1
|
Xu Y, Li Q, Pan M, Jia X, Wang W, Guo Q, Luan L. Interpretable machine learning models for predicting short-term prognosis in AChR-Ab+ generalized myasthenia gravis using clinical features and systemic inflammation index. Front Neurol 2024; 15:1459555. [PMID: 39445190 PMCID: PMC11496189 DOI: 10.3389/fneur.2024.1459555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Background Myasthenia Gravis (MG) is an autoimmune disease that causes muscle weakness in 80% of patients, most of whom test positive for anti-acetylcholine receptor (AChR) antibodies (AChR-Abs). Predicting and improving treatment outcomes are necessary due to varying responses, ranging from complete relief to minimal improvement. Objective Our study aims to develop and validate an interpretable machine learning (ML) model that integrates systemic inflammation indices with traditional clinical indicators. The goal is to predict the short-term prognosis (after 6 months of treatment) of AChR-Ab+ generalized myasthenia gravis (GMG) patients to guide personalized treatment strategies. Methods We performed a retrospective analysis on 202 AChR-Ab+ GMG patients, dividing them into training and external validation cohorts. The primary outcome of this study was the Myasthenia Gravis Foundation of America (MGFA) post-intervention status assessed after 6 months of treatment initiation. Prognoses were classified as "unchanged or worse" for a poor outcome and "improved or better" for a good outcome. Accordingly, patients were categorized into "good outcome" or "poor outcome" groups. In the training cohort, we developed and internally validated various ML models using systemic inflammation indices, clinical indicators, or a combination of both. We then carried out external validation with the designated cohort. Additionally, we assessed the feature importance of our most effective model using the Shapley Additive Explanations (SHAP) method. Results In our study of 202 patients, 28.7% (58 individuals) experienced poor outcomes after 6 months of standard therapy. We identified 11 significant predictors, encompassing both systemic inflammation indexes and clinical metrics. The extreme gradient boosting (XGBoost) model demonstrated the best performance, achieving an area under the receiver operating characteristic (ROC) curve (AUC) of 0.944. This was higher than that achieved by logistic regression (Logit) (AUC: 0.882), random forest (RF) (AUC: 0.917), support vector machines (SVM) (AUC: 0.872). Further refinement through SHAP analysis highlighted five critical determinants-two clinical indicators and three inflammation indexes-as crucial for assessing short-term prognosis in AChR-Ab+ GMG patients. Conclusion Our analysis confirms that the XGBoost model, integrating clinical indicators with systemic inflammation indexes, effectively predicts short-term prognosis in AChR-Ab+ GMG patients. This approach enhances clinical decision-making and improves patient outcomes.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Neurology, Nanjing Jiangbei Hospital, Nanjing, China
| | - Qi Li
- Department of Neurology, Nanjing Jiangbei Hospital, Nanjing, China
| | - Meng Pan
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Jia
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenbin Wang
- Department of Neurology, Nanjing Jiangbei Hospital, Nanjing, China
| | - Qiqi Guo
- Department of Neurology, Nanjing Jiangbei Hospital, Nanjing, China
| | - Liqin Luan
- Department of Neurology, Nanjing Jiangbei Hospital, Nanjing, China
| |
Collapse
|
2
|
Liu H, Liu G, Guo R, Li S, Chang T. Identification of Potential Key Genes for the Comorbidity of Myasthenia Gravis With Thymoma by Integrated Bioinformatics Analysis and Machine Learning. Bioinform Biol Insights 2024; 18:11779322241281652. [PMID: 39345724 PMCID: PMC11437577 DOI: 10.1177/11779322241281652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Background Thymoma is a key risk factor for myasthenia gravis (MG). The purpose of our study was to investigate the potential key genes responsible for MG patients with thymoma. Methods We obtained MG and thymoma dataset from GEO database. Differentially expressed genes (DEGs) were determined and functional enrichment analyses were conducted by R packages. Weighted gene co-expression network analysis (WGCNA) was used to