1
|
Wei Y, Shi J, Xie X, Zhang F, Dong H, Li Y, Bi F, Huang X, Dou T. Transcriptome sequence reveal the roles of MaGME777 and MabHLH770 in drought tolerance in Musa acuminata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112495. [PMID: 40258402 DOI: 10.1016/j.plantsci.2025.112495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/23/2025]
Abstract
Banana, a globally cultivated fruit, faces significant constraints in distribution and sustainable production due to drought stress. This study investigated drought tolerance in Cavendish bananas using RNA-seq time-course analysis and molecular biology experiments. Plants were subjected to dehydration treatments, and physiological indicators such as electrolyte leakage, proline content, malonaldehyde, peroxidase activity, and hydrogen peroxide content were assessed. RNA-Seq and qRT-PCR were used to analyze transcriptional changes under drought. Weighted gene co-expression network (WGCNA) analysis identified thousands of differentially expressed genes (DEGs) at different time points, with a core set of 2660 DEGs consistently identified. KEGG enrichment analysis revealed MaGME777, a glycolysis/gluconeogenesis gene, as a potential drought resistance regulator. Virus-mediated gene silencing (VIGS) of MaGME777 reduced drought tolerance in bananas. Yeast one-hybrid (Y1H) and luciferase reporter assays demonstrated that the transcription factor MabHLH770 directly binds and activates the MaGME777 promoter. VIGS downregulation of MabHLH770 also reduced drought tolerance. In conclusion, this study revealed that MabHLH770 is a positive regulator of drought stress, by targeting MaGME777 promoter and activating their expression to enhance drought tolerance. These findings provide a foundation for developing drought-resistant banana cultivars through molecular breeding approaches.
Collapse
Affiliation(s)
- Yuchen Wei
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China
| | - Jingfang Shi
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, AgroBiological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Xueyi Xie
- School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Feng Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China; State Key Laboratory of Crop Genetics and Gemplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, Jiangshu 210095, China
| | - Huizhen Dong
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China; State Key Laboratory of Crop Genetics and Gemplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, Jiangshu 210095, China
| | - Yaoyao Li
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, Guangdong 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Fangcheng Bi
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, Guangdong 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Xiaosan Huang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572025, China; State Key Laboratory of Crop Genetics and Gemplasm Enhancement, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, Jiangshu 210095, China.
| | - Tongxin Dou
- Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, Guangdong 510640, China; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
2
|
Zhu C, Zhao L, Zhao S, Niu X, Li L, Gao H, Liu J, Wang L, Zhang T, Cheng R, Shi Z, Zhang H, Wang G. Utilizing machine learning and bioinformatics analysis to identify drought-responsive genes affecting yield in foxtail millet. Int J Biol Macromol 2024; 277:134288. [PMID: 39079238 DOI: 10.1016/j.ijbiomac.2024.134288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Drought stress is a major constraint on crop development, potentially causing huge yield losses and threatening global food security. Improving Crop's stress tolerance is usually associated with a yield penalty. One way to balance yield and stress tolerance is modification specific gene by emerging precision genome editing technology. However, our knowledge of yield-related drought-tolerant genes is still limited. Foxtail millet (Setaria italica) has a remarkable tolerance to drought and is considered to be a model C4 crop that is easy to engineer. Here, we have identified 46 drought-responsive candidate genes by performing a machine learning-based transcriptome study on two drought-tolerant and two drought-sensitive foxtail millet cultivars. A total of 12 important drought-responsive genes were screened out by principal component analysis and confirmed experimentally by qPCR. Significantly, by investigating the haplotype of these genes based on 1844 germplasm resources, we found two genes (Seita.5G251300 and Seita.8G036300) exhibiting drought-tolerant haplotypes that possess an apparent advantage in 1000 grain weight and main panicle grain weight without penalty in grain weight per plant. These results demonstrate the potential of Seita.5G251300 and Seita.8G036300 for breeding drought-tolerant high-yielding foxtail millet. It provides important insights for the breeding of drought-tolerant high-yielding crop cultivars through genetic manipulation technology.
