1
|
Agostini S, Mancuso R, Citterio LA, Caputo D, Oreni L, Nuzzi R, Pasanisi MB, Rovaris M, Clerici M. Serum miR-34a-5p, miR-103a-3p, and miR-376a-3p as possible biomarkers of conversion from relapsing-remitting to secondary progressive multiple sclerosis. Neurobiol Dis 2024; 200:106648. [PMID: 39181188 DOI: 10.1016/j.nbd.2024.106648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024] Open
Abstract
Relapsing-remitting (RR) Multiple Sclerosis (MS) is the most common form of the disease; RRMS patients can maintain their clinical phenotype throughout life or can develop a secondary progressive (SP) course over time. We investigated whether circulating miRNAs can predict RR-to-SPMS conversion. A serum miRNAs profile was initially analyzed in a cross-sectional study by qPCR in 16 patients (8 RRMS and 8 SPMS) (Discovery cohort). Three miRNAs, i.e. miR-34a-5p, miR-103a-3p and miR-376a-3p, were significantly up-regulated in SPMS compared to RRMS patients (p < 0.0 5). Serum concentration of the same miRNAs was subsequently analyzed in a retrospective study by ddPCR at baseline in 69 RRMS patients who did (N = 36 cSPMS) or did not (N = 33) convert into SPMS over a 10-year observation period (Study cohort). The results showed that these miRNAs were significantly increased at baseline only in those RRMS patients who converted to SPMS over time. miR-34a-5p and miR-376a-3p alone were significantly increased in cSPMS sera at the end of the 10-years period too. Serum concentration of miR-34a-5p, miR-103a-3p and miR-376a-3p is increased in RRMS patients several years before their conversion to SPMS. These miRNAs might be useful biomarkers to predict the conversion from RRMS to SPMS.
Collapse
Affiliation(s)
| | | | | | | | - Letizia Oreni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | | - Marco Rovaris
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front Neurol 2024; 15:1385042. [PMID: 39148705 PMCID: PMC11325594 DOI: 10.3389/fneur.2024.1385042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Background Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Zagrebelsky M, Korte M. Are TrkB receptor agonists the right tool to fulfill the promises for a therapeutic value of the brain-derived neurotrophic factor? Neural Regen Res 2024; 19:29-34. [PMID: 37488840 PMCID: PMC10479861 DOI: 10.4103/1673-5374.374138] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 07/26/2023] Open
Abstract
Brain-derived neurotrophic factor signaling via its receptor tropomyosin receptor kinase B regulates several crucial physiological processes. It has been shown to act in the brain, promoting neuronal survival, growth, and plasticity as well as in the rest of the body where it is involved in regulating for instance aspects of the metabolism. Due to its crucial and very pleiotropic activity, reduction of brain-derived neurotrophic factor levels and alterations in the brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling have been found to be associated with a wide spectrum of neurological diseases. However, because of its poor bioavailability and pharmacological properties, brain-derived neurotrophic factor itself has a very low therapeutic value. Moreover, the concomitant binding of exogenous brain-derived neurotrophic factor to the p75 neurotrophin receptor has the potential to elicit several unwanted and deleterious side effects. Therefore, developing tools and approaches to specifically promote tropomyosin receptor kinase B signaling has become an important goal of translational research. Among the newly developed tools are different categories of tropomyosin receptor kinase B receptor agonist molecules. In this review, we give a comprehensive description of the different tropomyosin receptor kinase B receptor agonist drugs developed so far and of the results of their application in animal models of several neurological diseases. Moreover, we discuss the main benefits of tropomyosin receptor kinase B receptor agonists, concentrating especially on the new tropomyosin receptor kinase B agonist antibodies. The benefits observed both in vitro and in vivo upon application of tropomyosin receptor kinase B receptor agonist drugs seem to predominantly depend on their general neuroprotective activity and their ability to promote neuronal plasticity. Moreover, tropomyosin receptor kinase B agonist antibodies have been shown to specifically bind the tropomyosin receptor kinase B receptor and not p75 neurotrophin receptor. Therefore, while, based on the current knowledge, the tropomyosin receptor kinase B receptor agonists do not seem to have the potential to reverse the disease pathology per se, promoting brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling still has a very high therapeutic relevance.
