive performance in healthy young adults.: Normobaric hypoxia and cognitive performance. Physiol Behav 2025; 288:114747. [PMID: 39547435 DOI: 10.1016/j.physbeh.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Normobaric hypoxia has become an innovative non-pharmacological therapy to treat cognitive dysfunction. Nevertheless, the acute effects of exposure to hypoxia on cognitive performance remain unclear. We aimed to determine the effects of different normobaric hypoxic exposures on cognitive function in healthy young adults. Nineteen participants (13 men and 6 women; 23.7 ± 3.9 years; 172.0 ± 8.4 cm; 69.1 ± 12.2 kg) completed a cross-over randomized control trial with the following doses of fraction of inspired oxygen (FiO2): a) 21 %, b) 15 %, c) 13 % or d) 11 %. During experimental trials, the physiological response (blood oxygen saturation and heart rate) and the following cognitive abilities were evaluated: memory, sustained attention, anticipation, and reaction time. Sustained attention improved under hypoxia at 15 % FiO2 (mean difference (MD) 0.024, 95 % confidence intervals (CI) 0.005 to 0.044 s; p = 0.018) compared to 11 % and 21 % FiO2. During 11 % and 15 % FiO2, participants showed improved anticipation ability compared to normoxia (MD -0.023, 95 % CI -0.042 to -0.003 s, p = 0.020, and MD -0.009, 95 % CI -0.016 to -0.001 s, p = 0.022, respectively). However, reaction time was impaired under 11 % compared to 21 % FiO2 (MD 0.033, 95 % CI 0.008 to 0.059 s, p = 0.013). Finally, we did not find significant effects of hypoxia on memory (p > 0.05). Severe normobaric hypoxic exposure (11 % FiO2) produces detrimental effects on reaction time, although anticipation seems to be improved, compared to normoxia. In addition, cognitive processes of attention and anticipation appear to improve with moderate hypoxic exposure (15 % FiO2).
Collapse
Affiliation(s)
- María Ramírez-delaCruz
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - David Ortiz-Sánchez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - Alfredo Bravo-Sánchez
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1,800, 28223, Pozuelo de Alarcón, Spain.
| | - Javier Portillo
- Motor Competence and Excellence in Sport, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071. Toledo, Spain.
| | - Paula Esteban-García
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| |
Collapse
|
3
|
Ramírez-delaCruz M, Bravo-Sánchez A, Sánchez-Infante J, Abián P, Abián-Vicén J. Effects of Acute Hypoxic Exposure in Simulated Altitude in Healthy Adults on Cognitive Performance: A Systematic Review and Meta-Analysis. BIOLOGY 2024; 13:835. [PMID: 39452143 PMCID: PMC11504018 DOI: 10.3390/biology13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The neurocognitive response following hypoxia has received special interest. However, it is necessary to understand the impact of acute hypoxic exposure induced by simulated altitude on cognitive performance. This study aimed to determine the effects of acute hypoxic exposure in simulated altitude in healthy adults on reaction time, response accuracy, memory, and attention. Five electronic databases were searched. The inclusion criteria were: (1) Experimental studies involving a hypoxia intervention induced by a hypoxic air generator to determine the effects on cognitive performance; and (2) Conducted in adults (males and/or females; aged 18-50 years) without pathologies or health/mental problems. Four meta-analyses were performed: (1) reaction time, (2) response accuracy, (3) memory, and (4) attention. Finally, 37 studies were included in the meta-analysis. Hypoxia exposure induced detrimental effects on reaction time (standard mean difference (SMD) -0.23; 95% confidence interval (CI) -0.38--0.07; p = 0.004), response accuracy (SMD -0.20; 95% CI -0.38--0.03; p = 0.02), and memory (SMD -0.93; 95% CI: -1.68--0.17; p = 0.02). Nevertheless, attention was not affected during hypoxia exposure (SMD -0.06; 95% CI: -0.23-0.11; p = 0.47). Acute exposure to hypoxia in controlled lab conditions appears to be detrimental to cognitive performance, specifically in reaction time, response accuracy, and memory.
Collapse
Affiliation(s)
- María Ramírez-delaCruz
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain;
| | - Alfredo Bravo-Sánchez
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1800, 28223 Pozuelo de Alarcón, Spain; (A.B.-S.); (J.S.-I.)
| | - Jorge Sánchez-Infante
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1800, 28223 Pozuelo de Alarcón, Spain; (A.B.-S.); (J.S.-I.)
