1
|
Ceballos R, Palma-Millanao R, Navarro PD, Urzúa J, Alveal J. Positive Chemotaxis of the Entomopathogenic Nematode Steinernema australe (Panagrolaimorpha: Steinenematidae) towards High-Bush Blueberry ( Vaccinium corymbosum) Root Volatiles. Int J Mol Sci 2023; 24:10536. [PMID: 37445712 DOI: 10.3390/ijms241310536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 07/15/2023] Open
Abstract
The foraging behavior of the infective juveniles (IJs) of entomopathogenic nematodes (EPNs) relies on host-derived compounds, but in a tri-trophic context, herbivore-induced root volatiles act as signals enhancing the biological control of insect pests by recruiting EPNs. In southern Chile, the EPN Steinernema australe exhibits the potential to control the raspberry weevil, Aegorhinus superciliosus, a key pest of blueberry Vaccinium corymbosum. However, there is no information on the quality of the blueberry root volatile plume or the S. australe response to these chemicals as putative attractants. Here, we describe the root volatile profile of blueberries and the chemotaxis behavior of S. australe towards the volatiles identified from Vaccinium corymbosum roots, infested or uninfested with A. superciliosus larvae. Among others, we found linalool, α-terpineol, limonene, eucalyptol, 2-carene, 1-nonine, 10-undecyn-1-ol, and methyl salicylate in root volatiles and, depending on the level of the emissions, they were selected for bioassays. In the dose-response tests, S. australe was attracted to all five tested concentrations of methyl salicylate, 1-nonine, α-terpineol, and 2-carene, as well as to 100 µg mL-1 of 10-undecyn-1-ol, 0.1 and 100 µg mL-1 of linalool, and 100 µg mL-1 of limonene, whereas eucalyptol elicited no attraction or repellency. These results suggest that some volatiles released from damaged roots attract S. australe and may have implications for the biocontrol of subterranean pests.
Collapse
Affiliation(s)
- Ricardo Ceballos
- Laboratory of Insects Chemical Ecology, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3800062, Chile
| | - Rubén Palma-Millanao
- Laboratory of Insects Science, Instituto de Investigaciones Agropecuarias, INIA Carillanca, Km 10, Camino Cajón-Vilcún, Temuco 4800000, Chile
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patricia D Navarro
- Laboratory of Insects Science, Instituto de Investigaciones Agropecuarias, INIA Carillanca, Km 10, Camino Cajón-Vilcún, Temuco 4800000, Chile
| | - Julio Urzúa
- Laboratory of Insects Chemical Ecology, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3800062, Chile
| | - Juan Alveal
- Laboratory of Insects Chemical Ecology, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3800062, Chile
| |
Collapse
|
2
|
Gaffke AM, Shapiro-Ilan D, Alborn HT. Deadly scents: Exposure to plant volatiles increases mortality of entomopathogenic nematodes during infection. Front Physiol 2022; 13:978359. [PMID: 36187772 PMCID: PMC9518750 DOI: 10.3389/fphys.2022.978359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Plants attacked by insects commonly mobilize various defense mechanisms, including the biosynthesis and release of so-called herbivore-induced plant volatiles (HIPVs). Entomopathogenic nematodes (EPNs) can be attracted to these belowground HIPVs, which can enhance biocontrol services from EPNs. However, recent research has also demonstrated that HIPVs can induce and initiate insect immune responses, decreasing the insect’s susceptibility to pathogens and parasites. Therefore, experiments were conducted to test the impact of HIPVs on insects and EPNs during the initial stage of EPN infection. Compounds that can impact EPN attraction and infectivity such as pregeijerene, β-caryophyllene, and α-pinene, and compounds that have been determined to increase or decrease susceptibility of insects to pathogens, such as (Z)-3-hexenyl acetate, linalool, and β-ocimene, were selected. Exposure of Galleria mellonella larvae to pregeijerene, linalool, β-ocimene and α-pinene during invasion significantly increased mortality of Steinernema diaprepesi and Heterorhabditis bacteriophora after 48 h. Larval treatment with β-caryophyllene only increased mortality for Heterorhabditis bacteriophora. (Z)-3-hexenyl acetate did not cause differential mortality from the controls for either nematode species. In additional experiments, we found that EPNs exposed to α-pinene and linalool were more readily recognized by the insects’ immune cells compared to the control treatment, thus the observed increased mortality was likely due to HIPVs-EPN interactions with the insect’s immune system. These results show that the presence of HIPVs can impact EPN survival in the model host, G. mellonella.
