1
|
Kwan GT, Andrade LR, Prime KJ, Tresguerres M. Immunohistochemical and ultrastructural characterization of the inner ear epithelial cells of splitnose rockfish ( Sebastes diploproa). Am J Physiol Regul Integr Comp Physiol 2024; 326:R277-R296. [PMID: 38189166 DOI: 10.1152/ajpregu.00223.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
The inner ear of teleost fish regulates the ionic and acid-base chemistry and secretes protein matrix into the endolymph to facilitate otolith biomineralization, which is used to maintain vestibular and auditory functions. The otolith is biomineralized in a concentric ring pattern corresponding to seasonal growth, and this calcium carbonate (CaCO3) polycrystal has become a vital aging and life-history tool for fishery managers, ecologists, and conservation biologists. Moreover, biomineralization patterns are sensitive to environmental variability including climate change, thereby threatening the accuracy and relevance of otolith-reliant toolkits. However, the cellular biology of the inner ear is poorly characterized, which is a hurdle for a mechanistic understanding of the underlying processes. This study provides a systematic characterization of the cell types in the inner ear of splitnose rockfish (Sebastes diploproa). Scanning electron microscopy revealed the apical morphologies of six inner ear cell types. In addition, immunostaining and confocal microscopy characterized the expression and subcellular localization of the proteins Na+-K+-ATPase, carbonic anhydrase, V-type H+-ATPase, Na+-K+-2Cl--cotransporter, otolith matrix protein 1, and otolin-1 in six inner ear cell types bordering the endolymph. This fundamental cytological characterization of the rockfish inner ear epithelium illustrates the intricate physiological processes involved in otolith biomineralization and highlights how greater mechanistic understanding is necessary to predict their multistressor responses to future climate change.
Collapse
Affiliation(s)
- Garfield T Kwan
- Wildlife, Fish and Conservation Biology, University of California Davis, Davis, California, United States
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Leonardo R Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, United States
| | - Kaelan J Prime
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
2
|
Morgan MB, Williams J, Breeze B, English N, Higdon N, Onthank K, Qualley DF. Synergistic and antagonistic interactions of oxybenzone and ocean acidification: new insight into vulnerable cellular processes in non-calcifying anthozoans. Front Physiol 2024; 14:1332446. [PMID: 38274044 PMCID: PMC10808722 DOI: 10.3389/fphys.2023.1332446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Cnidarians face significant threats from ocean acidification (OA) and anthropogenic pollutants such as oxybenzone (BP-3). The convergence of threats from multiple stressors is an important area to investigate because of potential significant synergistic or antagonistic interactions. Real-time quantitative PCR was performed to characterize the expression profiles of twenty-two genes of interest (GOI) in sea anemones (Exaiptasia diaphana) exposed to one of four treatments: 1) 96 h of OA conditions followed by a 4 h exposure to 20 ppb BP-3; 2) Exposure to 4 h 20 ppb BP-3 without 96 h of OA; 3) Exposure to 96 h of OA alone; or 4) laboratory conditions with no exposure to BP-3 and/or OA. These 22 GOIs represent cellular processes associated with proton-dependent transport, sodium-dependent transport, metal cation binding/transport, extracellular matrix, amino acid metabolism/transport, immunity, and/or steroidogenesis. These 22 GOIs provide new insight into vulnerable cellular processes in non-calcifying anthozoans exposed to OA and BP-3. Expression profiles were categorized as synergistic, antagonistic, or additive of BP-3 in the presence of OA. Two GOIs were synergistic. Fifteen GOIs were antagonistic and the remaining five GOIs were additive in response to BP-3 in acidified seawater. A subset of these GOIs appear to be candidate biomarkers for future in situ investigations. In human health, proton-dependent monocarboxylate transporters (MCTs) are promising pharmacological targets and recognized as potential biomarkers. By comparison, these same MCTs appear to be targets of xenobiotic chemical pollutants in cnidarian physiology. In the presence of BP-3, a network of collagen synthesis genes are upregulated and antagonistic in their expression profiles. Cytochrome b561 is a critical protein required for collagen synthesis and in silico modeling demonstrates BP-3 binds in the pocket of cytochrome b561. Understanding the underlying molecular mechanisms of "drug-like" compounds such as BP-3 may lead to a more comprehensive interpretation of transcriptional expression profiles. The collective antagonistic responses of GOIs associated with collagen synthesis strongly suggests these GOIs should be considered candidate biomarkers of effect. GOIs with synergistic and additive responses represent candidate biomarkers of exposure. Results show the effects of OA and BP-3 are interactive with respect to their impact on cnidarians. This investigation offers mechanistic data that supports the expression profiles and underpins higher order physiological responses.