screen out the crucial module genes related to thymoma. Candidate genes were obtained by integrating DEGs of MG and module genes. Subsequently, we identified several candidate key genes by machine learning for diagnosing MG patients with thymoma. The nomogram and receiver operating characteristics (ROC) curves were applied to assess the diagnostic value of candidate key genes. Finally, we investigated the infiltration of immunocytes and analyzed the relationship among key genes and immune cells. Results We obtained 337 DEGs in MG dataset and 2150 DEGs in thymoma dataset. Biological function analyses indicated that DEGs of MG and thymoma were enriched in many common pathways. Black module (containing 207 genes) analyzed by WGCNA was considered as the most correlated with thymoma. Then, 12 candidate genes were identified by intersecting with MG DEGs and thymoma module genes as potential causes of thymoma-associated MG pathogenesis. Furthermore, five candidate key genes (JAM3, MS4A4A, MS4A6A, EGR1, and FOS) were screened out through integrating least absolute shrinkage and selection operator (LASSO) regression and Random forest (RF). The nomogram and ROC curves (area under the curve from 0.833 to 0.929) suggested all five candidate key genes had high diagnostic values. Finally, we found that five key genes and immune cell infiltrations presented varying degrees of correlation. Conclusions Our study identified five key potential pathogenic genes that predisposed thymoma to the development of MG, which provided potential diagnostic biomarkers and promising therapeutic targets for MG patients with thymoma.
Collapse
Affiliation(s)
- Hui Liu
- Department of Neurology, Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Geyu Liu
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Clinical Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuang Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Iacomino N, Tarasco MC, Berni A, Ronchi J, Mantegazza R, Cavalcante P, Foti M. Non-Coding RNAs in Myasthenia Gravis: From Immune Regulation to Personalized Medicine. Cells 2024; 13:1550. [PMID: 39329732 PMCID: PMC11430632 DOI: 10.3390/cells13181550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Myasthenia gravis (MG) is an antibody-mediated autoimmune disorder characterized by altered neuromuscular transmission, which causes weakness and fatigability in the skeletal muscles. The etiology of MG is complex, being associated with multiple genetic and environmental factors. Over recent years, progress has been made in understanding the immunological alterations implicated in the disease, but the exact pathogenesis still needs to be elucidated. A pathogenic interplay between innate immunity and autoimmunity contributes to the intra-thymic MG development. Epigenetic changes are critically involved in both innate and adaptive immune response regulation. They can act as (i) pathological factors besides genetic predisposition and (ii) co-factors contributing to disease phenotypes or patient-specific disease course/outcomes. This article reviews the role of non-coding RNAs (ncRNAs) as epigenetic factors implicated in MG. Particular attention is dedicated to microRNAs (miRNAs), whose expression is altered in MG patients' thymuses and circulating blood. The long ncRNA (lncRNA) contribution to MG, although not fully characterized yet, is also discussed. By summarizing the most recent and fast-growing findings on ncRNAs in MG, we highlight the therapeutic potential of these molecules for achieving immune regulation and their value as biomarkers for the development of personalized medicine approaches to improve disease care.
Collapse
Affiliation(s)
- Nicola Iacomino
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Maria Cristina Tarasco
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Alessia Berni
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Jacopo Ronchi
- Ph.D. Program in Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy;
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- BicOMICs, University of Milano-Bicocca, 20900 Monza, Italy
| | - Renato Mantegazza
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Paola Cavalcante
- Neurology 4–Neuroimmunology and Neuromuscolar Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (N.I.); (M.C.T.); (A.B.); (R.M.)