Collapse
Affiliation(s)
- Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany
| |
Collapse
|
4
|
Alshial EE, Abdulghaney MI, Wadan AHS, Abdellatif MA, Ramadan NE, Suleiman AM, Waheed N, Abdellatif M, Mohammed HS. Mitochondrial dysfunction and neurological disorders: A narrative review and treatment overview. Life Sci 2023; 334:122257. [PMID: 37949207 DOI: 10.1016/j.lfs.2023.122257] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Mitochondria play a vital role in the nervous system, as they are responsible for generating energy in the form of ATP and regulating cellular processes such as calcium (Ca2+) signaling and apoptosis. However, mitochondrial dysfunction can lead to oxidative stress (OS), inflammation, and cell death, which have been implicated in the pathogenesis of various neurological disorders. In this article, we review the main functions of mitochondria in the nervous system and explore the mechanisms related to mitochondrial dysfunction. We discuss the role of mitochondrial dysfunction in the development and progression of some neurological disorders including Parkinson's disease (PD), multiple sclerosis (MS), Alzheimer's disease (AD), depression, and epilepsy. Finally, we provide an overview of various current treatment strategies that target mitochondrial dysfunction, including pharmacological treatments, phototherapy, gene therapy, and mitotherapy. This review emphasizes the importance of understanding the role of mitochondria in the nervous system and highlights the potential for mitochondrial-targeted therapies in the treatment of neurological disorders. Furthermore, it highlights some limitations and challenges encountered by the current therapeutic strategies and puts them in future perspective.
Collapse
Affiliation(s)
- Eman E Alshial
- Biochemistry Department, Faculty of Science, Damanhour University, Al Buhayrah, Egypt
| | | | - Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Sinai University, Arish, North Sinai, Egypt
| | | | - Nada E Ramadan
- Department of Biotechnology, Faculty of Science, Tanta University, Gharbia, Egypt
| | | | - Nahla Waheed
- Biochemistry Department, Faculty of Science, Mansoura University, Egypt
| | | | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| |
Collapse
|
5
|
Aguayo-Arelis A, Rabago-Barajas BV, Saldaña-Cruz AM, Macías-Islas MÁ. Association of the BDNF rs6265 Polymorphism with Cognitive Impairment in Multiple Sclerosis: A Case-Control Study in Mexican Patients. Genes (Basel) 2023; 14:2130. [PMID: 38136952 PMCID: PMC10742426 DOI: 10.3390/genes14122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Cognition is a set of brain processes that allow the individual to interact with their environment. Multiple sclerosis (MS) is a chronic inflammatory disease that affects the cerebral white matter of the brain cortex and spinal cord, leading to cognitive impairment (CI) in 40-60% of the patients. Many studies have determined that CI is linked to genetic risk factors. We aimed to evaluate the association between BDNF gene rs6265 polymorphism and cognitive impairment in Mexican patients with MS by performing a case-control study. Mestizo-Mexican patients diagnosed with MS based on McDonald's criteria were enrolled. Cases were MS patients with CI (n = 31) while controls were MS patients without CI (n = 31). To measure cognitive functioning in MS patients, a neuropsychological screening battery for MS (NSB-MS) was used. Genotyping of the rs6265 gene variant was performed using quantitative real-time PCR (qPCR) with TaqMan probes. The results showed no statistically significant differences in sociodemographic and disease variables between case and control groups. qPCR analysis showed that there were 68% Val/Val wild-type homozygotes, 29% Val/Met polymorphic heterozygotes, and 3% Met/Met polymorphic homozygotes. The presence of BDNF gene rs6265 polymorphism showed an increased probability (3.6 times) of global cognitive impairment.
Collapse
Affiliation(s)
- Adriana Aguayo-Arelis
- Departamento de Psicología Aplicada, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Ameca 46600, Mexico; (A.A.-A.); (B.V.R.-B.)
| | - Brenda Viridiana Rabago-Barajas
- Departamento de Psicología Aplicada, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Ameca 46600, Mexico; (A.A.-A.); (B.V.R.-B.)
| | - Ana Miriam Saldaña-Cruz
- Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Ameca 46600, Mexico;
| | - Miguel Ángel Macías-Islas
- Departamento de Psicología Aplicada, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Ameca 46600, Mexico; (A.A.-A.); (B.V.R.-B.)
| |
Collapse
|
6
|
Nociti V, Romozzi M. The Role of BDNF in Multiple Sclerosis Neuroinflammation. Int J Mol Sci 2023; 24:ijms24098447. [PMID: 37176155 PMCID: PMC10178984 DOI: 10.3390/ijms24098447] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and degenerative disease of the central nervous system (CNS). Inflammation is observed in all stages of MS, both within and around the lesions, and can have beneficial and detrimental effects on MS pathogenesis. A possible mechanism for the neuroprotective effect in MS involves the release of brain-derived neurotrophic factor (BDNF) by immune cells in peripheral blood and inflammatory lesions, as well as by microglia and astrocytes within the CNS. BDNF is a neurotrophic factor that plays a key role in neuroplasticity and neuronal survival. This review aims to analyze the current understanding of the role that inflammation plays in MS, including the factors that contribute to both beneficial and detrimental effects. Additionally, it explores the potential role of BDNF in MS, as it may modulate neuroinflammation and provide neuroprotection. By obtaining a deeper understanding of the intricate relationship between inflammation and BDNF, new therapeutic strategies for MS may be developed.