Collapse
Affiliation(s)
- Chunhui Zhu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China.
| | - Ling Zhao
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Shaoxing Zhao
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Xingfang Niu
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Lin Li
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Hui Gao
- Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Jiaxin Liu
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China; Hebei Key Laboratory of Crop Stress Biology, Department of Life Science and Technology, College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Litao Wang
- College of Physics, Hebei Normal University, Shijiazhuang 050024, China; College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ting Zhang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Ruhong Cheng
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Zhigang Shi
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Haoshan Zhang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China.
| | - Genping Wang
- Institute of Millet Crops, Key Laboratory of Genetic Improvement and Utilization for Featured Coarse Cereals (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Afairs, National Foxtail Millet Improvement Center, Key Laboratory of Minor Cereal Crops of Hebei Province, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China.
| |
Collapse
|
3
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
4
|
Yue J, Tan Y, Wei R, Wang X, Mubeen S, Chen C, Cao S, Wang C, Chen P. Genome-wide identification of bHLH transcription factors in Kenaf ( Hibiscus cannabinus L.) and gene function analysis of HcbHLH88. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1517-1532. [PMID: 39310705 PMCID: PMC11413277 DOI: 10.1007/s12298-024-01504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
Among plants' transcription factor families, the bHLHs family has a significant influence on plant development processes and stress tolerance. However, there have been no relevant studies performed on the bHLHs family in kenaf (Hibiscus cannabinus L). Here, the bHLH transcription factors in kenaf were found using bioinformatics, and a total of 141 kenaf HcbHLH transcription factors were identified. Phylogenetic analysis revealed that these transcription factors were irregularly distributed on 18 chromosomes and separated into 20 subfamilies. Additionally, utilizing the transcriptome data under diverse abiotic pressures, the expression of HcbHLH members was analyzed under different stress conditions. A typical HcbHLH abiotic stress transcription factor, HcbHLH88, was exposed to salt, drought, heavy metals, and ABA. The findings revealed that HcbHLH88 might be activated under salt, drought, cadmium stress, and ABA conditions. Furthermore, HcbHLH88's function under salt stress conditions was studied after it was silenced using the virus-induced gene silencing (VIGS) technique. Reduced antioxidant enzyme activity and stunted plant development were seen in VIGS-silenced seedlings. Stress-related genes were shown to be considerably downregulated in the HcbHLH88-silenced kenaf plants, according to the qRT-PCR study. In conclusion, this study provides the first systematic gene family analysis of the kenaf bHLH gene family and provides a preliminary validation of the salt tolerance function of the HcbHLH88 gene. This study lays the foundation for future research on the regulatory mechanisms of bHLH genes in response to abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01504-y.