| | - Maria Foti
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- BicOMICs, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
4
|
Wang F, Mei X, Yang Y, Zhang H, Li Z, Zhu L, Deng S, Wang Y. Non-coding RNA and its network in the pathogenesis of Myasthenia Gravis. Front Mol Biosci 2024; 11:1388476. [PMID: 39318549 PMCID: PMC11420011 DOI: 10.3389/fmolb.2024.1388476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Myasthenia Gravis (MG) is a chronic autoimmune disease that primarily affects the neuromuscular junction, leading to muscle weakness in patients with this condition. Previous studies have identified several dysfunctions in thymus and peripheral blood mononuclear cells (PBMCs), such as the formation of ectopic germinal centers in the thymus and an imbalance of peripheral T helper cells and regulatory T cells, that contribute to the initiation and development of MG. Recent evidences suggest that noncoding RNA, including miRNA, lncRNA and circRNA may play a significant role in MG progression. Additionally, the network between these noncoding RNAs, such as the competing endogenous RNA regulatory network, has been found to be involved in MG progression. In this review, we summarized the roles of miRNA, lncRNA, and circRNA, highlighted their potential application as biomarkers in diagnosing MG, and discussed their potential regulatory networks in the abnormal thymus and PBMCs during MG development.
Collapse
Affiliation(s)
- Fuqiang Wang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Mei
- Department of Thoracic Surgery, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yunhao Yang
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlu Zhang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyang Li
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Zhu
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Senyi Deng
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Wang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Wang B, Zhu Y, Liu D, Hu C, Zhu R. The intricate dance of non-coding RNAs in myasthenia gravis pathogenesis and treatment. Front Immunol 2024; 15:1342213. [PMID: 38605954 PMCID: PMC11007667 DOI: 10.3389/fimmu.2024.1342213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Myasthenia gravis (MG) stands as a perplexing autoimmune disorder affecting the neuromuscular junction, driven by a multitude of antibodies targeting postsynaptic elements. However, the mystery of MG pathogenesis has yet to be completely uncovered, and its heterogeneity also challenges diagnosis and treatment. Growing evidence shows the differential expression of non-coding RNAs (ncRNAs) in MG has played an essential role in the development of MG in recent years. Remarkably, these aberrantly expressed ncRNAs exhibit distinct profiles within diverse clinical subgroups and among patients harboring various antibody types. Furthermore, they have been implicated in orchestrating the production of inflammatory cytokines, perturbing the equilibrium of T helper 1 cells (Th1), T helper 17 cells (Th17), and regulatory T cells (Tregs), and inciting B cells to generate antibodies. Studies have elucidated that certain ncRNAs mirror the clinical severity of MG, while others may hold therapeutic significance, showcasing a propensity to return to normal levels following appropriate treatments or potentially foretelling the responsiveness to immunosuppressive therapies. Notably, the intricate interplay among these ncRNAs does not follow a linear trajectory but rather assembles into a complex network, with competing endogenous RNA (ceRNA) emerging as a prominent hub in some cases. This comprehensive review consolidates the landscape of dysregulated ncRNAs in MG, briefly delineating their pivotal role in MG pathogenesis. Furthermore, it explores their promise as prospective biomarkers, aiding in the elucidation of disease subtypes, assessment of disease severity, monitoring therapeutic responses, and as novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Abstract
Myasthenia gravis (MG) is a neuromuscular autoimmune disorder characterized by chronic but intermittent fatigue of the eye- and general body muscles. Muscle weakness is caused primarily by the binding of an autoantibody to the acetylcholine receptors, resulting in blockage of normal neuromuscular signal transmission. Studies revealed substantial contributions of different proinflammatory or inflammatory mediators in the pathogenesis of MG. Despite these findings, compared to therapeutic approaches that target autoantibody and complements, only a few therapeutics against key inflammatory molecules have been designed or tested in MG clinical trials. Recent research focuses largely on identifying unknown molecular pathways and novel targets involved in inflammation associated with MG. A well-designed combination or adjunct treatment utilizing one or more selective and validated promising biomarkers of inflammation as a component of targeted therapy may yield better treatment outcomes. This review briefly discusses some preclinical and clinical findings of inflammation associated with MG and current therapy approaches and suggest the potential of targeting important inflammatory marker(s) along with current monoclonal antibody or antibody fragment based targeted therapies directed to a variety of cell surface receptors.