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Pablo Abián
- Faculty of Humanities and Social Sciences, Comillas Pontifical University, 28049 Madrid, Spain;
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain;
| |
Collapse
|
4
|
Falla M. Simulated Acute Hypobaric Hypoxia Effects on Cognition in Helicopter Emergency Medical Service Personnel - A Randomized, Controlled, Single-Blind, Crossover Trial. HUMAN FACTORS 2024; 66:404-423. [PMID: 35640630 PMCID: PMC11977819 DOI: 10.1177/00187208221086407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 02/21/2022] [Indexed: 05/06/2023]
Abstract
OBJECTIVE To evaluate, under replicable, blinded and standardised conditions, the effect of acute exposure to hypobaric hypoxia (HH) (equivalent to 200 or 3000 or 5000 m above sea level (asl)) on selected cognitive domains and physiological parameters in personnel of helicopter emergency medical service (HEMS). METHODS We conducted a randomized clinical trial using a single-blind crossover design in an environmental chamber (terraXcube) to induce HH in 48 HEMS personnel. Participants performed cognitive tests (CT) before the ascent, after 5 min at altitude, and after simulated cardiopulmonary resuscitation (SCR). CT evaluated: sustained attention using the psychomotor vigilance test (PVT) that included measurement of reaction time (RT); risky decision making using the balloon analogue risk task (BART), and attention and speed of processing using the digit symbol substitution test (DSST). CT performance was subjectively rated with a visual analogue scale (VAS). Physiological data were recorded with a physiological monitoring system. Data were analysed using a linear mixed model and correlation analysis. RESULTS Mean reaction time was significantly slower (p = 0.002) at HH (5000 m asl), but there were no independent effects of HH on the other parameters of the PVT, BART or DSST. Participants did not detect subjectively the slower RT at altitude since VAS performance results showed a positive correlation with mean RT (p = 0.009). DSST results significantly improved (p = 0.001) after SCR. CONCLUSION Acute exposure of HEMS personnel to HH induced a slower RT but no changes in any other investigated measures of cognition. The reduced RT was not detected subjectively by the participants. Trial number 3489044136, ClinicalTrials.gov trial registration.
Collapse
Affiliation(s)
- Marika Falla
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy, Center for Mind/Brain Sciences, CIMeC, University of Trento, Rovereto (TN), Italy
| |
Collapse
|
5
|
Fan H, Meng Y, Zhu L, Fan M, Wang D, Zhao Y. A review of methods for assessment of cognitive function in high-altitude hypoxic environments. Brain Behav 2024; 14:e3418. [PMID: 38409925 PMCID: PMC10897364 DOI: 10.1002/brb3.3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 02/28/2024] Open
Abstract
Hypoxic environments like those present at high altitudes may negatively affect brain function. Varying levels of hypoxia, whether acute or chronic, are previously shown to impair cognitive function in humans. Assessment and prevention of such cognitive impairment require detection of cognitive changes and impairment using specific cognitive function assessment tools. This paper summarizes the findings of previous research, outlines the methods for cognitive function assessment used at a high altitude, elaborates the need to develop standardized and systematic cognitive function assessment tools for high-altitude hypoxia environments.
Collapse
Affiliation(s)
- Haojie Fan
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| | - Ying Meng
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| | - Lingling Zhu
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| | - Ming Fan
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
- School of Information Sciences & EngineeringLanzhou UniversityLanzhouChina
| | - Du‐Ming Wang
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yong‐Qi Zhao
- Department of PsychologyZhejiang Sci‐Tech UniversityHangzhouChina
- Department of Cognitive and StressBeijing Institute of Basic Medical SciencesBeijingChina
| |
Collapse
|
6
|
Banaei P, Tadibi V, Amiri E, Machado DGDS. Concomitant dual-site tDCS and dark chocolate improve cognitive and endurance performance following cognitive effort under hypoxia: a randomized controlled trial. Sci Rep 2023; 13:16473. [PMID: 37777571 PMCID: PMC10542360 DOI: 10.1038/s41598-023-43568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Ten male cyclists were randomized into four experimental conditions in this randomized, cross-over, double-blind, and sham-controlled study to test the combined effect of acute dark chocolate (DC) ingestion and anodal concurrent dual-site transcranial direct current stimulation (a-tDCS) targeting M1 and left DLPFC on cognitive and whole-body endurance performance in hypoxia after performing a cognitive task. Two hours before the sessions, chocolate was consumed. After arriving at the lab, participants completed an incongruent Stroop task for 30 min in hypoxia (O2 = 13%) to induce mental fatigue, followed by 20 min of tDCS (2 mA) in hypoxia. Then, in hypoxia, they performed a time-to-exhaustion task (TTE) while measuring physiological and psychophysiological responses. Cognitive performance was measured at baseline, after the Stroop task, and during and after TTE. TTE in 'DC + a-tDCS' was significantly longer than in 'white chocolate (WC) + a-tDCS' and WC + sham-tDCS'. The vastus medialis muscle electromyography amplitude was significantly higher in 'DC + a-tDCS' and 'DC + sham-tDCS' than in 'WC + sh-tDCS'. During and after the TTE, choice reaction time was significantly lower in 'DC + a-tDCS' compared to 'WC + sh-tDCS'. Other physiological or psychophysiological variables showed no significant differences. The concurrent use of acute DC consumption and dual-site a-tDCS might improve cognitive and endurance performance in hypoxia.
Collapse
Affiliation(s)
- Parisa Banaei
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran
| | - Vahid Tadibi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran.