Collapse
Affiliation(s)
- Viviana Nociti
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Centro Sclerosi Multipla, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marina Romozzi
- Institute of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
7
|
Abstract
This review aimed to elucidate protein biomarkers in body fluids, such as blood and cerebrospinal fluid (CSF), to identify those that may be used for early diagnosis of multiple sclerosis (MS), prediction of disease activity, and monitoring of treatment response among MS patients. The potential biomarkers elucidated in this review include neurofilament proteins (NFs), glial fibrillary acidic protein (GFAP), leptin, brain-derived neurotrophic factor (BDNF), chitinase-3-like protein 1 (CHI3L1), C-X-C motif chemokine 13 (CXCL13), and osteopontin (OPN), with each biomarker playing a different role in MS. GFAP, leptin, and CHI3L1 levels were increased in MS patient groups compared to the control group. NFs are the most studied proteins in the MS field, and significant correlations with disease activity, future progression, and treatment outcomes are evident. GFAP CSF level shows a different pattern by MS subtype. Increased concentration of CHI3L1 in the blood/CSF of clinically isolated syndrome (CIS) is an independent predictive factor of conversion to definite MS. BDNF may be affected by chronic progression of MS. CHI3L1 has potential as a biomarker for early diagnosis of MS and prediction of disability progression, while CXCL13 has potential as a biomarker of prognosis of CIS and reflects MS disease activity. OPN was an indicator of disease severity. A periodic detailed patient evaluation should be performed for MS patients, and broadly and easily accessible biomarkers with higher sensitivity and specificity in clinical settings should be identified.
Collapse
Affiliation(s)
- Jun-Soon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Treble-Barna A, Heinsberg LW, Stec Z, Breazeale S, Davis TS, Kesbhat AA, Chattopadhyay A, VonVille HM, Ketchum AM, Yeates KO, Kochanek PM, Weeks DE, Conley YP. Brain-derived neurotrophic factor (BDNF) epigenomic modifications and brain-related phenotypes in humans: A systematic review. Neurosci Biobehav Rev 2023; 147:105078. [PMID: 36764636 PMCID: PMC10164361 DOI: 10.1016/j.neubiorev.2023.105078] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Epigenomic modifications of the brain-derived neurotrophic factor (BDNF) gene have been postulated to underlie the pathogenesis of neurodevelopmental, psychiatric, and neurological conditions. This systematic review summarizes current evidence investigating the association of BDNF epigenomic modifications (DNA methylation, non-coding RNA, histone modifications) with brain-related phenotypes in humans. A novel contribution is our creation of an open access web-based application, the BDNF DNA Methylation Map, to interactively visualize specific positions of CpG sites investigated across all studies for which relevant data were available. Our literature search of four databases through September 27, 2021 returned 1701 articles, of which 153 met inclusion criteria. Our review revealed exceptional heterogeneity in methodological approaches, hindering the identification of clear patterns of robust and/or replicated results. We summarize key findings and provide recommendations for future epigenomic research. The existing literature appears to remain in its infancy and requires additional rigorous research to fulfill its potential to explain BDNF-linked risk for brain-related conditions and improve our understanding of the molecular mechanisms underlying their pathogenesis.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Lacey W Heinsberg
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zachary Stec
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Stephen Breazeale
- Department of Health and Human Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Tara S Davis
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, PA 15261, USA.
| | | | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System, University of Pittsburgh, USA
| | - Helena M VonVille
- Health Sciences Library System, University of Pittsburgh, PA 15261, USA.
| | - Andrea M Ketchum
- Emeritus Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N1N4, Canada.
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Daniel E Weeks
- Department of Human Genetics and Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yvette P Conley
- Department of Human Genetics, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
9
|
Galindo C, Nguyen VT, Hill B, Sims N, Heck A, Negron M, Lusk C. Brain-derived neurotrophic factor rs6265 (Val66Met) single nucleotide polymorphism as a master modifier of human pathophysiology. Neural Regen Res 2023. [PMID: 35799516 PMCID: PMC9241394 DOI: 10.4103/1673-5374.343894] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brain-derived neurotrophic factor is the most prevalent member of the nerve growth factor family. Since its discovery in 1978, this enigmatic molecule has spawned more than 27,000 publications, most of which are focused on neurological disorders. Brain-derived neurotrophic factor is indispensable during embryogenesis and postnatally for the normal development and function of both the central and peripheral nervous systems. It is becoming increasingly clear, however, that brain-derived neurotrophic factor likewise plays crucial roles in a variety of other biological functions independently of sympathetic or parasympathetic involvement. Brain-derived neurotrophic factor is also increasingly recognized as a sophisticated environmental sensor and master coordinator of whole organismal physiology. To that point, we recently found that a common nonsynonymous (Val66→Met) single nucleotide polymorphism in the brain-derived neurotrophic factor gene (rs6265) not only substantially alters basal cardiac transcriptomics in mice but subtly influences heart gene expression and function differentially in males and females. In addition to a short description of recent results from associative neuropsychiatric studies, this review provides an eclectic assortment of research reports that support a modulatory role for rs6265 including and beyond the central nervous system.