Collapse
|
7
|
Chan KYY, Chung PY, Zhang C, Poon ENY, Leung AWK, Leung KT. R4 RGS proteins as fine tuners of immature and mature hematopoietic cell trafficking. J Leukoc Biol 2022; 112:785-797. [PMID: 35694792 DOI: 10.1002/jlb.1mr0422-475r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Indexed: 11/08/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest and most diverse group of membrane receptors. They are involved in almost every physiologic process and consequently have a pivotal role in an extensive number of pathologies, including genetic, neurologic, and immune system disorders. Indeed, the vast array of GPCRs mechanisms have led to the development of a tremendous number of drug therapies and already account for about a third of marketed drugs. These receptors mediate their downstream signals primarily via G proteins. The regulators of G-protein signaling (RGS) proteins are now in the spotlight as the critical modulatory factors of active GTP-bound Gα subunits of heterotrimeric G proteins to fine-tune the biologic responses driven by the GPCRs. Also, they possess noncanonical functions by multiple mechanisms, such as protein-protein interactions. Essential roles and impacts of these RGS proteins have been revealed in physiology, including hematopoiesis and immunity, and pathologies, including asthma, cancers, and neurologic disorders. This review focuses on the largest subfamily of R4 RGS proteins and provides a brief overview of their structures and G-proteins selectivity. With particular interest, we explore and highlight, their expression in the hematopoietic system and the regulation in the engraftment of hematopoietic stem/progenitor cells (HSPCs). Distinct expression patterns of R4 RGS proteins in the hematopoietic system and their pivotal roles in stem cell trafficking pave the way for realizing new strategies for enhancing the clinical performance of hematopoietic stem cell transplantation. Finally, we discuss the exciting future trends in drug development by targeting RGS activity and expression with small molecules inhibitors and miRNA approaches.
Collapse
Affiliation(s)
- Kathy Yuen Yee Chan
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Po Yee Chung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ellen Ngar Yun Poon
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Alex Wing Kwan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Department of Paediatrics & Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, China
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
8
|
Xu Y, Ouyang Y. Long non-coding RNA growth arrest specific 5 regulates the T helper 17/regulatory T balance by targeting miR-23a in myasthenia gravis. J Int Med Res 2022; 50:3000605211053703. [PMID: 35707849 PMCID: PMC9208058 DOI: 10.1177/03000605211053703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/27/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Myasthenia gravis (MG) is a chronic autoimmune neuromuscular disorder. Recent studies report that long non-coding RNAs (lncRNAs) play vital roles in the pathogenesis of various diseases. This study explored the molecular mechanism of lncRNA growth arrest specific 5 (GAS5) in regulating the T helper 17 (Th17)/regulatory T (Treg) cell balance in MG. METHODS GAS5 and miR-23a expression levels were detected by quantitative reverse transcription polymerase chain reaction. Flow cytometry was performed to examine the proportion of Th17 and Treg cells in CD4+ T cells from MG patients. The interaction between GAS5 and miR-23a was verified by luciferase reporter and RNA immunoprecipitation assays. Levels of Th17 and Treg-related proteins were examined using western blots and enzyme-linked immunosorbent assays. RESULTS GAS5 expression levels were significantly decreased in the CD4+ T cells of MG patients, and GAS5 overexpression restrained Th17 differentiation in CD4+ T cells. Moreover, miR-23a was confirmed as a downstream target of GAS5 and negatively regulated by GAS5 through a direct interaction. Further exploration showed that GAS5 can inhibit Th17 differentiation by downregulating miR-23a. CONCLUSION Collectively, our results indicate that GAS5 can regulate the Th17/Treg balance by targeting miR-23a expression, providing a scientific basis for clinical therapeutic development for MG.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, P. R. China
| | - Yiqun Ouyang
- Department of Emergency, The Second Affiliated Hospital of Fujian Medical University, Quanzhou City, Fujian Province, P. R. China
| |
Collapse
|
9
|
Payet CA, You A, Fayet OM, Dragin N, Berrih-Aknin S, Le Panse R. Myasthenia Gravis: An Acquired Interferonopathy? Cells 2022; 11:cells11071218. [PMID: 35406782 PMCID: PMC8997999 DOI: 10.3390/cells11071218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/12/2023] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease mediated by antibodies against components of the neuromuscular junction, particularly the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG patients. In early-onset AChR-MG and thymoma-associated MG, an interferon type I (IFN-I) signature is clearly detected in the thymus. The origin of this chronic IFN-I expression in the thymus is not yet defined. IFN-I subtypes are normally produced in response to viral infection. However, genetic diseases called interferonopathies are associated with an aberrant chronic production of IFN-I defined as sterile inflammation. Some systemic autoimmune diseases also share common features with interferonopathies. This review aims to analyze the pathogenic role of IFN-I in these diseases as compared to AChR-MG in order to determine if AChR-MG could be an acquired interferonopathy.