Collapse
Affiliation(s)
- Alexander M. Gaffke
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, United States
- Department of Entomology, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Alexander M. Gaffke,
| | - David Shapiro-Ilan
- Southeastern Fruit and Tree Nut Research Station, Agricultural Research Service, United States Department of Agriculture, Byron, GA, United States
| | - Hans T. Alborn
- Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL, United States
| |
Collapse
|
3
|
Nascimento PT, Fadini MAM, Rocha MS, Souza CSF, Barros BA, Melo JOF, Von Pinho RG, Valicente FH. Olfactory response of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) to volatiles induced by transgenic maize. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:674-687. [PMID: 34130764 DOI: 10.1017/s0007485321000341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants not only respond to herbivorous damage but adjust their defense system after egg deposition by pest insects. Thereby, parasitoids use oviposition-induced plant volatiles to locate their hosts. We investigated the olfactory behavioral responses of Trichogramma pretiosum Riley, 1879 (Hymenoptera: Trichogrammatidae) to volatile blends emitted by maize (Zea mays L.) with singular and stacked events after oviposition by Spodoptera frugiperda Smith, 1797 (Hymenoptera: Trichogrammatidae) moths. Additionally, we examined possible variations in gene expression and on oviposition-induced volatiles. We used a Y-tube olfactometer to test for the wasp responses to volatiles released by maize plants oviposited by S. frugiperda and not-oviposited plants. Using the real-time PCR technique (qRT-PCR), we analyzed the expression of lipoxygenase and three terpene synthases genes, which are enzymes involved in the synthesis of volatile compounds that attract parasitoids of S. frugiperda. Olfactometer tests showed that T. pretiosum is strongly attracted by volatiles from transgenic maize emitted by S. frugiperda oviposition (VTPRO 3, more than 75% individuals were attracted). The relative expression of genes TPS10, LOX e STC was higher in transgenic hybrids than in the conventional (isogenic line) hybrids. The GC-MS analysis revealed that some volatile compounds are released exclusively by transgenic maize. This study provides evidence that transgenic hybrids enhanced chemical cues under oviposition-induction and helped to increase T. pretiosum efficiency in S. frugiperda control. This finding shows that among the evaluated hybrids, genetically modified hybrids can improve the biological control programs, since they potentialize the egg parasitoid foraging, integrating pest management.
Collapse
Affiliation(s)
| | - M A M Fadini
- Universidade Federal de São João del-Rei - UFSJ, São João del-Rei, Brasil
| | - M S Rocha
- Universidade Federal de São João del-Rei - UFSJ, São João del-Rei, Brasil
| | - C S F Souza
- Universidade Federal de Lavras - UFLA, Lavras, Brasil
| | - B A Barros
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Milho e Sorgo, Sete Lagoas, Brasil
| | - J O F Melo
- Universidade Federal de São João del-Rei - UFSJ, São João del-Rei, Brasil
| | - R G Von Pinho
- Universidade Federal de Lavras - UFLA, Lavras, Brasil
| | - F H Valicente
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Milho e Sorgo, Sete Lagoas, Brasil
| |
Collapse
|
4
|
Erdogan H, Cruzado-Gutierrez K, Stevens G, Shapiro-Ilan D, Kaplan F, Alborn H, Lewis E. Nematodes Follow a Leader. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.740351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aggregated movement and population structure are known in entomopathogenic nematodes, which are obligate insect parasites. Aggregation behavior in the absence of external stimuli suggests communication among individuals, often in the form of trail-following, which has not been shown by nematodes of any kind. Interactions among individuals are an essential basis of following behaviors and can have significant fitness consequences. We explored intraspecific and interspecific interactions among three Steinernema species (S. glaseri, S. carpocapsae, and S. feltiae) in terms of trail following, and fitness outcomes of following heterospecific individuals. We found that the following behavior is context dependent. Following behavior among conspecifics was significantly increased when the lead nematode had prior contact with host cuticle. However, we did not find a clear association between the following response to heterospecific IJs and their reproductive success in a co-infected host.