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, University Avenue, Taq-e Bostan, Kermanshah, 6714414971, Iran
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| |
Collapse
|
7
|
Pan C, Ai C, Liang L, Zhang B, Li Q, Pu L, Wang Z, Liu W, Chen Z, Liu H, Wang X. Sestrin2 protects against hypoxic nerve injury by regulating mitophagy through SESN2/AMPK pathway. Front Mol Biosci 2023; 10:1266243. [PMID: 37808523 PMCID: PMC10551140 DOI: 10.3389/fmolb.2023.1266243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Hypoxia induced by high altitude can lead to severe neurological dysfunction. Mitophagy is known to play a crucial role in hypoxic nerve injury. However, the regulatory mechanism of mitophagy during this injury remains unclear. Recent studies have highlighted the role of Sestrin2 (SESN2), an evolutionarily conserved stress-inducible protein against acute hypoxia. Our study demonstrated that hypoxia treatment increased SESN2 expression and activated mitophagy in PC12 cells. Furthermore, the knock-out of Sesn2 gene led to a significant increase in mitochondrial membrane potential and ATP concentrations, which protected the PC12 cells from hypoxic injury. Although the AMPK/mTOR pathway was significantly altered under hypoxia, it does not seem to participate in mitophagy regulation. Instead, our data suggest that the mitophagy receptor FUNDC1 plays a vital role in hypoxia-induced mitophagy. Moreover, SESN2 may function through synergistic regulation with other pathways, such as SESN2/AMPK, to mediate cellular adaptation to hypoxia, including the regulation of mitophagy in neuron cells. Therefore, SESN2 plays a critical role in regulating neural cell response to hypoxia. These findings offer valuable insights into the underlying molecular mechanisms governing the regulation of mitophagy under hypoxia and further highlight the potential of SESN2 as a promising therapeutic target for hypoxic nerve injury.
Collapse
Affiliation(s)
- Cunyao Pan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, Lanzhou University, Lanzhou, China
- Chengdu Center for Disease Prevention and Control, Chengdu, China
| | - Chongyi Ai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Lanlan Liang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Baoyi Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Qionglin Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Lingling Pu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zirou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Weili Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhaoli Chen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Hui Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xinxing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
8
|
Cognition and Neuropsychological Changes at Altitude-A Systematic Review of Literature. Brain Sci 2022; 12:brainsci12121736. [PMID: 36552195 PMCID: PMC9775937 DOI: 10.3390/brainsci12121736] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
High-altitude (HA) exposure affects cognitive functions, but studies have found inconsistent results. The aim of this systematic review was to evaluate the effects of HA exposure on cognitive functions in healthy subjects. A structural overview of the applied neuropsychological tests was provided with a classification of superordinate cognitive domains. A literature search was performed using PubMed up to October 2021 according to PRISMA guidelines. Eligibility criteria included a healthy human cohort exposed to altitude in the field (at minimum 2440 m [8000 ft]) or in a hypoxic environment in a laboratory, and an assessment of cognitive domains. The literature search identified 52 studies (29 of these were field studies; altitude range: 2440 m-8848 m [8000-29,029 ft]). Researchers applied 112 different neuropsychological tests. Attentional capacity, concentration, and executive functions were the most frequently studied. In the laboratory, the ratio of altitude-induced impairments (64.7%) was twice as high compared to results showing no change or improved results (35.3%), but altitudes studied were similar in the chamber compared to field studies. In the field, the opposite results were found (66.4 % no change or improvements, 33.6% impairments). Since better acclimatization can be assumed in the field studies, the findings support the hypothesis that sufficient acclimatization has beneficial effects on cognitive functions at HA. However, it also becomes apparent that research in this area would benefit most if a consensus could be reached on a standardized framework of freely available neurocognitive tests.
Collapse
|
9
|
Committeri G, Bondi D, Sestieri C, Di Matteo G, Piervincenzi C, Doria C, Ruffini R, Baldassarre A, Pietrangelo T, Sepe R, Navarra R, Chiacchiaretta P, Ferretti A, Verratti V. Neuropsychological and Neuroimaging Correlates of High-Altitude Hypoxia Trekking During the "Gokyo Khumbu/Ama Dablam" Expedition. High Alt Med Biol 2022; 23:57-68. [PMID: 35104160 DOI: 10.1089/ham.2021.0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Committeri Giorgia, Danilo Bondi, Carlo Sestieri, Ginevra Di Matteo, Claudia Piervincenzi, Christian Doria, Roberto Ruffini, Antonello Baldassarre, Tiziana Pietrangelo, Rosamaria Sepe, Riccardo Navarra, Piero Chiacchiaretta, Antonio Ferretti, and Vittore Verratti. Neuropsychological and neuroimaging correlates of high-altitude hypoxia trekking during the "Gokyo Khumbu/Ama Dablam" expedition. High Alt Med Biol 00:000-000, 2021. Background: Altitude hypoxia exposure may produce cognitive detrimental adaptations and damage to the brain. We aimed at investigating the effects of trekking and hypoxia on neuropsychological and neuroimaging measures. Methods: We recruited two balanced groups of healthy adults, trekkers (n = 12, 6 F and 6 M, trekking in altitude hypoxia) and controls (gender- and age-matched), who were tested before (baseline), during (5,000 m, after 9 days of trekking), and after the expedition for state anxiety, depression, verbal fluency, verbal short-term memory, and working memory. Personality and trait anxiety were also assessed at a baseline level. Neuroimaging measures of cerebral perfusion (arterial spin labeling), white-matter microstructural integrity (diffusion tensor imaging), and resting-state functional connectivity (functional magnetic resonance imaging) were assessed before and after the expedition in the group of trekkers. Results: At baseline, the trekkers showed lower trait anxiety (p = 0.003) and conscientiousness (p = 0.03) than the control group. State anxiety was lower in the trekkers throughout the study (p < 0.001), and state anxiety and depression decreased at the end of the study in both groups (p = 0.043 and p = 0.007, respectively). Verbal fluency increased at the end of the study in both groups (p < 0.001), whereas verbal short-term memory and working memory performance did not change. No significant differences between before and after the expedition were found for neuroimaging measures. Conclusions: We argue that the observed differences in the neuropsychological measures mainly reflect aspecific familiarity and learning effects due to the repeated execution of the same questionnaires and task. The present results thus suggest that detrimental effects on neuropsychological and neuroimaging measures do not necessarily occur as a consequence of short-term exposure to altitude hypoxia up to 5,000 m, especially in the absence of altitude sickness.