Collapse
Affiliation(s)
- Cloé A Payet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Axel You
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Odessa-Maud Fayet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Nadine Dragin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
10
|
Ghafouri-Fard S, Azimi T, Hussen BM, Taheri M, Jalili Khoshnoud R. A Review on the Role of Non-Coding RNAs in the Pathogenesis of Myasthenia Gravis. Int J Mol Sci 2021; 22:12964. [PMID: 34884767 PMCID: PMC8657981 DOI: 10.3390/ijms222312964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/27/2021] [Accepted: 11/28/2021] [Indexed: 01/10/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune condition related to autoantibodies against certain proteins in the postsynaptic membranes in the neuromuscular junction. This disorder has a multifactorial inheritance. The connection between environmental and genetic factors can be established by epigenetic factors, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). XLOC_003810, SNHG16, IFNG-AS1, and MALAT-1 are among the lncRNAs with a possible role in the pathoetiology of MG. Moreover, miR-150-5p, miR-155, miR-146a-5p, miR-20b, miR-21-5p, miR-126, let-7a-5p, and let-7f-5p are among miRNAs whose roles in the pathogenesis of MG has been assessed. In the current review, we summarize the impact of miRNAs and lncRNAs in the development or progression of MG.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Tahereh Azimi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran;
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq;
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany
| | - Reza Jalili Khoshnoud
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19835-35511, Iran
| |
Collapse
|
11
|
Construction of a TF-miRNA-gene feed-forward loop network predicts biomarkers and potential drugs for myasthenia gravis. Sci Rep 2021; 11:2416. [PMID: 33510225 PMCID: PMC7843995 DOI: 10.1038/s41598-021-81962-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease and the most common type of neuromuscular disease. Genes and miRNAs associated with MG have been widely studied; however, the molecular mechanisms of transcription factors (TFs) and the relationship among them remain unclear. A TF–miRNA–gene network (TMGN) of MG was constructed by extracting six regulatory pairs (TF–miRNA, miRNA–gene, TF–gene, miRNA–TF, gene–gene and miRNA–miRNA). Then, 3/4/5-node regulatory motifs were detected in the TMGN. Then, the motifs with the highest Z-score, occurring as 3/4/5-node composite feed-forward loops (FFLs), were selected as statistically significant motifs. By merging these motifs together, we constructed a 3/4/5-node composite FFL motif-specific subnetwork (CFMSN). Then, pathway and GO enrichment analyses were performed to further elucidate the mechanism of MG. In addition, the genes, TFs and miRNAs in the CFMSN were also utilized to identify potential drugs. Five related genes, 3 TFs and 13 miRNAs, were extracted from the CFMSN. As the most important TF in the CFMSN, MYC was inferred to play a critical role in MG. Pathway enrichment analysis showed that the genes and miRNAs in the CFMSN were mainly enriched in pathways related to cancer and infections. Furthermore, 21 drugs were identified through the CFMSN, of which estradiol, estramustine, raloxifene and tamoxifen have the potential to be novel drugs to treat MG. The present study provides MG-related TFs by constructing the CFMSN for further experimental studies and provides a novel perspective for new biomarkers and potential drugs for MG.