Collapse
|
10
|
Zhu G, Zhou S, Xu Y, Gao R, Zhang M, Zeng Q, Su W, Wang R. Chickenpox and multiple sclerosis: A Mendelian randomization study. J Med Virol 2023; 95:e28315. [PMID: 36380510 DOI: 10.1002/jmv.28315] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Observational studies have suggested a suspected association between varicella-zoster virus (VZV) infection and multiple sclerosis (MS), but the connection has remained unclear. The aim of the present study is to evaluate the causal relationship between chickenpox which is caused by VZV infection and MS. We performed a two-sample Mendelian randomization analysis to investigate the association of chickenpox with MS using summary statistics from genome-wide association studies (GWAS). The GWAS summary statistics data for chickenpox was from the 23andMe cohort including 107 769 cases and 15 982 controls. A large summary of statistical data from the International Multiple Sclerosis Genetics Consortium (IMSGC) was used as the outcome GWAS data set, including 14 802 MS cases and 26 703 controls. We found evidence of a significant association between genetically predicted chickenpox and risk of MS (odds ratio [OR] = 35.27, 95% confidence interval [CI] = 22.97-54.17, p = 1.46E-59). Our findings provided evidence indicating a causal effect of chickenpox on MS. Further elucidations of this association and underlying mechanisms are needed for identifying feasible interventions to promote MS prevention.
Collapse
Affiliation(s)
- Gaizhi Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yaqi Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Ran Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Min Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Qi Zeng
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Wenting Su
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Renxi Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Azman KF, Zakaria R. Recent Advances on the Role of Brain-Derived Neurotrophic Factor (BDNF) in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:6827. [PMID: 35743271 PMCID: PMC9224343 DOI: 10.3390/ijms23126827] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are essential for neuronal survival and growth. The signaling cascades initiated by BDNF and its receptor are the key regulators of synaptic plasticity, which plays important role in learning and memory formation. Changes in BDNF levels and signaling pathways have been identified in several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, and have been linked with the symptoms and course of these diseases. This review summarizes the current understanding of the role of BDNF in several neurodegenerative diseases, as well as the underlying molecular mechanism. The therapeutic potential of BDNF treatment is also discussed, in the hope of discovering new avenues for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Khairunnuur Fairuz Azman
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | | |
Collapse
|
12
|
Biernacki T, Kokas Z, Sandi D, Füvesi J, Fricska-Nagy Z, Faragó P, Kincses TZ, Klivényi P, Bencsik K, Vécsei L. Emerging Biomarkers of Multiple Sclerosis in the Blood and the CSF: A Focus on Neurofilaments and Therapeutic Considerations. Int J Mol Sci 2022; 23:ijms23063383. [PMID: 35328802 PMCID: PMC8951485 DOI: 10.3390/ijms23063383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients. AREAS COVERED In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients. DISCUSSION the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS.
Collapse
Affiliation(s)
- Tamás Biernacki
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsófia Kokas
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Dániel Sandi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Judit Füvesi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Zsanett Fricska-Nagy
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Péter Faragó
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Tamás Zsigmond Kincses
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- Albert Szent-Györgyi Clinical Centre, Department of Radiology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Péter Klivényi
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - Krisztina Bencsik
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
| | - László Vécsei
- Albert Szent-Györgyi Clinical Centre, Department of Neurology, Faculty of General Medicine, University of Szeged, 6725 Szeged, Hungary; (T.B.); (Z.K.); (D.S.); (J.F.); (Z.F.-N.); (P.F.); (T.Z.K.); (P.K.); (K.B.)
- MTA-SZTE Neuroscience Research Group, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
13
|
Dolcetti E, Bruno A, Azzolini F, Gilio L, Moscatelli A, De Vito F, Pavone L, Iezzi E, Gambardella S, Giardina E, Ferese R, Buttari F, Rizzo FR, Furlan R, Finardi A, Musella A, Mandolesi G, Guadalupi L, Centonze D, Stampanoni Bassi M. The BDNF Val66Met Polymorphism (rs6265) Modulates Inflammation and Neurodegeneration in the Early Phases of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13020332. [PMID: 35205376 PMCID: PMC8871843 DOI: 10.3390/genes13020332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
The clinical course of multiple sclerosis (MS) is critically influenced by the interplay between inflammatory and neurodegenerative processes. The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265), one of the most studied single-nucleotide polymorphisms (SNPs), influences brain functioning and neurodegenerative processes in healthy individuals and in several neuropsychiatric diseases. However, the role of this polymorphism in MS is still controversial. In 218 relapsing–remitting (RR)-MS patients, we explored, at the time of diagnosis, the associations between the Val66Met polymorphism, clinical characteristics, and the cerebrospinal fluid (CSF) levels of a large set of pro-inflammatory and anti-inflammatory molecules. In addition, associations between Val66Met and structural MRI measures were assessed. We identified an association between the presence of Met and a combination of cytokines, identified by principal component analysis (PCA), including the pro-inflammatory molecules MCP-1, IL-8, TNF, Eotaxin, and MIP-1b. No significant associations emerged with clinical characteristics. Analysis of MRI measures evidenced reduced cortical thickness at the time of diagnosis in patients with Val66Met. We report for the first time an association between the Val66Met polymorphism and central inflammation in MS patients at the time of diagnosis. The role of this polymorphism in both inflammatory and neurodegenerative processes may explain its complex influence on the MS course.