Collapse
Affiliation(s)
- Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Ginevra Di Matteo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Christian Doria
- Department of Biomedical Sciences for Health, Università Degli Studi di Milano, Milan, Italy
| | - Roberto Ruffini
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Riccardo Navarra
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
10
|
Effect of a speed ascent to the top of Europe on cognitive function in elite climbers. Eur J Appl Physiol 2022; 122:635-649. [PMID: 34993575 DOI: 10.1007/s00421-021-04855-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/19/2021] [Indexed: 11/03/2022]
Abstract
PURPOSE The combined effects of acute hypoxia and exercise on cognition remain to be clarified. We investigated the effect of speed climbing to high altitude on reactivity and inhibitory control in elite climbers. METHODS Eleven elite climbers performed a speed ascent of the Mont-Blanc (4810 m) and were evaluated pre- (at 1000 m) and immediately post-ascent (at 3835 m). In both conditions, a Simon task was done at rest (single-task session, ST) and during a low-intensity exercise (dual-task session, DT). Prefrontal cortex (PFC) oxygenation and middle cerebral artery velocity (MCAv) were monitored using near-infrared spectroscopy and transcranial Doppler, respectively, during the cognitive task. Self-perceived mental fatigue and difficulty to perform the cognitive tests were estimated using a visual analog scale. Heart rate and pulse oxygenation (SpO2) were monitored during the speed ascent. RESULTS Elite climbers performed an intense (~ 50% of the time ≥ 80% of maximal heart rate) and prolonged (8h58 ± 6 min) exercise in hypoxia (minimal SpO2 at 4810 m: 78 ± 4%). Reaction time and accuracy during the Simon task were similar pre- and post-ascent (374 ± 28 ms vs. 385 ± 39 ms and 6 ± 4% vs. 5 ± 4%, respectively; p > 0.05), despite a reported higher mental fatigue and difficulty to perform the Simon task post-ascent (all p < 0.05). The magnitude of the Simon effect was unaltered (p > 0.05), suggesting a preserved cognitive control post-ascent. Pattern of PFC oxygenation and MCAv differed between pre- and post-ascent as well as between ST and DT conditions. CONCLUSIONS Cognitive control is not altered in elite climbers after a speed ascent to high-altitude despite substantial cerebral deoxygenation and fatigue perception.
Collapse
|
11
|
Marofi F, Shomali N, Younus LA, Hassanzadeh A, Vahedi G, Kuznetsova MY, Solali S, Gharibi T, Hosseini A, Mohammed RN, Mohammadi H, Tamjidifar R, Firouzi-Amandi A, Farshdousti Hagh M. Under hypoxic conditions, MSCs affect the expression and methylation level of survival-related genes in ALL independent of apoptosis pathways in vitro. Biotechnol Appl Biochem 2021; 69:822-839. [PMID: 33786874 DOI: 10.1002/bab.2154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/18/2021] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSCs) are one of the most prominent cells in the bone marrow. MSCs can affect acute lymphocytic leukemia (ALL) cells under hypoxic conditions. With this aim, we used MOLT-4 cells as simulators of ALL cells cocultured with bone marrow mesenchymal stem cells (BMMSCs) under hypoxic conditions in vitro. Then, mRNA and protein expression of the MAT2A, PDK1, and HK2 genes were evaluated by real-time PCR and Western blot which was also followed by apoptosis measurement by a flow-cytometric method. Next, the methylation status of the target genes was investigated by MS-qPCR. Additionally, candidate gene expressions were examined after treatment with rapamycin using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. We found that the mRNA expression of the candidate genes was augmented under the hypoxic condition in which MAT2A was upregulated in cocultured cells compared to MOLT-4, while HK2 and PDK1 were downregulated. Moreover, we found an association between gene expression and promoter methylation levels of target genes. Besides, expressions of the candidate genes were decreased, while their methylation levels were promoted following treatment with rapamycin. Our results suggest an important role for the BMMSC in regulating the methylation of genes involved in cell survival in hypoxia conditions; however, we found no evidence to prove the MSCs' effect on directing malignant lymphoblastic cells to apoptosis.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Division of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology research center, Tabriz University of medical sciences, Tabriz, Iran.,Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq
| | - Navid Shomali
- Immunology research center, Tabriz University of medical sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laith A Younus
- Departement of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Al Najaf Al-Ashraf, Iraq
| | - Ali Hassanzadeh
- Department of Hematology, Division of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ghasem Vahedi
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology research center, Tabriz University of medical sciences, Tabriz, Iran
| | - Arezoo Hosseini
- Immunology research center, Tabriz University of medical sciences, Tabriz, Iran
| | - Rebar N Mohammed