Collapse
|
12
|
Cron MA, Payet CA, Fayet OM, Maillard S, Truffault F, Fadel E, Guihaire J, Berrih-Aknin S, Liston A, Le Panse R. Decreased expression of miR-29 family associated with autoimmune myasthenia gravis. J Neuroinflammation 2020; 17:294. [PMID: 33032631 PMCID: PMC7545844 DOI: 10.1186/s12974-020-01958-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background Myasthenia gravis (MG) is a rare autoimmune disease mainly mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. The thymus is the effector organ, and its removal alleviates the symptoms of the disease. In the early-onset form of MG, the thymus displays functional and morphological abnormalities such as B cell infiltration leading to follicular hyperplasia, and the production of AChR antibodies. Type-I interferon (IFN-I), especially IFN-β, is the orchestrator of thymic changes observed in MG. As Dicer and miR-29 subtypes play a role in modulating the IFN-I signalization in mouse thymus, we investigated their expression in MG thymus. Methods The expression of DICER and miR-29 subtypes were thoroughly investigated by RT-PCR in human control and MG thymuses, and in thymic epithelial cells (TECs). Using miR-29a/b-1-deficient mice, with lower miR-29a/b-1 expression, we investigated their susceptibility to experimental autoimmune MG (EAMG) as compared to wild-type mice. Results DICER mRNA and all miR-29 subtypes were down-regulated in the thymus of MG patients and DICER expression was correlated with the lower expression of miR-29a-3p. A decreased expression of miR-29 subtypes was similarly observed in MG TECs; a decrease also induced in TECs upon IFN-β treatment. We demonstrated that miR-29a/b-1-deficient mice were more susceptible to EAMG without higher levels of anti-AChR IgG subtypes. In the thymus, if no B cell infiltration was observed, an increased expression of Ifn-β associated with Baff expression and the differentiation of Th17 cells associated with increased expression of Il-6, Il-17a and Il-21 and decreased Tgf-β1 mRNA were demonstrated in miR-29a/b-1-deficient EAMG mice. Conclusions It is not clear if the decreased expression of miR-29 subtypes in human MG is a consequence or a causative factor of thymic inflammation. However, our results from the EAMG mouse model indicated that a reduction in miR-29a/b1 may contribute to the pathophysiological process involved in MG by favoring the increased expression of IFN-β and the emergence of pro-inflammatory Th17 cells.
Collapse
Affiliation(s)
- Mélanie A Cron
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology, UMRS 974, Paris, France
| | - Cloé A Payet
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology, UMRS 974, Paris, France
| | - Odessa-Maud Fayet
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology, UMRS 974, Paris, France
| | - Solène Maillard
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology, UMRS 974, Paris, France
| | - Frédérique Truffault
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology, UMRS 974, Paris, France
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Julien Guihaire
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Sonia Berrih-Aknin
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology, UMRS 974, Paris, France
| | - Adrian Liston
- VIB Center for Brain and Disease Research, KU Leuven-University of Leuven, Leuven, Belgium.,Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Rozen Le Panse
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology, UMRS 974, Paris, France.
| |
Collapse
|
13
|
Punga AR, Kusner L, Berrih-Aknin S, Le Panse R. Editorial: Advances in Autoimmune Myasthenia Gravis. Front Immunol 2020; 11:1688. [PMID: 32983085 PMCID: PMC7484602 DOI: 10.3389/fimmu.2020.01688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Linda Kusner
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
14
|
Cron MA, Guillochon É, Kusner L, Le Panse R. Role of miRNAs in Normal and Myasthenia Gravis Thymus. Front Immunol 2020; 11:1074. [PMID: 32587589 PMCID: PMC7297979 DOI: 10.3389/fimmu.2020.01074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
The thymus, a primary lymphoid organ, provides a complex environment essential for the generation of the T-cell repertoire. Thymic alterations occur during life either in the context of thymic involution upon aging or the pathophysiological context of Myasthenia Gravis (MG). These changes involve complicated regulatory networks, in which microRNAs (miRNAs) are key players. Here, we analyzed the role of miRNAs in thymocyte maturation and differentiation sustained by thymic epithelial cells. We compared data from the literature regarding the role of mouse thymic miRNAs and original data obtained from a human thymic miRnome study. We identified a set of highly expressed miRNAs defined as ThymiRs and investigated miRNA expression in infants as compared to adults to determine those associated with human thymic involution. Thymic changes are also frequently observed in MG, an autoimmune disease which results in the production of anti-acetylcholine receptor (AChR) antibodies that lead to muscle weaknesses. Alterations such as thymoma in late-onset MG patients and hyperplasia with ectopic germinal centers (GCs) in early-onset (EOMG) patients are found. Thymic miRNA expression has been studied in AChR-MG patients both in thymoma-associated MG (TAMG) and EOMG, and their function through their mRNA targets investigated. Most of the dysregulated thymic miRNAs in EOMG are associated with GC development, such as miR-7, miR-24, miR-139, miR-143, miR-145, miR-146, miR-150, miR-452, miR-548 or thymic inflammation, such as miR-125b, miR-146, or miR-29. Understanding these pathways may provide therapeutic targets or biomarkers of disease manifestations.