Collapse
Affiliation(s)
- Jiao Yue
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Yuqi Tan
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Rujian Wei
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Xu Wang
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Samavia Mubeen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Canni Chen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Shan Cao
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Caijin Wang
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Peng Chen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| |
Collapse
|
5
|
Singh S, Viswanath A, Chakraborty A, Narayanan N, Malipatil R, Jacob J, Mittal S, Satyavathi TC, Thirunavukkarasu N. Identification of key genes and molecular pathways regulating heat stress tolerance in pearl millet to sustain productivity in challenging ecologies. FRONTIERS IN PLANT SCIENCE 2024; 15:1443681. [PMID: 39239194 PMCID: PMC11374647 DOI: 10.3389/fpls.2024.1443681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Pearl millet is a nutri-cereal that is mostly grown in harsh environments, making it an ideal crop to study heat tolerance mechanisms at the molecular level. Despite having a better-inbuilt tolerance to high temperatures than other crops, heat stress negatively affects the crop, posing a threat to productivity gain. Hence, to understand the heat-responsive genes, the leaf and root samples of two contrasting pearl millet inbreds, EGTB 1034 (heat tolerant) and EGTB 1091 (heat sensitive), were subjected to heat-treated conditions and generated genome-wide transcriptomes. We discovered 13,464 differentially expressed genes (DEGs), of which 6932 were down-regulated and 6532 up-regulated in leaf and root tissues. The pairwise analysis of the tissue-based transcriptome data of the two genotypes demonstrated distinctive genotype and tissue-specific expression of genes. The root exhibited a higher number of DEGs compared to the leaf, emphasizing different adaptive strategies of pearl millet. A large number of genes encoding ROS scavenging enzymes, WRKY, NAC, enzymes involved in nutrient uptake, protein kinases, photosynthetic enzymes, and heat shock proteins (HSPs) and several transcription factors (TFs) involved in cross-talking of temperature stress responsive mechanisms were activated in the stress conditions. Ribosomal proteins emerged as pivotal hub genes, highly interactive with key genes expressed and involved in heat stress response. The synthesis of secondary metabolites and metabolic pathways of pearl millet were significantly enriched under heat stress. Comparative synteny analysis of HSPs and TFs in the foxtail millet genome demonstrated greater collinearity with pearl millet compared to proso millet, rice, sorghum, and maize. In this study, 1906 unannotated DEGs were identified, providing insight into novel participants in the molecular response to heat stress. The identified genes hold promise for expediting varietal development for heat tolerance in pearl millet and similar crops, fostering resilience and enhancing grain yield in heat-prone environments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Animikha Chakraborty
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Neha Narayanan
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Jinu Jacob
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Tara C Satyavathi
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| |
Collapse
|
6
|
Zhai X, Wang X, Yang X, Huang Q, Wu D, Wang Y, Kang H, Sha L, Fan X, Zhou Y, Zhang H. Genome-wide identification of bHLH transcription factors and expression analysis under drought stress in Pseudoroegneria libanotica at germination. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:467-481. [PMID: 38633269 PMCID: PMC11018577 DOI: 10.1007/s12298-024-01433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/24/2023] [Accepted: 03/01/2024] [Indexed: 04/19/2024]
Abstract
The basic helix-loop-helix (bHLH) transcription factor family is the second largest in plants. bHLH transcription factor is not only universally involved in plant growth and metabolism, including photomorphogenesis, light signal transduction, and secondary metabolism, but also plays an important role in plant response to stress. However, the function of bHLH TFs in Pseudoroegneria species has not been studied yet. Pseudoroegneria (Nevski) Á. Löve is a perennial genus of the Triticeae. Pseudoroegneria species are mostly distributed in arid/semi-arid areas and they show good drought tolerance. In this study, we identified 152 PlbHLH TFs in Pseudoroegneria libanotica, which could be classified into 15 groups. Collinearity analysis indicates that 122 PlbHLH genes share homology with wbHLH genes in wheat, and it has lower homology with AtbHLH genes in Arabidopsis. Based on transcriptome profiling under an experiment with three PEG concentrations (0%, 10%, and 20%), 10 up-regulated genes and 11 down-regulated PlbHLH genes were screened. Among them, PlbHLH6, PlbHLH55 and PlbHLH64 as candidate genes may be the key genes related to drought tolerance response at germination, and they have been demonstrated to respond to drought, salt, oxidative, heat, and heavy metal stress in yeast. This study lays the foundation for an in-depth study of the biological roles of PlbHLHs in Pse. libanotica, and discovered new drought-tolerance candidate genes to enhance the genetic background of Triticeae crops. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01433-w.