Collapse
Affiliation(s)
- Michael B. Morgan
- Department of Biology, Berry College, Mount Berry, GA, United States
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Jacob Williams
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Barrett Breeze
- Department of Biology, Berry College, Mount Berry, GA, United States
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| | - Nicholas English
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Nathaniel Higdon
- Department of Biology, Berry College, Mount Berry, GA, United States
| | - Kirt Onthank
- Department of Biology, Walla Walla University, College Place, WA, United States
| | - Dominic F. Qualley
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA, United States
| |
Collapse
|
3
|
Conci N, Griesshaber E, Rivera-Vicéns RE, Schmahl WW, Vargas S, Wörheide G. Molecular and mineral responses of corals grown under artificial Calcite Sea conditions. GEOBIOLOGY 2024; 22:e12586. [PMID: 38385602 DOI: 10.1111/gbi.12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
The formation of skeletal structures composed of different calcium carbonate polymorphs (e.g. aragonite and calcite) appears to be both biologically and environmentally regulated. Among environmental factors influencing aragonite and calcite precipitation, changes in seawater conditions-primarily in the molar ratio of magnesium and calcium during so-called 'Calcite' (mMg:mCa below 2) or 'Aragonite' seas (mMg:mCa above 2)-have had profound impacts on the distribution and performance of marine calcifiers throughout Earth's history. Nonetheless, the fossil record shows that some species appear to have counteracted such changes and kept their skeleton polymorph unaltered. Here, the aragonitic octocoral Heliopora coerulea and the aragonitic scleractinian Montipora digitata were exposed to Calcite Sea-like mMg:mCa with various levels of magnesium and calcium concentration, and changes in both the mineralogy (i.e. CaCO3 polymorph) and gene expression were monitored. Both species maintained aragonite deposition at lower mMg:mCa ratios, while concurrent calcite presence was only detected in M. digitata. Despite a strong variability between independent experimental replicates for both species, the expression for a set of putative calcification-related genes, including known components of the M. digitata skeleton organic matrix (SkOM), was found to consistently change at lower mMg:mCa. These results support the previously proposed involvements of the SkOM in counteracting decreases in seawater mMg:mCa. Although no consistent expression changes in calcium and magnesium transporters were observed, down-regulation calcium channels in H. coerulea in one experimental replicate and at an mMg:mCa of 2.5, pointing to a possible active calcium uptake regulation by the corals under altered mMg:mCa.
Collapse
Affiliation(s)
- Nicola Conci
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Erika Griesshaber
- Department of Earth and Environmental Sciences, Crystallography, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ramón E Rivera-Vicéns
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Wolfgang W Schmahl
- Department of Earth and Environmental Sciences, Crystallography, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität, Munich, Germany
- SNSB - Mineralogische Staatssammlung, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität, Munich, Germany
- GeoBio-Center LMU, Ludwig-Maximilians-Universität, Munich, Germany
- SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
4
|
Brown KT, Mello-Athayde MA, Sampayo EM, Chai A, Dove S, Barott KL. Environmental memory gained from exposure to extreme pCO 2 variability promotes coral cellular acid-base homeostasis. Proc Biol Sci 2022; 289:20220941. [PMID: 36100023 PMCID: PMC9470260 DOI: 10.1098/rspb.2022.0941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ocean acidification is a growing threat to coral growth and the accretion of coral reef ecosystems. Corals inhabiting environments that already endure extreme diel pCO2 fluctuations, however, may represent acidification-resilient populations capable of persisting on future reefs. Here, we examined the impact of pCO2 variability on the reef-building coral Pocillopora damicornis originating from reefs with contrasting environmental histories (variable reef flat versus stable reef slope) following reciprocal exposure to stable (218 ± 9) or variable (911 ± 31) diel pCO2 amplitude (μtam) in aquaria over eight weeks. Endosymbiont density, photosynthesis and net calcification rates differed between origins but not treatment, whereas primary calcification (extension) was affected by both origin and acclimatization to novel pCO2 conditions. At the cellular level, corals from the variable reef flat exhibited less intracellular pH (pHi) acidosis and faster pHi recovery rates in response to experimental acidification stress (pH 7.40) than corals originating from the stable reef slope, suggesting environmental memory gained from lifelong exposure to pCO2 variability led to an improved ability to regulate acid–base homeostasis. These results highlight the role of cellular processes in maintaining acidification resilience and suggest that prior exposure to pCO2 variability may promote more acidification-resilient coral populations in a changing climate.