Collapse
|
5
|
Zhang X, Li L, Kesner L, Robert CAM. Chemical host-seeking cues of entomopathogenic nematodes. CURRENT OPINION IN INSECT SCIENCE 2021; 44:72-81. [PMID: 33866041 DOI: 10.1016/j.cois.2021.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Entomopathogenic nematodes (EPNs) are obligate parasites that infect a broad range of insect species. Host-seeking is a crucial step for EPN infection success and survival. Yet, the identity and ecological functions of chemicals involved in host-seeking by EPNs remain overlooked. In this review, we report known CO2, plant-derived and insect-derived cues shaping EPN host-seeking and recognition. Despite species-specific response to environmental cues, we highlight a hierarchical integration of chemicals by EPNs. We further emphasize the impact of EPN selection pressure, age, and experience on their responsiveness to infochemicals. Finally, we feature that EPN chemical ecology can translate into powerful sustainable strategies to control insect herbivores in agriculture.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China.
| | - Lu Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lucie Kesner
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Christelle Aurélie Maud Robert
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland; Oeschger Centre for Climate Change Research (OCCR), University of Bern, Falkenplatz 16, 3012 Bern, Switzerland.
| |
Collapse
|
6
|
Koppenhöfer AM, Shapiro-Ilan DI, Hiltpold I. Entomopathogenic Nematodes in Sustainable Food Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00125] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
7
|
Oliveira-Hofman C, Kaplan F, Stevens G, Lewis E, Wu S, Alborn HT, Perret-Gentil A, Shapiro-Ilan DI. Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. J Invertebr Pathol 2019; 164:38-42. [PMID: 31034842 DOI: 10.1016/j.jip.2019.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 11/17/2022]
Abstract
Inconsistency in entomopathogenic nematode (EPN) efficacy is still one of the biggest challenges for the wider adoption of EPNs as biocontrol agents. Previous studies demonstrated that extracts from EPN-infected hosts enhance dispersal and efficacy, two key factors in success of EPNs. Some active components in the insect host cadavers responsible for dispersal, ascarosides, have been identified as nematode pheromones. We hypothesized that pheromone extracts increase dispersal of EPN infective juveniles (IJs) leading to increased efficacy. First, we determined whether pheromone extracts improved IJ movement/dispersal in soil columns baited with Tenebrio molitor larvae. We found that pheromone extracts induced higher numbers of Steinernema carpocapsae and Steinernema feltiae IJs to move towards T. molitor larvae in the bottom of the column compared to IJs treated with infected cadaver macerate and water, positive and negative controls, respectively. Furthermore, the number of S. carpocapsae IJs that invaded T. molitor larvae was higher for the pheromone extract treatment than the controls. S. feltiae IJs that were pretreated with pheromone extracts and macerate (positive control) infected T. molitor at the same rate but invasion was superior to IJs that were treated with water. Consistent with the soil column tests, both S. carpocapsae and S. feltiae IJs treated with pheromone extracts performed better in killing larvae of two economically important insect larvae, pecan weevil, Curculio caryae, and black soldier fly, Hermetia illucens, in greenhouse tests compared to IJs treated with water. We demonstrated pheromone-mediated behavioral manipulation of a biological control agent to enhance pest control potential. Conceivably, nematodes can be exposed to efficacy-enhancing pheromones prior to field application.
Collapse
Affiliation(s)
| | | | - Glen Stevens
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA
| | - Edwin Lewis
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA
| | | | - Hans T Alborn
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA
| | | | | |
Collapse
|
8
|
Shapiro-Ilan DI, Kaplan F, Oliveira-Hofman C, Schliekelman P, Alborn HT, Lewis EE. Conspecific pheromone extracts enhance entomopathogenic infectivity. J Nematol 2019. [DOI: 10.21307/jofnem-2019-082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|