Collapse
Affiliation(s)
- Mélanie A Cron
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Émilie Guillochon
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Linda Kusner
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
15
|
Wang L, Zhang L. Emerging Roles of Dysregulated MicroRNAs in Myasthenia Gravis. Front Neurosci 2020; 14:507. [PMID: 32508584 PMCID: PMC7253668 DOI: 10.3389/fnins.2020.00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/22/2020] [Indexed: 01/03/2023] Open
Abstract
Myasthenia gravis (MG) is a rare acquired autoimmune neuromuscular disease. Autoantibodies, cellular immunity, complement, and cytokines are involved in the pathogenesis of MG. It is characterized by the dysfunction of neuromuscular junction transmission and skeletal muscle weakness. MicroRNAs (miRNAs) are non-coding small molecule ribonucleic acids that regulate various biological processes (e.g., development, differentiation, and immunity) at the transcriptional and post-transcriptional levels of gene expression. miRNAs play an important regulatory role in the pathogenesis of autoimmune diseases, including MG. In recent studies, the functional mechanisms underlying the role of miRNAs in the pathogenesis of MG have received increasing attention. miRNAs are highly stable and have high specificity in peripheral body fluids. Therefore, the miRNAs in body fluids may represent promising biomarkers for determining the prognosis of MG and the efficacy of treatment. This article reviews the role of miRNAs in the pathogenesis of MG, highlights the potential of miRNAs as new biomarkers for the diagnosis of MG, and deepens our understanding of disease processes.
Collapse
Affiliation(s)
- Lin Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lijuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Sabre L, Punga T, Punga AR. Circulating miRNAs as Potential Biomarkers in Myasthenia Gravis: Tools for Personalized Medicine. Front Immunol 2020; 11:213. [PMID: 32194544 PMCID: PMC7065262 DOI: 10.3389/fimmu.2020.00213] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by antibodies which attack receptors at the neuromuscular junction. One of the main difficulties in predicting the clinical course of MG is the heterogeneity of the disease, where disease progression differs greatly depending on the subgroup that the patient is classified into. MG subgroups are classified according to: age of onset [early-onset MG (EOMG; onset ≤ 50 years) versus late-onset MG (LOMG; onset > 50 years]; the presence of a thymoma (thymoma-associated MG); antibody subtype [acetylcholine receptor antibody seropositive (AChR+) and muscle-specific tyrosine kinase antibody seropositive (MuSK+)]; as well as clinical subtypes (ocular versus generalized MG). The diagnostic tests for MG, such as antibody titers, neurophysiological tests, and objective clinical fatigue score, do not necessarily reflect disease progression. Hence, there is a great need for reliable objective biomarkers in MG to follow the disease course as well as the individualized response to therapy toward personalized medicine. In this regard, circulating microRNAs (miRNAs) have emerged as promising potential biomarkers due to their accessibility in body fluids and unique profiles in different diseases, including autoimmune disorders. Several studies on circulating miRNAs in MG subtypes have revealed specific miRNA profiles in patients’ sera. In generalized AChR+ EOMG, miR-150-5p and miR-21-5p are the most elevated miRNAs, with lower levels observed upon treatment with immunosuppression and thymectomy. In AChR+ generalized LOMG, the miR-150-5p, miR-21-5p, and miR-30e-5p levels are elevated and decrease in accordance with the clinical response after immunosuppression. In ocular MG, higher levels of miR-30e-5p discriminate patients who will later generalize from those remaining ocular. In contrast, in MuSK+ MG, the levels of the let-7 miRNA family members are elevated. Studies of circulating miRNA profiles in Lrp4 or agrin antibody-seropositive MG are still lacking. This review summarizes the present knowledge of circulating miRNAs in different subgroups of MG.