- Bone Marrow Transplant Center, Hiwa Cancer Hospital, Suleimanyah, Iraq
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Rozita Tamjidifar
- Immunology research center, Tabriz University of medical sciences, Tabriz, Iran
| | | | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Bondi D, Verratti V, Nori R, Piccardi L, Prete G, Pietrangelo T, Tommasi L. Spatial Abilities at High Altitude: Exploring the Role of Cultural Strategies and Hypoxia. High Alt Med Biol 2021; 22:157-165. [PMID: 33416426 DOI: 10.1089/ham.2020.0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bondi, Danilo, Vittore Verratti, Raffaella Nori, Laura Piccardi, Giulia Prete, Tiziana Pietrangelo, and Luca Tommasi. Spatial abilities at high altitude: Exploring the role of cultural strategies and hypoxia. High Alt Med Biol. 22: 157-165, 2021. Background: Over the past couple of decades, the number of people of different cultures traveling to places of high altitude (HA) increased. At HA, a decline in cognitive abilities has been described, including spatial skills. However, it is still unknown whether people accustomed to hypobaric hypoxia are less susceptible to cognitive decline. Method: We aimed to determine if three ethnic groups would show any difference in the performance of spatial abilities. Italian trekkers (46.20 ± 15.83 years), Nepalese porters (30.33 ± 8.55 years), and lowlander and highlander Sherpas (30.33 ± 8.55 and 37.00 ± 16.51 years) were tested with a building photograph recognition, a map orienting, and a mental rotation task during a Himalayan expedition. Accuracy and response times were collected at low altitude (LA) and HA. Results: Nepalese performed the worst (photograph task: p = 0.015, η2p = 0.36; map task: p = 0.016, η2p = 0.36), but the difference was mitigated after correcting for length of schooling. Participants took more time to respond at LA than in HA condition (photograph task: 24.0 ± 15.3 seconds vs. 12.7 ± 6.3 seconds, p = 0.008, η2p = 0.57; map task: 12.5 ± 1.8 seconds vs. 7.8 ± 0.6 seconds, p = 0.038, η2p = 0.40). In the map task, participants performed with greater accuracy at LA (5.1 ± 0.4 vs. 4.4 ± 0.4 number of correct responses, p = 0.006, η2p = 0.59). Conclusions: Altitude hypoxia elicited impairments in cognitive spatial tasks. This may be due to the inability to acquire new unfamiliar patterns, and to the difficulty in managing a high cognitive workload. The ethnic differences were ascribed to schooling, even we consider the different system of reference usually exploited in each culture (egocentric: dependent, or allocentric: independent from the personal viewpoint), and that Westerners are more likely to focus on specific details of the scene. Further studies should investigate the diverse strategies to complete spatial tasks.
Collapse
Affiliation(s)
- Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences and Health and Territorial Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Raffaella Nori
- Department of Psychology, University of Bologna, Bologna, Italy
| | - Laura Piccardi
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Cognitive and Motor Rehabilitation Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences and Health and Territorial Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti - Pescara, Chieti, Italy
| |
Collapse
|
13
|
Jung M, Zou L, Yu JJ, Ryu S, Kong Z, Yang L, Kang M, Lin J, Li H, Smith L, Loprinzi PD. Does exercise have a protective effect on cognitive function under hypoxia? A systematic review with meta-analysis. JOURNAL OF SPORT AND HEALTH SCIENCE 2020; 9:562-577. [PMID: 32325144 PMCID: PMC7749263 DOI: 10.1016/j.jshs.2020.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/08/2020] [Accepted: 02/27/2020] [Indexed: 05/02/2023]
Abstract
OBJECTIVE This study aimed to examine (1) the independent effects of hypoxia on cognitive function and (2) the effects of exercise on cognition while under hypoxia. METHODS Design: Systematic review with meta-analysis. DATA SOURCES PubMed, Scopus, Web of Science, PsychInfo, and SPORTDiscus were searched. Eligibility criteria for selecting studies: randomized controlled trials and nonrandomized controlled studies that investigated the effects of chronic or acute exercise on cognition under hypoxia were considered (Aim 2), as were studies investigating the effects of hypoxia on cognition (Aim 1). RESULTS In total, 18 studies met our inclusionary criteria for the systematic review, and 12 studies were meta-analyzed. Exposure to hypoxia impaired attentional ability (standardized mean difference (SMD) = -0.4), executive function (SMD = -0.18), and memory function (SMD = -0.26), but not information processing (SMD = 0.27). Aggregated results indicated that performing exercise under a hypoxia setting had a significant effect on cognitive improvement (SMD = 0.3, 95% confidence interval: 0.14 - 0.45, I2 = 54%, p < 0.001). Various characteristics (e.g., age, cognitive task type, exercise type, exercise intensity, training type, and hypoxia level) moderated the effects of hypoxia and exercise on cognitive function. CONCLUSION Exercise during exposure to hypoxia improves cognitive function. This association appears to be moderated by individual and exercise/hypoxia-related characteristics.