Collapse
Affiliation(s)
- Xingguan Zhai
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xia Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xunzhe Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Qingxiang Huang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lina Sha
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Haiqin Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| |
Collapse
|
7
|
Zhang Q, Ye Z, Wang Y, Zhang X, Kong W. Haplotype-Resolution Transcriptome Analysis Reveals Important Responsive Gene Modules and Allele-Specific Expression Contributions under Continuous Salt and Drought in Camellia sinensis. Genes (Basel) 2023; 14:1417. [PMID: 37510320 PMCID: PMC10379978 DOI: 10.3390/genes14071417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The tea plant, Camellia sinensis (L.) O. Kuntze, is one of the most important beverage crops with significant economic and cultural value. Global climate change and population growth have led to increased salt and drought stress, negatively affecting tea yield and quality. The response mechanism of tea plants to these stresses remains poorly understood due to the lack of reference genome-based transcriptional descriptions. This study presents a high-quality genome-based transcriptome dynamic analysis of C. sinensis' response to salt and drought stress. A total of 2244 upregulated and 2164 downregulated genes were identified under salt and drought stress compared to the control sample. Most of the differentially expression genes (DEGs) were found to involve divergent regulation processes at different time points under stress. Some shared up- and downregulated DEGs related to secondary metabolic and photosynthetic processes, respectively. Weighted gene co-expression network analysis (WGCNA) revealed six co-expression modules significantly positively correlated with C. sinensis' response to salt or drought stress. The MEpurple module indicated crosstalk between the two stresses related to ubiquitination and the phenylpropanoid metabolic regulation process. We identified 1969 salt-responsive and 1887 drought-responsive allele-specific expression (ASE) genes in C. sinensis. Further comparison between these ASE genes and tea plant heterosis-related genes suggests that heterosis likely contributes to the adversity and stress resistance of C. sinensis. This work offers new insight into the underlying mechanisms of C. sinensis' response to salt and drought stress and supports the improved breeding of tea plants with enhanced salt and drought tolerance.
Collapse
Affiliation(s)
- Qing Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ziqi Ye
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yinghao Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Weilong Kong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
8
|
Xue G, Fan Y, Zheng C, Yang H, Feng L, Chen X, Yang Y, Yao X, Weng W, Kong L, Liu C, Cheng J, Ruan J. bHLH transcription factor family identification, phylogeny, and its response to abiotic stress in Chenopodium quinoa. FRONTIERS IN PLANT SCIENCE 2023; 14:1171518. [PMID: 37476176 PMCID: PMC10355129 DOI: 10.3389/fpls.2023.1171518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 07/22/2023]
Abstract
The second-largest transcription factor superfamily in plants is that of the basic helix-loop-helix (bHLH) family, which plays an important complex physiological role in plant growth, tissue development, and environmental adaptation. Systematic research on the Chenopodium quinoa bHLH family will enable a better understanding of this species. Herein, authors used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 218 CqbHLH genes identified. A total of 218 CqbHLH transcription factor genes were identified in the whole genome, located on 18 chromosomes. A phylogenetic tree was constructed using the CqbHLH and AtbHLH proteins to determine their homology, and the members were divided into 20 subgroups and one unclustered gene. Authors also analyzed 218 CqbHLH genes, conservative motifs, chromosome diffusion, and gene replication. The author constructed one Neighbor-Joining (NJ) tree and a collinearity analysis map of the bHLH family in C. quinoa and six other plant species to study the evolutionary relationship and homology among multiple species. In addition, the expression levels of 20 CqbHLH members from different subgroups in various tissues, different fruit developmental stages, and six abiotic stresses were analyzed. Authors identified 218 CqbHLH genes and studied their biological functions, providing a basis for better understanding and further studying the bHLH family in quinoa.