Collapse
Affiliation(s)
- Liis Sabre
- Department of Neurology and Neurosurgery, University of Tartu, Tartu, Estonia.,Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Wang J, Cao Y, Lu X, Wang X, Kong X, Bo C, Li S, Bai M, Jiao Y, Gao H, Yao X, Ning S, Wang L, Zhang H. Identification of the Regulatory Role of lncRNA SNHG16 in Myasthenia Gravis by Constructing a Competing Endogenous RNA Network. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1123-1133. [PMID: 32059338 PMCID: PMC7016163 DOI: 10.1016/j.omtn.2020.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/27/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder resulting from antibodies against the proteins at the neuromuscular junction. Emerging evidence indicates that long non-coding RNAs (lncRNAs), acting as competing endogenous RNAs (ceRNAs), are involved in various diseases. However, the regulatory mechanisms of ceRNAs underlying MG remain largely unknown. In this study, we constructed a lncRNA-mediated ceRNA network involved in MG using a multi-step computational strategy. Functional annotation analysis suggests that these lncRNAs may play crucial roles in the immunological mechanism underlying MG. Importantly, through manual literature mining, we found that lncRNA SNHG16 (small nucleolar RNA host gene 16), acting as a ceRNA, plays important roles in the immune processes. Further experiments showed that SNHG16 expression was upregulated in peripheral blood mononuclear cells (PBMCs) from MG patients compared to healthy controls. Luciferase reporter assays confirmed that SNHG16 is a target of the microRNA (miRNA) let-7c-5p. Subsequent experiments indicated that SNHG16 regulates the expression of the key MG gene interleukin (IL)-10 by sponging let-7c-5p in a ceRNA manner. Furthermore, functional assays showed that SNHG16 inhibits Jurkat cell apoptosis and promotes cell proliferation by sponging let-7c-5p. Our study will contribute to a deeper understanding of the regulatory mechanism of MG and will potentially provide new therapeutic targets for MG patients.
Collapse
Affiliation(s)
- Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yuze Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China; Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xiaolong Wang
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin 150000, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Ming Bai
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Yang Jiao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Hongyu Gao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xiuhua Yao
- Tianjin Neurosurgical Institute, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
18
|
Identifying the culprits in neurological autoimmune diseases. J Transl Autoimmun 2019; 2:100015. [PMID: 32743503 PMCID: PMC7388404 DOI: 10.1016/j.jtauto.2019.100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022] Open
Abstract
The target organ of neurological autoimmune diseases (NADs) is the central or peripheral nervous system. Multiple sclerosis (MS) is the most common NAD, whereas Guillain-Barré syndrome (GBS), myasthenia gravis (MG), and neuromyelitis optica (NMO) are less common NADs, but the incidence of these diseases has increased exponentially in the last few years. The identification of a specific culprit in NADs is challenging since a myriad of triggering factors interplay with each other to cause an autoimmune response. Among the factors that have been associated with NADs are genetic susceptibility, epigenetic mechanisms, and environmental factors such as infection, microbiota, vitamins, etc. This review focuses on the most studied culprits as well as the mechanisms used by these to trigger NADs. Neurological autoimmune diseases are caused by a complex interaction between genes, environmental factors, and epigenetic deregulation. Infectious agents can cause an autoimmune reaction to myelin epitopes through molecular mimicry and/or bystander activation. Gut microbiota dysbiosis contributes to neurological autoimmune diseases. Smoking increases the risk of NADs through inflammatory signaling pathways, oxidative stress, and Th17 differentiation. Deficiency in vitamin D favors NAD development through direct damage to the central and peripheral nervous system.
Collapse
|