Collapse
Affiliation(s)
| | - Antonio Bruno
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | | | - Luana Gilio
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Laboratory of Neuromotor Physiology, IRCSS Fondazione Santa Lucia, 00179 Rome, Italy
| | | | - Luigi Pavone
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Ennio Iezzi
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Stefano Gambardella
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029 Urbino, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | | | - Fabio Buttari
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Livia Guadalupi
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Diego Centonze
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | | |
Collapse
|
14
|
De Meo E, Portaccio E, Prestipino E, Nacmias B, Bagnoli S, Razzolini L, Pastò L, Niccolai C, Goretti B, Bellinvia A, Fonderico M, Giorgio A, Stromillo ML, Filippi M, Sorbi S, De Stefano N, Amato MP. Effect of BDNF Val66Met polymorphism on hippocampal subfields in multiple sclerosis patients. Mol Psychiatry 2022; 27:1010-1019. [PMID: 34650209 DOI: 10.1038/s41380-021-01345-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism was shown to strongly affect BDNF function, but its role in modulating gray matter damage in multiple sclerosis (MS) patients is still not clear. Given BDNF relevance on the hippocampus, we aimed to explore BDNF Val66Met polymorphism effect on hippocampal subfield volumes and its role in cognitive functioning in MS patients. Using a 3T scanner, we obtained dual-echo and 3DT1-weighted sequences from 50 MS patients and 15 healthy controls (HC) consecutively enrolled. MS patients also underwent genotype analysis of BDNF, neurological and neuropsychological evaluation. Hippocampal subfields were segmented by using Freesurfer. The BDNF Val66Met polymorphism was found in 22 MS patients (44%). Compared to HC, MS patients had lower volume in: bilateral hippocampus-amygdala transition area (HATA); cornus ammonis (CA)1, granule cell layer of dentate gyrus (GCL-DG), CA4 and CA3 of the left hippocampal head; molecular layer (ML) of the left hippocampal body; presubiculum of right hippocampal body and right fimbria. Compared to BDNF Val66Val, Val66Met MS patients had higher volume in bilateral hippocampal tail; CA1, ML, CA3, CA4, and GCL-DG of left hippocampal head; CA1, ML, and CA3 of the left hippocampal body; left HATA and presubiculum of the right hippocampal head. In MS patients, higher lesion burden was associated with lower volume of presubiculum of right hippocampal body; lower volume of left hippocampal tail was associated with worse visuospatial memory performance; lower volume of left hippocampal head with worse performance in semantic fluency. Our findings suggest the BNDF Val66Met polymorphism may have a protective role in MS patients against both hippocampal atrophy and cognitive impairment. BDNF genotype might be a potential biomarker for predicting cognitive prognosis, and an interesting target to study for neuroprotective strategies.
Collapse
Affiliation(s)
- Ermelinda De Meo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Emilio Portaccio
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Elio Prestipino
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Silvia Bagnoli
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | | | - Luisa Pastò
- Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Benedetta Goretti
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | | | | | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit,, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sandro Sorbi
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
15
|
Kiselev IS, Kulakova OG, Boyko AN, Favorova OO. DNA Methylation As an Epigenetic Mechanism in the Development of Multiple Sclerosis. Acta Naturae 2021; 13:45-57. [PMID: 34377555 PMCID: PMC8327151 DOI: 10.32607/actanaturae.11043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The epigenetic mechanisms of gene expression regulation are a group of the key cellular and molecular pathways that lead to inherited alterations in genes' activity without changing their coding sequence. DNA methylation at the C5 position of cytosine in CpG dinucleotides is amongst the central epigenetic mechanisms. Currently, the number of studies that are devoted to the identification of methylation patterns specific to multiple sclerosis (MS), a severe chronic autoimmune disease of the central nervous system, is on a rapid rise. However, the issue of the contribution of DNA methylation to the development of the different clinical phenotypes of this highly heterogeneous disease has only begun to attract the attention of researchers. This review summarizes the data on the molecular mechanisms underlying DNA methylation and the MS risk factors that can affect the DNA methylation profile and, thereby, modulate the expression of the genes involved in the disease's pathogenesis. The focus of our attention is centered on the analysis of the published data on the differential methylation of DNA from various biological samples of MS patients obtained using both the candidate gene approach and high-throughput methods.