Collapse
Affiliation(s)
- Guoxing Xue
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, China
| | - Chunyu Zheng
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, China
| | - Hao Yang
- Agricultural Service Center of Langde Town, Kaili, Guizhou, China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, Sichuan, China
| | - Xingyu Chen
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yanqi Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Lingyan Kong
- The First Senior Middle School of Yuanyang County, Xinxiang, Henan, China
| | - Chuang Liu
- Henan Institute of Technology, Xinxiang, Henan, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
9
|
Hu Z, He Z, Li Y, Wang Q, Yi P, Yang J, Yang C, Borovskii G, Cheng X, Hu R, Zhang W. Transcriptomic and metabolic regulatory network characterization of drought responses in tobacco. FRONTIERS IN PLANT SCIENCE 2023; 13:1067076. [PMID: 36743571 PMCID: PMC9891310 DOI: 10.3389/fpls.2022.1067076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
Drought stress usually causes huge economic losses for tobacco industries. Drought stress exhibits multifaceted impacts on tobacco systems through inducing changes at different levels, such as physiological and chemical changes, changes of gene transcription and metabolic changes. Understanding how plants respond and adapt to drought stress helps generate engineered plants with enhanced drought resistance. In this study, we conducted multiple time point-related physiological, biochemical,transcriptomic and metabolic assays using K326 and its derived mutant 28 (M28) with contrasting drought tolerance. Through integrative analyses of transcriptome and metabolome,we observed dramatic changes of gene expression and metabolic profiles between M28 and K326 before and after drought treatment. we found that some of DEGs function as key enzymes responsible for ABA biosynthesis and metabolic pathway, thereby mitigating impairment of drought stress through ABA signaling dependent pathways. Four DEGs were involved in nitrogen metabolism, leading to synthesis of glutamate (Glu) starting from NO-3 /NO-2 that serves as an indicator for stress responses. Importantly, through regulatory network analyses, we detected several drought induced TFs that regulate expression of genes responsible for ABA biosynthesis through network, indicating direct and indirect involvement of TFs in drought responses in tobacco. Thus, our study sheds some mechanistic insights into how plant responding to drought stress through transcriptomic and metabolic changes in tobacco. It also provides some key TF or non-TF gene candidates for engineering manipulation for breeding new tobacco varieties with enhanced drought tolerance.
Collapse
Affiliation(s)
- Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Zexue He
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Qing Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengfei Yi
- Hu'nan Tobacco Company Changde Company, Changde, Hunan, China
| | - Jiashuo Yang
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Chenkai Yang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China
| | - Gennadii Borovskii
- Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of Russian Academy of Sciences (SB RAS) Irkutsk, Lermontova, Russia
| | - Xuejiao Cheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP), Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry (CIC-MCP), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Aggarwal PR, Pramitha L, Choudhary P, Singh RK, Shukla P, Prasad M, Muthamilarasan M. Multi-omics intervention in Setaria to dissect climate-resilient traits: Progress and prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:892736. [PMID: 36119586 PMCID: PMC9470963 DOI: 10.3389/fpls.2022.892736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Millets constitute a significant proportion of underutilized grasses and are well known for their climate resilience as well as excellent nutritional profiles. Among millets, foxtail millet (Setaria italica) and its wild relative green foxtail (S. viridis) are collectively regarded as models for studying broad-spectrum traits, including abiotic stress tolerance, C4 photosynthesis, biofuel, and nutritional traits. Since the genome sequence release, the crop has seen an exponential increase in omics studies to dissect agronomic, nutritional, biofuel, and climate-resilience traits. These studies have provided first-hand information on the structure, organization, evolution, and expression of several genes; however, knowledge of the precise roles of such genes and their products remains elusive. Several open-access databases have also been instituted to enable advanced scientific research on these important crops. In this context, the current review enumerates the contemporary trend of research on understanding the climate resilience and other essential traits in Setaria, the knowledge gap, and how the information could be translated for the crop improvement of related millets, biofuel crops, and cereals. Also, the review provides a roadmap for studying other underutilized crop species using Setaria as a model.