Collapse
Affiliation(s)
- Kristen T Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Matheus A Mello-Athayde
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Eugenia M Sampayo
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aaron Chai
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sophie Dove
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Molecular characterization, immunofluorescent localization, and expression levels of two bicarbonate anion transporters in the whitish mantle of the giant clam, Tridacna squamosa, and the implications for light-enhanced shell formation. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111200. [PMID: 35337976 DOI: 10.1016/j.cbpa.2022.111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022]
Abstract
Giant clams conduct light-enhanced shell formation, which requires the increased transport of Ca2+ and inorganic carbon (Ci) from the hemolymph through the shell-facing epithelium of the whitish inner mantle to the extrapallial fluid where CaCO3 deposition occurs. The major form of Ci in the hemolymph is HCO3-, but the mechanisms of HCO3- transport through the basolateral and apical membranes of the shell-facing epithelial cells remain unknown. This study aimed to clone from the inner mantle of Tridacna squamosa the complete coding cDNA sequences of electrogenic Na+-HCO3-cotransporter 1 homolog (NBCe1-like-b) and electrogenic Na+-HCO3-cotransporter 2 homolog (NBCe2-like). NBCe1-like-b comprised 3360 bp, encoding a 125.7 kDa protein with 1119 amino acids. NBCe1-like-b was slightly different from NBCe1-like-a of the ctenidium reported elsewhere, as it had a serine residue (Ser1025), which might undergo phosphorylation leading to the transport of Na+: HCO3- at a ratio of 1: 2 into the cell. NBCe1-like-b was localized at the basolateral membrane of the shell-facing epithelial cells, and its gene and protein expression levels increased significantly in the inner mantle during illumination, indicating a role in the light-enhanced uptake of HCO3- from the hemolymph. The sequence of NBCe2-like obtained from the inner mantle was identical to that reported previously for the outer mantle. In the inner mantle, NBCe2-like had an apical localization in the shell-facing epithelial cells, and its protein abundance was upregulated during illumination. Hence, NBCe2-like might take part in the light-enhanced transport of HCO3- through the apical membrane of these cells into the extrapallial fluid.
Collapse
|
6
|
Thies AB, Quijada-Rodriguez AR, Zhouyao H, Weihrauch D, Tresguerres M. A Rhesus channel in the coral symbiosome membrane suggests a novel mechanism to regulate NH 3 and CO 2 delivery to algal symbionts. SCIENCE ADVANCES 2022; 8:eabm0303. [PMID: 35275725 PMCID: PMC8916725 DOI: 10.1126/sciadv.abm0303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Reef-building corals maintain an intracellular photosymbiotic association with dinoflagellate algae. As the algae are hosted inside the symbiosome, all metabolic exchanges must take place across the symbiosome membrane. Using functional studies in Xenopus oocytes, immunolocalization, and confocal Airyscan microscopy, we established that Acropora yongei Rh (ayRhp1) facilitates transmembrane NH3 and CO2 diffusion and that it is present in the symbiosome membrane. Furthermore, ayRhp1 abundance in the symbiosome membrane was highest around midday and lowest around midnight. We conclude that ayRhp1 mediates a symbiosomal NH4+-trapping mechanism that promotes nitrogen delivery to algae during the day-necessary to sustain photosynthesis-and restricts nitrogen delivery at night-to keep algae under nitrogen limitation. The role of ayRhp1-facilitated CO2 diffusion is less clear, but it may have implications for metabolic dysregulation between symbiotic partners and bleaching. This previously unknown mechanism expands our understanding of symbioses at the immediate animal-microbe interface, the symbiosome.
Collapse
Affiliation(s)
- Angus B. Thies
- Marine Biology research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Corresponding author. (A.B.T.); (M.T.)
| | | | - Haonan Zhouyao
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Martin Tresguerres
- Marine Biology research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
- Corresponding author. (A.B.T.); (M.T.)