Collapse
Affiliation(s)
- I. S. Kiselev
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - O. G. Kulakova
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - A. N. Boyko
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - O. O. Favorova
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
16
|
Portaccio E, Bellinvia A, Prestipino E, Nacmias B, Bagnoli S, Razzolini L, Pastò L, Niccolai C, Goretti B, Fonderico M, Zimatore GB, Losignore NA, Sorbi S, Amato MP. The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Can Protect Against Cognitive Impairment in Multiple Sclerosis. Front Neurol 2021; 12:645220. [PMID: 33815257 PMCID: PMC8011315 DOI: 10.3389/fneur.2021.645220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, involved in neuronal survival and synaptic plasticity. The BDNF Val66Met polymorphism is known to reduce BDNF expression and secretion; its role in multiple sclerosis (MS) is poorly investigated. Objectives and Methods: In this multicenter, retrospective study, we assessed the role of BDNF Val66Met polymorphism on cognitive and motor disability in MS patients consecutively referred to the University of Florence and the Hospital of Barletta. All patients underwent a genetic analysis for the presence of Val66Met polymorphism and a comprehensive neuropsychological examination on the Rao's Brief Repeatable Battery and the Stroop Color Word Test. Possible predictors of the Expanded Disability Status Scale (EDSS) score and number of failed neuropsychological tests were assessed through linear multivariable regression models. Results: Ninety-eight patients were recruited. Patients with the BDNF Val66Met polymorphism (35.7%) were more frequently males (p = 0.020), more disabled (p = 0.026) and, marginally, older (p = 0.064). In the multivariable analysis, BDNF Val66Met polymorphism was associated with a better cognitive performance (B = −1.1 ± 0.5, p = 0.027). Higher EDSS score was associated with a progressive disease course (B = 3.4, p < 0.001) and, marginally, with the presence of the BDNF Val66Met polymorphism (B = 0.56, p = 0.066). Discussion: Our results preliminarily suggest a protective role of BDNF Val66Met polymorphism against cognitive impairment in MS patients, possibly related to a detrimental effect of increased BDNF concentration in a neuroinflammatory environment.
Collapse
Affiliation(s)
- Emilio Portaccio
- SOD Riabilitazione Neurologica, AOU Careggi, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Elio Prestipino
- NEUROFARBA Department, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy
| | - Silvia Bagnoli
- NEUROFARBA Department, University of Florence, Florence, Italy
| | | | - Luisa Pastò
- SOD Riabilitazione Neurologica, AOU Careggi, Florence, Italy
| | | | | | | | | | | | - Sandro Sorbi
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy
| | - Maria Pia Amato
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy
| |
Collapse
|
17
|
Kazana W, Zabłocka A. Brain-derived neurotrophic factor as a potential therapeutic
tool in the treatment of nervous system disorders. POSTEP HIG MED DOSW 2020. [DOI: 10.5604/01.3001.0014.5678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in the proper functioning
of the nervous system. It regulates the growth and survival of nerve cells, and is crucial
in processes related to the memory, learning and synaptic plasticity. Abnormalities related
to the distribution and secretion of BDNF protein accompany many diseases of the nervous
system, in the course of which a significant decrease in BDNF level in the brain is observed.
Impairments of BDNF transport may occur, for example, in the event of a single nucleotide
polymorphism in the Bdnf (Val66Met) coding gene or due to the dysfunctions of the proteins
involved in intracellular transport, such as huntingtin (HTT), huntingtin-associated protein
1 (HAP1), carboxypeptidase E (CPE) or sortilin 1 (SORT1). One of the therapeutic goals in the treatment of diseases of the central nervous system may be the regulation of expression and
secretion of BDNF protein by nerve cells. Potential therapeutic strategies are based on direct
injection of the protein into the specific region of the brain, the use of viral vectors expressing
the Bdnf gene, transplantation of BDNF-producing cells, the use of substances of natural
origin that stimulate the cells of the central nervous system for BDNF production, or the
use of molecules activating the main receptor for BDNF – tyrosine receptor kinase B (TrkB).
In addition, an appropriate lifestyle that promotes physical activity helps to increase BDNF
level in the body. This paper summarizes the current knowledge about the biological role of
BDNF protein and proteins involved in intracellular transport of this neurotrophin. Moreover,
it presents contemporary research trends to develop therapeutic methods, leading to an
increase in the level of BDNF protein in the brain.