Collapse
Affiliation(s)
- Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Lydia Pramitha
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manoj Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
11
|
Wu G, Li W, Tian N, Wang X, Wu W, Zheng S. Cloning and functional identification of setaria italica somatic embryogenesis receptor-like kinase1 gene (SiSERK1). Gene 2021; 813:146119. [PMID: 34902513 DOI: 10.1016/j.gene.2021.146119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 11/04/2022]
Abstract
Plant somatic embryogenesis receptor-like kinases (SERK), members of leucine-rich repeat receptor-like kinases (LRR-RLKs) subfamily, are widely involved in plant growth, development and innate immunity. In this study, the setaria italica somatic embryogenesis receptor-like kinase1 gene (SiSERK1) was cloned by gateway technology, and transferred into a brasssinosteroid (BR) receptor mutant of Arabidopsis thaliana WS2 (bri1-5). After BL treatment, the transgenic plants could partially restore the phenotype of bri1-5. After Pst DC3000 treatment, the CFU value of SiSERK1 overexpression plant pathogen was between WS2 and bri1-5. Stomatal opening and plant height were also between them. Therefore, it is speculated that SiSERK1 gene is involved in BR signaling pathway and can improve the resistance of bri1-5 to Pst DC3000 through SA and NHP mediated systemic acquired resistance (SAR).
Collapse
Affiliation(s)
- Guofan Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China.
| | - Wenbo Li
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Nongfu Tian
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Xin Wang
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Wangze Wu
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Sheng Zheng
- Laboratory of the Research for Molecular Mechanism and Functional Genes of Plant Stress Adaptation, College of Life Sciences, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
12
|
Huangfu Y, Pan J, Li Z, Wang Q, Mastouri F, Li Y, Yang S, Liu M, Dai S, Liu W. Genome-wide identification of PTI1 family in Setaria italica and salinity-responsive functional analysis of SiPTI1-5. BMC PLANT BIOLOGY 2021; 21:319. [PMID: 34217205 PMCID: PMC8254068 DOI: 10.1186/s12870-021-03077-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/27/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND PTI1 (Pto-interacting 1) protein kinase belongs to the receptor-like cytoplasmic kinase (RLCK) group of receptor-like protein kinases (RLK), but lack extracellular and transmembrane domains. PTI1 was first identified in tomato (Solanum lycopersicum) and named SlPTI1, which has been reported to interact with bacterial effector Pto, a serine/threonine protein kinase involved in plant resistance to bacterial disease. Briefly, the host PTI1 specifically recognizes and interacts with the bacterial effector AvrPto, which triggers hypersensitive cell death to inhibit the pathogen growth in the local infection site. Previous studies have demonstrated that PTI1 is associated with oxidative stress and hypersensitivity. RESULTS We identified 12 putative PTI1 genes from the genome of foxtail millet (Setaria italica) in this study. Gene replication analysis indicated that both segmental replication events played an important role in the expansion of PTI1 gene family in foxtail millet. The PTI1 family members of model plants, i.e. S. italica, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), maize (Zea mays), S. lycopersicum, and soybean (Glycine max), were classified into six major categories according to the phylogenetic analysis, among which the PTI1 family members in foxtail millet showed higher degree of homology with those of rice and maize. The analysis of a complete set of SiPTI1 genes/proteins including classification, chromosomal location, orthologous relationships and duplication. The tissue expression characteristics revealed that SiPTI1 genes are mainly expressed in stems and leaves. Experimental qRT-PCR results demonstrated that 12 SiPTI1 genes were induced by multiple stresses. Subcellular localization visualized that all of foxtail millet SiPTI1s were localized to the plasma membrane. Additionally, heterologous expression of SiPTI1-5 in yeast and E. coli enhanced their tolerance to salt stress. CONCLUSIONS Our results contribute to a more comprehensive understanding of the roles of PTI1 protein kinases and will be useful in prioritizing particular PTI1 for future functional validation studies in foxtail millet.