| |
Collapse
|
7
|
Levy S, Mass T. The Skeleton and Biomineralization Mechanism as Part of the Innate Immune System of Stony Corals. Front Immunol 2022; 13:850338. [PMID: 35281045 PMCID: PMC8913943 DOI: 10.3389/fimmu.2022.850338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Stony corals are among the most important calcifiers in the marine ecosystem as they form the coral reefs. Coral reefs have huge ecological importance as they constitute the most diverse marine ecosystem, providing a home to roughly a quarter of all marine species. In recent years, many studies have shed light on the mechanisms underlying the biomineralization processes in corals, as characterizing the calicoblast cell layer and genes involved in the formation of the calcium carbonate skeleton. In addition, considerable advancements have been made in the research field of coral immunity as characterizing genes involved in the immune response to pathogens and stressors, and the revealing of specialized immune cells, including their gene expression profile and phagocytosis capabilities. Yet, these two fields of corals research have never been integrated. Here, we discuss how the coral skeleton plays a role as the first line of defense. We integrate the knowledge from both fields and highlight genes and proteins that are related to biomineralization and might be involved in the innate immune response and help the coral deal with pathogens that penetrate its skeleton. In many organisms, the immune system has been tied to calcification. In humans, immune factors enhance ectopic calcification which causes severe diseases. Further investigation of coral immune genes which are involved in skeleton defense as well as in biomineralization might shed light on our understanding of the correlation and the interaction of both processes as well as reveal novel comprehension of how immune factors enhance calcification.
Collapse
Affiliation(s)
- Shani Levy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Morris Kahn Marine Research Station, The Leon H. Charney School of Marine Sciences, University of Haifa, Sdot Yam, Israel
- *Correspondence: Shani Levy, ; Tali Mass,
| |
Collapse
|
8
|
Boo MV, Chew SF, Ip YK. Basolateral Na +/Ca 2+ exchanger 1 and Na +/K +-ATPase, which display light-enhanced gene and protein expression levels, could be involved in the absorption of exogenous Ca 2+ through the ctenidium of the giant clam, Tridacna squamosa. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:110997. [PMID: 34051370 DOI: 10.1016/j.cbpa.2021.110997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Giant clams perform light-enhanced shell formation (calcification) and therefore need to increase the uptake of exogenous Ca2+ during illumination. The ctenidium of the fluted giant clam, Tridacna squamosa, is involved in light-enhanced Ca2+ uptake. It expresses the pore-forming voltage-gated calcium channel (VGCC) subunit alpha 1 (CACNA1) in the apical membrane of the epithelial cells, and the protein expression level of CACNA1 is upregulated in the ctenidium during illumination. This study aimed to elucidate the mechanism involved in the transport of the absorbed Ca2+ across the basolateral membrane of the ctenidial epithelial cells into the hemolymph. We obtained a homolog of Na+/Ca2+exchanger 1 (NCX1-like) from the ctenidium of T. squamosa, which comprised 2418 bp, encoding a protein of 806 amino acids (88.9 kDa). NCX1-like had a basolateral localization in the epithelial cells of the ctenidial filaments and tertiary water channels. Illumination resulted in significant increases in the transcript and protein levels of NCX1-like/NCX1-like in the ctenidium. Hence, NCX1-like could operate in conjunction with VGCC to increase the transport of Ca2+ from the ambient seawater into the hemolymph during illumination. Illumination also resulted in the upregulation of the gene and protein expression levels of Na+/K+-ATPase (NKA) α-subunit (NKAα/NKAα) in the ctenidium of T. squamosa. As light-enhanced extrusion of Ca2+ into the hemolymph through NCX1-like would lead to a greater influx of extracellular Na+, the increased expression of the basolateral NKA was required to augment the capacity of intracellular Na+ homeostasis.
Collapse
Affiliation(s)
- Mel V Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore.
| |
Collapse
|
9
|
Illumination enhances the protein abundance of sarcoplasmic reticulum Ca 2+-ATPases-like transporter in the ctenidium and whitish inner mantle of the giant clam, Tridacna squamosa, to augment exogenous Ca 2+ uptake and shell formation, respectively. Comp Biochem Physiol A Mol Integr Physiol 2020; 251:110811. [PMID: 33011226 DOI: 10.1016/j.cbpa.2020.110811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023]
Abstract
The fluted giant clam, Tridacna squamosa, can perform light-enhanced shell formation, aided by its symbiotic dinoflagellates (Symbiodinium, Cladocopium, Durusdinium), which are able to donate organic nutrients to the host. During light-enhanced shell formation, increased Ca2+ transport from the hemolymph through the shell-facing epithelium of the inner mantle to the extrapallial fluid, where calcification occurs, is necessary. Additionally, there must be increased absorption of exogenous Ca2+ from the surrounding seawater, across the epithelial cells of the ctenidium (gill) into the hemolymph, to supply sufficient Ca2+ for light-enhanced shell formation. When Ca2+ moves across these epithelial cells, the low intracellular Ca2+ concentration must be maintained. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) regulates the intracellular Ca2+ concentration by pumping Ca2+ into the sarcoplasmic/endoplasmic reticulum (SR/ER) and Golgi apparatus. Indeed, the ctenidium and inner mantle of T. squamosa, expressed a homolog of SERCA (SERCA-like transporter) that consists of 3009 bp, encoding 1002 amino acids of 110.6 kDa. SERCA-like-immunolabeling was non-uniform in the cytoplasm of epithelial cells of ctenidial filaments, and that of the shell-facing epithelial cells of the inner mantle. Importantly, the protein abundance of SERCA-like increased significantly in the ctenidium and the inner mantle of T. squamosa after 12 h and 6 h, respectively, of light exposure. This would increase the capacity of pumping Ca2+ into the endoplasmic reticulum and avert a possible surge in the cytosolic Ca2+ concentration in epithelial cells of the ctenidial filaments during light-enhanced Ca2+ absorption, and in cells of the shell-facing epithelium of the inner mantle during light-enhanced shell formation.