Collapse
Affiliation(s)
- Wioletta Kazana
- Laboratorium Immunobiologii Mikrobiomu, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. L. Hirszfelda we Wrocławiu
| | - Agnieszka Zabłocka
- Laboratorium Immunobiologii Mikrobiomu, Instytut Immunologii i Terapii Doświadczalnej Polskiej Akademii Nauk im. L. Hirszfelda we Wrocławiu
| |
Collapse
|
18
|
Santoro M, Siotto M, Germanotta M, Bray E, Mastrorosa A, Galli C, Papadopoulou D, Aprile I. BDNF rs6265 Polymorphism and Its Methylation in Patients with Stroke Undergoing Rehabilitation. Int J Mol Sci 2020; 21:ijms21228438. [PMID: 33182716 PMCID: PMC7696026 DOI: 10.3390/ijms21228438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) and its rs6265 single nucleotide polymorphism (SNP) play an important role in post-stroke recovery. We investigated the correlation between BDNF rs6265 SNP and recovery outcome, measured by the modified Barthel index, in 49 patients with stroke hospitalized in our rehabilitation center at baseline (T0) and after 30 sessions of rehabilitation treatment (T1); moreover, we analyzed the methylation level of the CpG site created or abolished into BDNF rs6265 SNP. In total, 11 patients (22.4%) were heterozygous GA, and 32 (65.3%) and 6 (12.2%) patients were homozygous GG and AA, respectively. The univariate analysis showed a significant relationship between the BDNF rs6265 SNP and the modified Barthel index cut-off (χ2(1, N = 48) = 3.86, p = 0.049), considering patients divided for carrying (A+) or not carrying (A−) the A allele. A higher percentage of A− patients obtained a favorable outcome, as showed by the logistic regression model corrected by age and time since the stroke onset, compared with the A+ patients (OR: 5.59). At baseline (T0), the percentage of BDNF methylation was significantly different between GG (44.6 ± 1.1%), GA (39.5 ± 2.8%) and AA (28.5 ± 1.7%) alleles (p < 0.001). After rehabilitation (T1), only patients A− showed a significant increase in methylation percentages (mean change = 1.3, CI: 0.4–2.2, p = 0.007). This preliminary study deserves more investigation to confirm if BDNF rs6265 SNP and its methylation could be used as a biological marker of recovery in patients with stroke undergoing rehabilitation treatment.
Collapse
|
19
|
Cappoli N, Tabolacci E, Aceto P, Dello Russo C. The emerging role of the BDNF-TrkB signaling pathway in the modulation of pain perception. J Neuroimmunol 2020; 349:577406. [PMID: 33002723 DOI: 10.1016/j.jneuroim.2020.577406] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The brain derived neurotrophic factor (BDNF) is a crucial neuromodulator in pain transmission both in peripheral and central nervous system (CNS). Despite evidence of a pro-nociceptive role of BDNF, recent studies have reported contrasting results, including anti-nociceptive and anti-inflammatory activities. Moreover, BDNF polymorphisms can interfere with BDNF role in pain perception. In Val66Met carriers, the Met allele may have a dual role, with anti-nociceptive actions in normal condition and pro-nociceptive effects during chronic pain. In order to elucidate the main effects of BDNF in nociception, we reviewed the main characteristics of this neurotrophin, focusing on its involvement in pain.
Collapse
Affiliation(s)
- Natalia Cappoli
- Università Cattolica del Sacro Cuore, Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Rome, Italy
| | - Elisabetta Tabolacci
- Università Cattolica del Sacro Cuore, Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paola Aceto
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze dell'Emergenza, Anestesiologiche e della Rianimazione, Rome, Italy; Università Cattolica del Sacro Cuore, Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Rome, Italy.
| | - Cinzia Dello Russo
- Università Cattolica del Sacro Cuore, Dipartimento di Sicurezza e Bioetica, Sezione di Farmacologia, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
20
|
Abstract
Multiple sclerosis (MS), a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system, is today a leading cause of unpredictable lifelong disability in young adults. The treatment of patients in progressive stages remains highly challenging, alluding to our limited understanding of the underlying pathological processes. In this review, we provide insights into the mechanisms underpinning MS progression from a perspective of epigenetics, that refers to stable and mitotically heritable, yet reversible, changes in the genome activity and gene expression. We first recapitulate findings from epigenetic studies examining the brain tissue of progressive MS patients, which support a contribution of DNA and histone modifications in impaired oligodendrocyte differentiation, defective myelination/remyelination and sustained neuro-axonal vulnerability. We next explore possibilities for identifying factors affecting progression using easily accessible tissues such as blood by comparing epigenetic signatures in peripheral immune cells and brain tissue. Despite minor overlap at individual methylation sites, nearly 30% of altered genes reported in peripheral immune cells of progressive MS patients were found in brain tissue, jointly converging on alterations of neuronal functions. We further speculate about the mechanisms underlying shared epigenetic patterns between blood and brain, which likely imply the influence of internal (genetic control) and/or external (e.g. smoking and ageing) factors imprinting a common signature in both compartments. Overall, we propose that epigenetics might shed light on clinically relevant mechanisms involved in disease progression and open new avenues for the treatment of progressive MS patients in the future.
Collapse
Affiliation(s)
- L Kular
- From the, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Jagodic
- From the, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Iacobaeus E, Arrambide G, Amato MP, Derfuss T, Vukusic S, Hemmer B, Tintore M, Brundin L. Aggressive multiple sclerosis (1): Towards a definition of the phenotype. Mult Scler 2020; 26:1352458520925369. [PMID: 32530385 PMCID: PMC7412876 DOI: 10.1177/1352458520925369] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
While the major phenotypes of multiple sclerosis (MS) and relapsing-remitting, primary and secondary progressive MS have been well characterized, a subgroup of patients with an active, aggressive disease course and rapid disability accumulation remains difficult to define and there is no consensus about their management and treatment. The current lack of an accepted definition and treatment guidelines for aggressive MS triggered a 2018 focused workshop of the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) on aggressive MS. The aim of the workshop was to discuss approaches on how to describe and define the disease phenotype and its treatments. Unfortunately, it was not possible to come to consensus on a definition because of unavailable data correlating severe disease with imaging and molecular biomarkers. However, the workshop highlighted the need for future research needed to define this disease subtype while also focusing on its treatment and management. Here, we review previous attempts to define aggressive MS and present characteristics that might, with additional research, eventually help characterize it. A companion paper summarizes data regarding treatment and management.