Collapse
Affiliation(s)
- Yongguan Huangfu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Jiaowen Pan
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhen Li
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Qingguo Wang
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Fatemeh Mastouri
- Bota Bioscience, 325 Vassar st. Suite 2a, Cambridge, MA, 02139, USA
| | - Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Stephen Yang
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA
| | - Min Liu
- Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Wei Liu
- Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
13
|
Current Understanding of bHLH Transcription Factors in Plant Abiotic Stress Tolerance. Int J Mol Sci 2021; 22:ijms22094921. [PMID: 34066424 PMCID: PMC8125693 DOI: 10.3390/ijms22094921] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 01/20/2023] Open
Abstract
Named for the characteristic basic helix-loop-helix (bHLH) region in their protein structure, bHLH proteins are a widespread transcription factor class in eukaryotes. bHLHs transcriptionally regulate their target genes by binding to specific positions on their promoters and thereby direct a variety of plant developmental and metabolic processes, such as photomorphogenesis, flowering induction, shade avoidance, and secondary metabolite biosynthesis, which are important for promoting plant tolerance or adaptation to adverse environments. In this review, we discuss the vital roles of bHLHs in plant responses to abiotic stresses, such as drought, salinity, cold, and iron deficiency. We suggest directions for future studies into the roles of bHLH genes in plant and discuss their potential applications in crop breeding.
Collapse
|
14
|
Genome-wide identification and characterization of basic helix-loop-helix genes in nine molluscs. Gene 2021; 785:145604. [PMID: 33766707 DOI: 10.1016/j.gene.2021.145604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factors form a large superfamily that plays an important role in numerous physiological processes, including development and response to environmental stresses. In this study, the distribution of bHLH genes in nine molluscs was systematically investigated (including five bivalves, three gastropods and one cephalopod). Finally, 53-85 bHLH genes were identified from each genome and classified into corresponding families by using phylogenetic analysis. The results of gene structure and conserved motif analysis illustrated the hereditary conservation of bHLH transcription factors during evolution but showed low similarity in group C. Through transcription profile analysis of C. gigas and T. granosa, we found a important role of bHLH genes in responding to multiple external challenges and development; meanwhile, they also exhibited tissue-specific expression. Interestingly, we were also surprised to find different bHLH genes from the same group generally possess similar patterns expression that tends to simultaneously present high or lower expression of multiple challenges and different tissues in this study. In summary, this study lays the foundation for further investigation of the biological functions and evolution of molluscan bHLH genes.
Collapse
|
15
|
Aster spathulifolius Maxim. a leaf transcriptome provides an overall functional characterization, discovery of SSR marker and phylogeny analysis. PLoS One 2020; 15:e0244132. [PMID: 33362220 PMCID: PMC7757906 DOI: 10.1371/journal.pone.0244132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Aster spathulifolius Maxim. is belongs to the Asteraceae family, which is distributed only in Korea and Japan. The species is traditionally a medicinal plant and is economically valuable in the ornamental field. On the other hand, the Aster genus, among the Asteraceae family, lacks genomic resources and its molecular functions. Therefore, in our study the high-throughput RNA-sequencing transcriptome data of A. spathulifolius were obtained to identify the molecular functions and its characterization. The de novo assembly produced 98660 uniqueness with an N50 value of 1126bp. Total unigenes were procure to analyze the functional annotation against databases like non-redundant protein, Pfam, Uniprot, KEGG and Gene ontology. The overall percentage of functional annotation to the nr database (43.71%), uniprotein database (49.97%), Pfam (39.94%), KEGG (42.3%) and to GO (30.34%) were observed. Besides, 377 unigenes were found to be involved in the terpenoids pathway and 666 unigenes were actively engaged in other secondary metabolites synthesis, given that 261 unigenes were within phenylpropanoid pathway and 81 unigenes to flavonoid pathway. A further prediction of stress resistance (9,513) unigenes and transcriptional factor (3,027) unigenes in 53 types were vastly regulated in abiotic stress respectively in salt, heat, MAPK and hormone signal transduction pathway. This study discovered 29,692 SSR markers that assist the genotyping approaches and the genetic diversity perspectives. In addition, eight Asteraceae species as in-group together with one out-group were used to construct the phylogenetic relationship by employing their plastid genome and single-copy orthologs genes. Among 50 plastid protein-coding regions, A. spathulifolius is been closely related to A. annua and by 118 single copy orthologs genes, O. taihangensis is more neighboring species to A. spathulifolius. Apart from this, A. spathulifolius and O. taihangensis, genera have recently diverged from other species. Overall, this research gains new insights into transcriptome data by revealing and exposing the secondary metabolite compounds for drug development, the stress-related genes for producing resilient crops and an ortholog gene of A. spathulifolius for the robustness of phylogeny reconstruction among Asteraceae genera.