Collapse
|
10
|
Kwan GT, Smith TR, Tresguerres M. Immunological characterization of two types of ionocytes in the inner ear epithelium of Pacific Chub Mackerel (Scomber japonicus). J Comp Physiol B 2020; 190:419-431. [PMID: 32468089 DOI: 10.1007/s00360-020-01276-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/20/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
The inner ear is essential for maintaining balance and hearing predator and prey in the environment. Each inner ear contains three CaCO3 otolith polycrystals, which are calcified within an alkaline, K+-rich endolymph secreted by the surrounding epithelium. However, the underlying cellular mechanisms are poorly understood, especially in marine fish. Here, we investigated the presence and cellular localization of several ion-transporting proteins within the saccular epithelium of the Pacific Chub Mackerel (Scomber japonicus). Western blotting revealed the presence of Na+/K+-ATPase (NKA), carbonic anhydrase (CA), Na+-K+-2Cl--co-transporter (NKCC), vacuolar-type H+-ATPase (VHA), plasma membrane Ca2+ ATPase (PMCA), and soluble adenylyl cyclase (sAC). Immunohistochemistry analysis identified two distinct ionocytes types in the saccular epithelium: Type-I ionocytes were mitochondrion-rich and abundantly expressed NKA and NKCC in their basolateral membrane, indicating a role in secreting K+ into the endolymph. On the other hand, Type-II ionocytes were enriched in cytoplasmic CA and VHA, suggesting they help transport HCO3- into the endolymph and remove H+. In addition, both types of ionocytes expressed cytoplasmic PMCA, which is likely involved in Ca2+ transport and homeostasis, as well as sAC, an evolutionary conserved acid-base sensing enzyme that regulates epithelial ion transport. Furthermore, CA, VHA, and sAC were also expressed within the capillaries that supply blood to the meshwork area, suggesting additional mechanisms that contribute to otolith calcification. This information improves our knowledge about the cellular mechanisms responsible for endolymph ion regulation and otolith formation, and can help understand responses to environmental stressors such as ocean acidification.
Collapse
Affiliation(s)
- Garfield T Kwan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Taylor R Smith
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA.
| |
Collapse
|
11
|
Tresguerres M, Clifford AM, Harter TS, Roa JN, Thies AB, Yee DP, Brauner CJ. Evolutionary links between intra- and extracellular acid-base regulation in fish and other aquatic animals. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:449-465. [PMID: 32458594 DOI: 10.1002/jez.2367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
The acid-base relevant molecules carbon dioxide (CO2 ), protons (H+ ), and bicarbonate (HCO3 - ) are substrates and end products of some of the most essential physiological functions including aerobic and anaerobic respiration, ATP hydrolysis, photosynthesis, and calcification. The structure and function of many enzymes and other macromolecules are highly sensitive to changes in pH, and thus maintaining acid-base homeostasis in the face of metabolic and environmental disturbances is essential for proper cellular function. On the other hand, CO2 , H+ , and HCO3 - have regulatory effects on various proteins and processes, both directly through allosteric modulation and indirectly through signal transduction pathways. Life in aquatic environments presents organisms with distinct acid-base challenges that are not found in terrestrial environments. These include a relatively high CO2 relative to O2 solubility that prevents internal CO2 /HCO3 - accumulation to buffer pH, a lower O2 content that may favor anaerobic metabolism, and variable environmental CO2 , pH and O2 levels that require dynamic adjustments in acid-base homeostatic mechanisms. Additionally, some aquatic animals purposely create acidic or alkaline microenvironments that drive specialized physiological functions. For example, acidifying mechanisms can enhance O2 delivery by red blood cells, lead to ammonia trapping for excretion or buoyancy purposes, or lead to CO2 accumulation to promote photosynthesis by endosymbiotic algae. On the other hand, alkalinizing mechanisms can serve to promote calcium carbonate skeletal formation. This nonexhaustive review summarizes some of the distinct acid-base homeostatic mechanisms that have evolved in aquatic organisms to meet the particular challenges of this environment.