Collapse
Affiliation(s)
- Ellen Iacobaeus
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Georgina Arrambide
- Servei de Neurologia-Neuroimmunologia. Centre d’Esclerosi Múltiple de Catalunya, (Cemcat), Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pia Amato
- Department NeuroFarBa, University of Florence, Florence, Italy/IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Tobias Derfuss
- Departments of Neurology and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sandra Vukusic
- Service de neurologie, Sclérose en plaques, Pathologies de la myéline et neuro-inflammation, and Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon/Bron, France; Centre des Neurosciences de Lyon, Observatoire Français de la Sclérose en Plaques, INSERM 1028 et CNRS UMR5292, Lyon, France; Université Claude Bernard Lyon 1, Faculté de médecine Lyon Est, Lyon, France
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mar Tintore
- Servei de Neurologia-Neuroimmunologia. Centre d’Esclerosi Múltiple de Catalunya, (Cemcat), Vall d’Hebron Institut de Recerca, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lou Brundin
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Islam MA, Kundu S, Hassan R. Gene Therapy Approaches in an Autoimmune Demyelinating Disease: Multiple Sclerosis. Curr Gene Ther 2020; 19:376-385. [PMID: 32141417 DOI: 10.2174/1566523220666200306092556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/19/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Multiple Sclerosis (MS) is the most common autoimmune demyelinating disease of the Central Nervous System (CNS). It is a multifactorial disease which develops in an immune-mediated way under the influences of both genetic and environmental factors. Demyelination is observed in the brain and spinal cord leading to neuro-axonal damage in patients with MS. Due to the infiltration of different immune cells such as T-cells, B-cells, monocytes and macrophages, focal lesions are observed in MS. Currently available medications treating MS are mainly based on two strategies; i) to ease specific symptoms or ii) to reduce disease progression. However, these medications tend to induce different adverse effects with limited therapeutic efficacy due to the protective function of the blood-brain barrier. Therefore, researchers have been working for the last four decades to discover better solutions by introducing gene therapy approaches in treating MS generally by following three strategies, i) prevention of specific symptoms, ii) halt or reverse disease progression and iii) heal CNS damage by promoting remyelination and axonal repair. In last two decades, there have been some remarkable successes of gene therapy approaches on the experimental mice model of MS - experimental autoimmune encephalomyelitis (EAE) which suggests that it is not far that the gene therapy approaches would start in human subjects ensuring the highest levels of safety and efficacy. In this review, we summarised the gene therapy approaches attempted in different animal models towards treating MS.
Collapse
Affiliation(s)
- Md. Asiful Islam
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Shoumik Kundu
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
23
|
Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. Int J Neurosci 2019; 130:279-300. [PMID: 31588832 DOI: 10.1080/00207454.2019.1677648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurodegenerative disease caused by dysfunction of the immune system that affects the central nervous system (CNS). It is characterized by demyelination, chronic inflammation, neuronal and oligodendrocyte loss and reactive astrogliosis. It can result in physical disability and acute neurological and cognitive problems. Despite the gains in knowledge of immunology, cell biology, and genetics in the last five decades, the ultimate etiology or specific elements that trigger MS remain unknown. The objective of this review is to propose a theoretical basis for MS etiopathogenesis.Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(multiple sclerosis* OR EAE) AND (pathophysiology* OR etiopathogenesis)". The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and June 30, 2019. The search was filtered down to 362 articles which were included in this review.Results: A framework to better understand the etiopathogenesis and pathophysiology of MS can be derived from four essential factors; mitochondria dysfunction (MtD) & oxidative stress (OS), vitamin D (VD), sex hormones and thyroid hormones. These factors play a direct role in MS etiopathogenesis and have a modulatory effect on many other factors involved in the disease.Conclusions: For better MS prevention and treatment outcomes, efforts should be geared towards treating thyroid problems, sex hormone alterations, VD deficiency, sleep problems and melatonin alterations. MS patients should be encouraged to engage in activities that boost total antioxidant capacity (TAC) including diet and regular exercise and discouraged from activities that promote OS including smoking and alcohol consumption.
Collapse
|
24
|
Nociti V, Santoro M, Quaranta D, Losavio FA, De Fino C, Giordano R, Palomba NP, Rossini PM, Guerini FR, Clerici M, Caputo D, Mirabella M. Correction: BDNF rs6265 polymorphism methylation in Multiple Sclerosis: A possible marker of disease progression. PLoS One 2019; 14:e0212906. [PMID: 30789956 PMCID: PMC6383920 DOI: 10.1371/journal.pone.0212906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|