Collapse
Affiliation(s)
- Myungjin Jung
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, University of Mississippi, University Park, MS 38677, USA
| | - Liye Zou
- Exercise and Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China.
| | - Jane Jie Yu
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Seungho Ryu
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, University of Mississippi, University Park, MS 38677, USA
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Taipa, Macau 999078, China
| | - Lin Yang
- Department of Cancer Epidemiology and Prevention Research, CancerControl Alberta, Alberta Health Services, Calgary, AB T2S 3C3, Canada; Departments of Oncology and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Minsoo Kang
- Health and Sport Analytics Laboratory, Department of Health, Exercise Science and Recreation Management, University of Mississippi, University Park, MS 38677, USA
| | - Jingyuan Lin
- Exercise and Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Hong Li
- Exercise and Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Lee Smith
- The Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, CB1 1PT, UK
| | - Paul D Loprinzi
- Exercise and Memory Laboratory, Department of Health, Exercise Science and Recreation Management, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
14
|
Sharma A, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Buzoianu AD, Bryukhovetskiy I, Manzhulo I, Patnaik R, Wiklund L, Sharma HS. Concussive head injury exacerbates neuropathology of sleep deprivation: Superior neuroprotection by co-administration of TiO 2-nanowired cerebrolysin, alpha-melanocyte-stimulating hormone, and mesenchymal stem cells. PROGRESS IN BRAIN RESEARCH 2020; 258:1-77. [PMID: 33223033 DOI: 10.1016/bs.pbr.2020.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sleep deprivation (SD) is common in military personnel engaged in combat operations leading to brain dysfunction. Military personnel during acute or chronic SD often prone to traumatic brain injury (TBI) indicating the possibility of further exacerbating brain pathology. Several lines of evidence suggest that in both TBI and SD alpha-melanocyte-stimulating hormone (α-MSH) and brain-derived neurotrophic factor (BDNF) levels decreases in plasma and brain. Thus, a possibility exists that exogenous supplement of α-MSH and/or BDNF induces neuroprotection in SD compounded with TBI. In addition, mesenchymal stem cells (MSCs) are very portent in inducing neuroprotection in TBI. We examined the effects of concussive head injury (CHI) in SD on brain pathology. Furthermore, possible neuroprotective effects of α-MSH, MSCs and neurotrophic factors treatment were explored in a rat model of SD and CHI. Rats subjected to 48h SD with CHI exhibited higher leakage of BBB to Evans blue and radioiodine compared to identical SD or CHI alone. Brain pathology was also exacerbated in SD with CHI group as compared to SD or CHI alone together with a significant reduction in α-MSH and BDNF levels in plasma and brain and enhanced level of tumor necrosis factor-alpha (TNF-α). Exogenous administration of α-MSH (250μg/kg) together with MSCs (1×106) and cerebrolysin (a balanced composition of several neurotrophic factors and active peptide fragments) (5mL/kg) significantly induced neuroprotection in SD with CHI. Interestingly, TiO2 nanowired delivery of α-MSH (100μg), MSCs, and cerebrolysin (2.5mL/kg) induced enhanced neuroprotection with higher levels of α-MSH and BDNF and decreased the TNF-α in SD with CHI. These observations are the first to show that TiO2 nanowired administration of α-MSH, MSCs and cerebrolysin induces superior neuroprotection following SD in CHI, not reported earlier. The clinical significance of our findings in light of the current literature is discussed.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Igor Manzhulo
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Frank F, Faulhaber M, Messlinger K, Accinelli C, Peball M, Schiefecker A, Kaltseis K, Burtscher M, Broessner G. Migraine and aura triggered by normobaric hypoxia. Cephalalgia 2020; 40:1561-1573. [PMID: 32791920 PMCID: PMC7838593 DOI: 10.1177/0333102420949202] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND For future experimental studies or the development of targeted pharmaceutical agents, a deeper insight into the pathophysiology of migraine is of utmost interest. Reliable methods to trigger migraine attacks including aura are desirable to study this complex disease in vivo. METHODS To investigate hypoxia as a trigger for migraine and aura, we exposed volunteers diagnosed with migraine, with (n = 16) and without aura (n = 14), to hypoxia utilizing a hypoxic chamber adjusted to a FiO2 of 12.6%. The occurrence of headache, migraine, aura, and accompanying symptoms were registered and vital signs were collected for 6 hours under hypoxia and 2 hours of follow-up. A binary logistic regression analysis examined the probability of triggering headaches, migraines, aura, photo- and phonophobia. FINDINGS Of 30 participants, 24 (80.0%) developed headaches and 19 (63.3%) migraine, five (16.7%) reported aura. Two patients that developed aura never experienced aura symptoms before in their life. The increase of mean heart frequency was higher in patients developing headaches or migraine. Mean SpO2 during hypoxia was 83.39%. CONCLUSION Hypoxia was able to trigger migraine attacks and aura independently of any pharmacological agent.