Collapse
Affiliation(s)
- Martin Tresguerres
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Alexander M Clifford
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Till S Harter
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Jinae N Roa
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Angus B Thies
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Daniel P Yee
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Regulation of coral calcification by the acid-base sensing enzyme soluble adenylyl cyclase. Biochem Biophys Res Commun 2020; 525:576-580. [PMID: 32115151 DOI: 10.1016/j.bbrc.2020.02.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Coral calcification is intricately linked to the chemical composition of the fluid in the extracellular calcifying medium (ECM), which is situated between the calcifying cells and the skeleton. Here we demonstrate that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) is expressed in calcifying cells of the coral Stylophora pistillata. Furthermore, pharmacological inhibition of sAC in coral microcolonies resulted in acidification of the ECM as estimated by the pH-sensitive ratiometric indicator SNARF, and decreased calcification rates, as estimated by calcein labeling of crystal growth. These results indicate that sAC activity modulates some of the molecular machinery involved in producing the coral skeleton, which could include ion-transporting proteins and vesicular transport. To our knowledge this is the first study to directly demonstrate biological regulation of the alkaline pH of the coral ECM and its correlation with calcification.
Collapse
|
13
|
Sillanpää JK, Cardoso JCDR, Félix RC, Anjos L, Power DM, Sundell K. Dilution of Seawater Affects the Ca 2 + Transport in the Outer Mantle Epithelium of Crassostrea gigas. Front Physiol 2020; 11:1. [PMID: 32038307 PMCID: PMC6987452 DOI: 10.3389/fphys.2020.00001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/01/2020] [Indexed: 12/18/2022] Open
Abstract
Varying salinities of coastal waters are likely to affect the physiology and ion transport capabilities of calcifying marine organisms such as bivalves. To investigate the physiological effect of decreased environmental salinity in bivalves, adult oysters (Crassostrea gigas) were exposed for 14 days to 50% seawater (14) and the effects on mantle ion transport, electrophysiology and the expression of Ca2+ transporters and channels relative to animals maintained in full strength sea water (28) was evaluated. Exposure of oysters to a salinity of 14 decreased the active mantle transepithelial ion transport and specifically affected Ca2+ transfer. Gene expression of the Na+/K+-ATPase and the sarco(endo)plasmic reticulum Ca2+-ATPase was decreased whereas the expression of the T-type voltage-gated Ca channel and the Na+/Ca2+-exchanger increased compared to animals maintained in full SW. The results indicate that decreased environmental salinities will most likely affect not only osmoregulation but also bivalve biomineralization and shell formation.
Collapse
Affiliation(s)
- J Kirsikka Sillanpää
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Joao Carlos Dos Reis Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Rute Castelo Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Liliana Anjos
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Deborah Mary Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Kristina Sundell
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Melzner F, Mark FC, Seibel BA, Tomanek L. Ocean Acidification and Coastal Marine Invertebrates: Tracking CO 2 Effects from Seawater to the Cell. ANNUAL REVIEW OF MARINE SCIENCE 2020; 12:499-523. [PMID: 31451083 DOI: 10.1146/annurev-marine-010419-010658] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the last few decades, numerous studies have investigated the impacts of simulated ocean acidification on marine species and communities, particularly those inhabiting dynamic coastal systems. Despite these research efforts, there are many gaps in our understanding, particularly with respect to physiological mechanisms that lead to pathologies. In this review, we trace how carbonate system disturbances propagate from the coastal environment into marine invertebrates and highlight mechanistic links between these disturbances and organism function. We also point toward several processes related to basic invertebrate biology that are severely understudied and prevent an accurate understanding of how carbonate system dynamics influence organismic homeostasis and fitness-related traits. We recommend that significant research effort be directed to studying cellular phenotypes of invertebrates acclimated or adapted to elevated seawater pCO2 using biochemical and physiological methods.