Collapse
|
16
|
Qin L, Chen E, Li F, Yu X, Liu Z, Yang Y, Wang R, Zhang H, Wang H, Liu B, Guan Y, Ruan Y. Genome-Wide Gene Expression Profiles Analysis Reveal Novel Insights into Drought Stress in Foxtail Millet ( Setaria italica L.). Int J Mol Sci 2020; 21:ijms21228520. [PMID: 33198267 PMCID: PMC7696101 DOI: 10.3390/ijms21228520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop because of its health benefits and adaptation to drought stress; however, reports of transcriptomic analysis of genes responding to re-watering after drought stress in foxtail millet are rare. The present study evaluated physiological parameters, such as proline content, p5cs enzyme activity, anti-oxidation enzyme activities, and investigated gene expression patterns using RNA sequencing of the drought-tolerant foxtail millet variety (Jigu 16) treated with drought stress and rehydration. The results indicated that drought stress-responsive genes were related to many multiple metabolic processes, such as photosynthesis, signal transduction, phenylpropanoid biosynthesis, starch and sucrose metabolism, and osmotic adjustment. Furthermore, the Δ1-pyrroline-5-carboxylate synthetase genes, SiP5CS1 and SiP5CS2, were remarkably upregulated in foxtail millet under drought stress conditions. Foxtail millet can also recover well on rehydration after drought stress through gene regulation. Our data demonstrate that recovery on rehydration primarily involves proline metabolism, sugar metabolism, hormone signal transduction, water transport, and detoxification, plus reversal of the expression direction of most drought-responsive genes. Our results provided a detailed description of the comparative transcriptome response of foxtail millet variety Jigu 16 under drought and rehydration environments. Furthermore, we identify SiP5CS2 as an important gene likely involved in the drought tolerance of foxtail millet.
Collapse
Affiliation(s)
- Ling Qin
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (F.L.); (Z.L.); (Y.Y.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Erying Chen
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (F.L.); (Z.L.); (Y.Y.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Feifei Li
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (F.L.); (Z.L.); (Y.Y.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Xiao Yu
- College of Life Science, Shandong Normal University, Jinan 250014, China;
| | - Zhenyu Liu
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (F.L.); (Z.L.); (Y.Y.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Yanbing Yang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (F.L.); (Z.L.); (Y.Y.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Runfeng Wang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (F.L.); (Z.L.); (Y.Y.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Huawen Zhang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (F.L.); (Z.L.); (Y.Y.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Hailian Wang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (F.L.); (Z.L.); (Y.Y.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Bin Liu
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (F.L.); (Z.L.); (Y.Y.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Yan’an Guan
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (F.L.); (Z.L.); (Y.Y.); (R.W.); (H.Z.); (H.W.); (B.L.)
- College of Life Science, Shandong Normal University, Jinan 250014, China;
- Correspondence: (Y.G.); (Y.R.); Tel.: +86-531-6665-8115 (Y.G.); +86-731-8467-3684 (Y.R.)
| | - Ying Ruan
- Key Laboratory of Crop Epigenetic Regulation and Development in Hunan Province, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
- Correspondence: (Y.G.); (Y.R.); Tel.: +86-531-6665-8115 (Y.G.); +86-731-8467-3684 (Y.R.)
| |
Collapse
|