Collapse
Affiliation(s)
- Florian Frank
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Faulhaber
- Department of Sport Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Chiara Accinelli
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina Peball
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria
| | - Alois Schiefecker
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Kaltseis
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Gregor Broessner
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Prete G, Bondi D, Verratti V, Aloisi AM, Rai P, Tommasi L. Universality vs experience: a cross-cultural pilot study on the consonance effect in music at different altitudes. PeerJ 2020; 8:e9344. [PMID: 32704441 PMCID: PMC7350922 DOI: 10.7717/peerj.9344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/21/2020] [Indexed: 11/25/2022] Open
Abstract
Background Previous studies have shown that music preferences are influenced by cultural “rules”, and some others have suggested a universal preference for some features over others. Methods We investigated cultural differences on the “consonance effect”, consisting in higher pleasantness judgments for consonant compared to dissonant chords—according to the Western definition of music: Italian and Himalayan participants were asked to express pleasantness judgments for consonant and dissonant chords. An Italian and a Nepalese sample were tested both at 1,450 m and at 4,750 m of altitude, with the further aim to evaluate the effect of hypoxia on this task. A third sample consisted of two subgroups of Sherpas: lowlanders (1,450 m of altitude), often exposed to Western music, and highlanders (3,427 m of altitude), less exposed to Western music. All Sherpas were tested where they lived. Results Independently from the altitude, results confirmed the consonance effect in the Italian sample, and the absence of such effect in the Nepalese sample. Lowlander Sherpas revealed the consonance effect, but highlander Sherpas did not show this effect. Conclusions Results of this pilot study show that neither hypoxia (altitude), nor demographic features (age, schooling, or playing music), nor ethnicity per se influence the consonance effect. We conclude that music preferences are attributable to music exposure.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Anna Maria Aloisi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Prabin Rai
- Unique College of Medical Science and Hospital, Rajbiraj, Nepal.,Mechi Technical Training Academy, Birtamode, Nepal
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
17
|
Walsh JJ, Drouin PJ, King TJ, D'Urzo KA, Tschakovsky ME, Cheung SS, Day TA. Acute aerobic exercise impairs aspects of cognitive function at high altitude. Physiol Behav 2020; 223:112979. [PMID: 32479806 DOI: 10.1016/j.physbeh.2020.112979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/28/2019] [Accepted: 05/20/2020] [Indexed: 12/24/2022]
Abstract
Hypoxia-mediated cognitive dysfunction can be transiently mitigated by exercise in a laboratory-based setting. Whether this effect holds true in the context of high altitude hypoxia has not been determined. We investigated the effect of acute aerobic exercise on cognitive function (CF) at low (1400m) and high altitude (4240m). Fifteen volunteers (24.1±3.5yrs; 9 females) exercised for 20-min at 40-60% of their heart rate reserve at low and high altitude. CF was assessed before and 10-min after exercise using a tablet-based battery of executive function tests. A sea-level control group (n=13; 24.2±2.4 years; 9 females) performed time-matched CF tests to assess the contribution of a learning effects due to repeated testing. Measures of resting CF were unaffected by ascent to high altitude. Following high altitude exercise, performance significantly worsened on the digit symbol substitution task - a test of processing speed, working memory, and visuospatial attention (z=0.01 vs. -0.59, p=0.02, η2=0.35). No effect was found on other measures of CF following exercise. There was no association between changes in peripheral oxygen saturation and changes in CF following high altitude exercise (r=0.22, p=0.44), but higher hemoglobin concentration at high altitude was associated with a decline in CF following exercise at high altitude (r=-0.65, p=0.02). Acute aerobic exercise performed at high altitude impairs some aspects of CF, whereas other CF tests remain unchanged. The strong ecological validity of this study warrants attention and follow-up investigations are needed to better characterize selective impairment of CF with high altitude exercise.
Collapse
Affiliation(s)
- Jeremy J Walsh
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada; School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada.
| | - Patrick J Drouin
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | - Trevor J King
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada; Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Katrina A D'Urzo
- School of Kinesiology and Health Studies, Queen's University, Kingston, ON, Canada
| | | | - Stephen S Cheung
- Department of Kinesiology, Brock University, St. Catherines, ON, Canada
| | - Trevor A Day
- Department of Biology, Mount Royal University, Calgary, AB, Canada
| |
Collapse
|
18
|
Carballo-Fazanes A, Barcala-Furelos R, Eiroa-Bermúdez J, Fernández-Méndez M, Abelairas-Gómez C, Martínez-Isasi S, Murciano M, Fernández-Méndez F, Rodríguez-Núñez A. Physiological demands of quality cardiopulmonary resuscitation performed at simulated 3250 meters high. Am J Emerg Med 2019; 38:2580-2585. [PMID: 31911060 DOI: 10.1016/j.ajem.2019.12.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023] Open
Abstract
AIM To analyse the effect of oxygen fraction reduction (O2 14%, equivalent to 3250 m) on Q-CPR and rescuers' physiological demands. METHODOLOGY A quasi-experimental study was carried out in a sample of 9 Q-CPR proficient health care professionals. Participants, in teams of 2 people, performed 10 min CPR on a Laerdal ResusciAnne mannequin (30:2 compression/ventilation ratio and alternating roles between rescuers every 2 min) in two simulated settings: T21-CPR at sea level (FiO2 of 21%) and T14 - CPR at 3250 m altitude (FiO2 of 14%). Effort self-perception was rated from 0 (no effort) to 10 (maximum demand) points. RESULTS Quality of chest compressions was good and similar in both conditions (T21 vs T14). However, the percentage of ventilations with adequate tidal volume was lower in altitude than at sea level conditions (35.9 ± 25.2% vs. 54.7 ± 23.2%, p = 0.035). The subjective perception of effort was significantly higher at simulated altitude (5 ± 2) than at sea level (3 ± 2) (p = 0.038). Maximum heart rate during the tests was similar in both conditions; however, mean oxygen saturation was significantly lower in altitude conditions (90.5 ± 2.5% vs. 99.3 ± 0.5%, p < 0.001). CONCLUSION Although performing CPR under simulated hypoxic altitude conditions significantly increases the physiological demands and subjective feeling of tiredness compared to sea level CPR, trained rescuers are able to deliver good Q-CPR in such conditions, at least in the first 10 min of resuscitation.