Collapse
Affiliation(s)
- Frank Melzner
- Marine Ecology Research Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany;
| | - Felix C Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany;
| | - Brad A Seibel
- College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA;
| | - Lars Tomanek
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California 93407, USA;
| |
Collapse
|
15
|
Drake JL, Mass T, Stolarski J, Von Euw S, van de Schootbrugge B, Falkowski PG. How corals made rocks through the ages. GLOBAL CHANGE BIOLOGY 2020; 26:31-53. [PMID: 31696576 PMCID: PMC6942544 DOI: 10.1111/gcb.14912] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 05/03/2023]
Abstract
Hard, or stony, corals make rocks that can, on geological time scales, lead to the formation of massive reefs in shallow tropical and subtropical seas. In both historical and contemporary oceans, reef-building corals retain information about the marine environment in their skeletons, which is an organic-inorganic composite material. The elemental and isotopic composition of their skeletons is frequently used to reconstruct the environmental history of Earth's oceans over time, including temperature, pH, and salinity. Interpretation of this information requires knowledge of how the organisms formed their skeletons. The basic mechanism of formation of calcium carbonate skeleton in stony corals has been studied for decades. While some researchers consider coral skeletons as mainly passive recorders of ocean conditions, it has become increasingly clear that biological processes play key roles in the biomineralization mechanism. Understanding the role of the animal in living stony coral biomineralization and how it evolved has profound implications for interpreting environmental signatures in fossil corals to understand past ocean conditions. Here we review historical hypotheses and discuss the present understanding of how corals evolved and how their skeletons changed over geological time. We specifically explain how biological processes, particularly those occurring at the subcellular level, critically control the formation of calcium carbonate structures. We examine the different models that address the current debate including the tissue-skeleton interface, skeletal organic matrix, and biomineralization pathways. Finally, we consider how understanding the biological control of coral biomineralization is critical to informing future models of coral vulnerability to inevitable global change, particularly increasing ocean acidification.
Collapse
Affiliation(s)
- Jeana L Drake
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Stanislas Von Euw
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | | | - Paul G Falkowski
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
- Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
16
|
Neder M, Laissue PP, Akiva A, Akkaynak D, Albéric M, Spaeker O, Politi Y, Pinkas I, Mass T. Mineral formation in the primary polyps of pocilloporoid corals. Acta Biomater 2019; 96:631-645. [PMID: 31302296 DOI: 10.1016/j.actbio.2019.07.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
In reef-building corals, larval settlement and its rapid calcification provides a unique opportunity to study the bio-calcium carbonate formation mechanism involving skeleton morphological changes. Here we investigate the mineral formation of primary polyps, just after settlement, in two species of the pocilloporoid corals: Stylophora pistillata (Esper, 1797) and Pocillopora acuta (Lamarck, 1816). We show that the initial mineral phase is nascent Mg-Calcite, with rod-like morphology in P. acuta, and dumbbell morphology in S. pistillata. These structures constitute the first layer of the basal plate which is comparable to Rapid Accretion Deposits (Centers of Calcification, CoC) in adult coral skeleton. We found also that the rod-like/dumbbell Mg-Calcite structures in subsequent growth step will merge into larger aggregates by deposition of aragonite needles. Our results suggest that a biologically controlled mineralization of initial skeletal deposits occurs in three steps: first, vesicles filled with divalent ions are formed intracellularly. These vesicles are then transferred to the calcification site, forming nascent Mg-Calcite rod/pristine dumbbell structures. During the third step, aragonite crystals develop between these structures forming spherulite-like aggregates. STATEMENT OF SIGNIFICANCE: Coral settlement and recruitment periods are highly sensitive to environmental conditions. Successful mineralization during these periods is vital and influences the coral's chances of survival. Therefore, understanding the exact mechanism underlying carbonate precipitation is highly important. Here, we used in vivo microscopy, spectroscopy and molecular methods to provide new insights into mineral development. We show that the primary polyp's mineral arsenal consists of two types of minerals: Mg-Calcite and aragonite. In addition, we provide new insights into the ion pathway by showing that divalent ions are concentrated in intracellular vesicles and are eventually deposited at the calcification site.
Collapse
Affiliation(s)
- Maayan Neder
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel; The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel
| | | | - Anat Akiva
- Laboratory of Materials and Interface Chemistry and Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Derya Akkaynak
- The Interuniversity Institute of Marine Sciences, Eilat 88103, Israel; Department of Marine Technologies, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel
| | - Marie Albéric
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Oliver Spaeker
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Yael Politi
- Max-Planck Institute of Colloids and Interfaces, Potsdam-Golm 14476, Germany
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Tali Mass
- Department of Marine Biology, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa 3498838, Israel.
| |
Collapse
|
17
|
Singh V, Mishra VN, Chaurasia RN, Joshi D, Pandey V. Modes of Calcium Regulation in Ischemic Neuron. Indian J Clin Biochem 2019; 34:246-253. [PMID: 31391713 PMCID: PMC6660593 DOI: 10.1007/s12291-019-00838-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Calcium (Ca2+) dysregulation is a major catalytic event. Ca2+ dysregulation leads to neuronal cell death and brain damage result in cerebral ischemia. Neurons are unable in maintaining calcium homeostasis. Ca2+ homeostasis imbalance results in increased calcium influx and impaired calcium extrusion across the plasma membrane. Ca2+ dysregulation is mediated by different cellular and biochemical mechanism, which leads to neuronal loss resulting stroke/cerebral ischemia. A better understanding of the Ca2+ dysregulation might help in the development of new treatments in order to reduce ischemic brain injury. An optimal concentration of Ca2+ does not lead to neurotoxicity in the ischemic neuron. Intracellular Ca2+ act as a trigger for acute neurotoxicity and this cause induction of long-lasting processes leading to necrotic and/or apoptotic post-ischemic delayed neuronal death or of compensatory, neuroprotective mechanisms has increased considerably. Moreover, routes of ischemic Ca2+ influx to neurons, involvement of intracellular Ca2+ stores and Ca2+ buffers, spatial and temporal relations between ischemia-induced increases in intracellular Ca2+ concentration and neurotoxicity will further increase our understanding about underlying mechanism and they can act as a target for the development of drugs. Here, in our article we are trying to provide a brief overview of various Ca2+ influx pathways involve in ischemic neuron and how ischemic neuron attempts to counterbalance this calcium overload.
Collapse
Affiliation(s)
- Vineeta Singh
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Vijaya Nath Mishra
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Deepika Joshi
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| | - Vibha Pandey
- Department of Neurology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005 UP India
| |
Collapse
|
18
|
Ramesh K, Yarra T, Clark MS, John U, Melzner F. Expression of calcification-related ion transporters during blue mussel larval development. Ecol Evol 2019; 9:7157-7172. [PMID: 31380040 PMCID: PMC6662379 DOI: 10.1002/ece3.5287] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 01/03/2023] Open
Abstract
The physiological processes driving the rapid rates of calcification in larval bivalves are poorly understood. Here, we use a calcification substrate-limited approach (low dissolved inorganic carbon, C T) and mRNA sequencing to identify proteins involved in bicarbonate acquisition during shell formation. As a secondary approach, we examined expression of ion transport and shell matrix proteins (SMPs) over the course of larval development and shell formation. We reared four families of Mytilus edulis under ambient (ca. 1865 µmol/kg) and low C T (ca. 941 µmol/kg) conditions and compared expression patterns at six developmental time points. Larvae reared under low C T exhibited a developmental delay, and a small subset of contigs was differentially regulated between ambient and low C T conditions. Of particular note was the identification of one contig encoding an anion transporter (SLC26) which was strongly upregulated (2.3-2.9 fold) under low C T conditions. By analyzing gene expression profiles over the course of larval development, we are able to isolate sequences encoding ion transport and SMPs to enhance our understanding of cellular pathways underlying larval calcification processes. In particular, we observe the differential expression of contigs encoding SLC4 family members (sodium bicarbonate cotransporters, anion exchangers), calcium-transporting ATPases, sodium/calcium exchangers, and SMPs such as nacrein, tyrosinase, and transcripts related to chitin production. With a range of candidate genes, this work identifies ion transport pathways in bivalve larvae and by applying comparative genomics to investigate temporal expression patterns, provides a foundation for further studies to functionally characterize the proteins involved in larval calcification.
Collapse
Affiliation(s)
- Kirti Ramesh
- GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
- Department of Biological and Environmental Sciences, Sven Lovén Centre for Marine Infrastructure‐KristinebergUniversity of GothenburgFiskebäckskilSweden
| | - Tejaswi Yarra
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
- Ashworth Laboratories, Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Melody S. Clark
- British Antarctic SurveyNatural Environment Research CouncilCambridgeUK
| | - Uwe John
- Ecological ChemistryAlfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐und MeeresforschungBremerhavenGermany
- Helmholtz‐Institute for Functional Marine BiodiversityOldenburgGermany
| | - Frank Melzner
- GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
| |
Collapse
|
19
|
Correction: A vesicular Na+/Ca2+ exchanger in coral calcifying cells. PLoS One 2018; 13:e0209734. [PMID: 30566515 PMCID: PMC6300259 DOI: 10.1371/journal.pone.0209734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|