Collapse
Affiliation(s)
- Aida Carballo-Fazanes
- CLINURSID Research Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Santiago de Compostela's Health Research Institute (IDIS), Santiago de Compostela, Spain
| | - Roberto Barcala-Furelos
- CLINURSID Research Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Santiago de Compostela's Health Research Institute (IDIS), Santiago de Compostela, Spain; Faculty of Education and Sport Sciences, REMOSS Network Research, Universidade de Vigo, Pontevedra, Spain
| | | | - María Fernández-Méndez
- CLINURSID Research Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; School of Nursing, REMOSS Network Research, Universidade de Vigo, Pontevedra, Spain
| | - Cristian Abelairas-Gómez
- CLINURSID Research Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Santiago de Compostela's Health Research Institute (IDIS), Santiago de Compostela, Spain; Faculty of Education and Sport Sciences, REMOSS Network Research, Universidade de Vigo, Pontevedra, Spain; Faculty of Education Sciences, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | - Santiago Martínez-Isasi
- CLINURSID Research Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Faculty of Nursing, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Murciano
- Pediatric Department, Hospital Universitario Policlinico Humberto I, Universidad de Roma "Sapienza", Roma, Italy
| | - Felipe Fernández-Méndez
- CLINURSID Research Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; School of Nursing, REMOSS Network Research, Universidade de Vigo, Pontevedra, Spain
| | - Antonio Rodríguez-Núñez
- CLINURSID Research Group, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Santiago de Compostela's Health Research Institute (IDIS), Santiago de Compostela, Spain; Faculty of Nursing, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Pediatric Intensive Care Unit, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Pun M, Guadagni V, Drogos LL, Pon C, Hartmann SE, Furian M, Lichtblau M, Muralt L, Bader PR, Moraga FA, Soza D, Lopez I, Rawling JM, Ulrich S, Bloch KE, Giesbrecht B, Poulin MJ. Cognitive Effects of Repeated Acute Exposure to Very High Altitude Among Altitude-Experienced Workers at 5050 m. High Alt Med Biol 2019; 20:361-374. [DOI: 10.1089/ham.2019.0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Matiram Pun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Veronica Guadagni
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Lauren L. Drogos
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Charlotte Pon
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Sara E. Hartmann
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Michael Furian
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Mona Lichtblau
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Lara Muralt
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Patrick R. Bader
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Fernando A. Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Daniel Soza
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Ivan Lopez
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Jean M. Rawling
- Department of Family Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Silvia Ulrich
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Konrad E. Bloch
- Department of Respiratory Medicine, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Barry Giesbrecht
- Department of Psychological and Brain Sciences, and Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, California
| | - Marc J. Poulin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Canada
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
20
|
Ando S, Komiyama T, Sudo M, Higaki Y, Ishida K, Costello JT, Katayama K. The interactive effects of acute exercise and hypoxia on cognitive performance: A narrative review. Scand J Med Sci Sports 2019; 30:384-398. [PMID: 31605635 DOI: 10.1111/sms.13573] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022]
Abstract
Acute moderate intensity exercise has been shown to improve cognitive performance. In contrast, hypoxia is believed to impair cognitive performance. The detrimental effects of hypoxia on cognitive performance are primarily dependent on the severity and duration of exposure. In this review, we describe how acute exercise under hypoxia alters cognitive performance, and propose that the combined effects of acute exercise and hypoxia on cognitive performance are mainly determined by interaction among exercise intensity and duration, the severity of hypoxia, and duration of exposure to hypoxia. We discuss the physiological mechanism(s) of the interaction and suggest that alterations in neurotransmitter function, cerebral blood flow, and possibly cerebral metabolism are the primary candidates that determine cognitive performance when acute exercise is combined with hypoxia. Furthermore, acclimatization appears to counteract impaired cognitive performance during prolonged exposure to hypoxia although the precise physiological mechanism(s) responsible for this amelioration remain to be elucidated. This review has implications for sporting, occupational, and recreational activities at terrestrial high altitude where cognitive performance is essential. Further studies are required to understand physiological mechanisms that determine cognitive performance when acute exercise is performed in hypoxia.
Collapse
Affiliation(s)
- Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Takaaki Komiyama
- Center for Education in Liberal Arts and Sciences, Osaka University, Osaka, Japan
| | - Mizuki Sudo
- Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Yasuki Higaki
- Faculty of Sports Science, Fukuoka University, Fukuoka, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Joseph T Costello
- Extreme Environments Laboratory, Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|