1
|
Moura FT, Delai CV, Klepa MS, Ribeiro RA, Nogueira MA, Hungria M. Unveiling remarkable bacterial diversity trapped by cowpea (Vigna unguiculata) nodules inoculated with soils from indigenous lands in Central-Western Brazil. Braz J Microbiol 2025; 56:545-562. [PMID: 39847210 PMCID: PMC11885751 DOI: 10.1007/s42770-025-01622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Cowpea (Vigna unguiculata) is recognized as a promiscuous legume in its symbiotic relationships with rhizobia, capable of forming associations with a wide range of bacterial species. Our study focused on assessing the diversity of bacterial strains present in cowpea nodules when inoculated with soils from six indigenous lands of Mato Grosso do Sul state, Central-Western Brazil, comprising the Cerrado and the Pantanal biomes, which are known for their rich diversity. The DNA profiles (BOX-PCR) of 89 strains indicated great genetic diversity, with 20 groups and 23 strains occupying single positions, and all strains grouped at a final similarity level of only 25%. Further characterization using 16S rRNA gene sequencing revealed a diverse array of bacterial genera associated with the cowpea nodules. The strains (number in parenthesis) were classified into ten genera: Agrobacterium (47), Ancylobacter (2), Burkholderia (12), Ensifer (1), Enterobacter (1), Mesorhizobium (1), Microbacterium (1), Paraburkholderia (1), Rhizobium (22), and Stenotrophomonas (1), split into four different classes. Notably, only Ensifer, Mesorhizobium, Rhizobium, and Paraburkholderia are classified as rhizobia. Phylogenetic analysis was conducted based on the classes of the identified genera and the type strains of the closest species. Our integrated analyses, combining phenotypic, genotypic, and phylogenetic approaches, highlighted the significant promiscuity of cowpea in associating with a diverse array of bacteria within nodules, showcasing the Brazilian soils as a hotspot of bacterial diversity.
Collapse
Affiliation(s)
- Fernanda Terezinha Moura
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, C.P. 10.011, CEP 86.057-970, Londrina, Paraná, Brazil
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, CEP 86.085-981, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, CEP 70.040-020, Brasília, Distrito Federal, Brazil
| | - Caroline Vanzzo Delai
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, CEP 86.085-981, Londrina, Paraná, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, CEP 70.040-020, Brasília, Distrito Federal, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10.011, CEP 86.057-970, Londrina, Paraná, Brazil
| | - Milena Serenato Klepa
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, CEP 86.085-981, Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71, 605-001, Brasília, Distrito Federal, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71, 605-001, Brasília, Distrito Federal, Brazil
| | - Marco Antonio Nogueira
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, CEP 86.085-981, Londrina, Paraná, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10.011, CEP 86.057-970, Londrina, Paraná, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71, 605-001, Brasília, Distrito Federal, Brazil
| | - Mariangela Hungria
- Department of Biochemistry and Biotechnology, Universidade Estadual de Londrina, PR-445, Km 380, C.P. 10.011, CEP 86.057-970, Londrina, Paraná, Brazil.
- Soil Biotechnology Laboratory, Embrapa Soja, C.P. 4006, CEP 86.085-981, Londrina, Paraná, Brazil.
- Department of Microbiology, Universidade Estadual de Londrina, C.P. 10.011, CEP 86.057-970, Londrina, Paraná, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71, 605-001, Brasília, Distrito Federal, Brazil.
| |
Collapse
|
2
|
Basbuga S, Basbuga S, Can C, Yayla F. Phenotypic and genotypic diversity of root nodule bacteria from wild Lathyrus and Vicia species in Gaziantep, Turkey. Folia Microbiol (Praha) 2024; 69:1145-1157. [PMID: 38526677 DOI: 10.1007/s12223-024-01156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
This study identified the phenotypic and genotypic characteristics of the bacteria that nodulate wild Lathyrus and Vicia species natural distribution in the Gaziantep province of Turkey. Principle component analysis of phenotypic features revealed that rhizobial isolates were highly resistant to stress factors such as high salt, pH and temperature. They were found to be highly sensitive to the concentrations (mg/mL) of the antibiotics neomycin 10, kanamycin, and tetracycline 5, as well as the heavy metals Ni 10, and Cu 10, and 5. As a result of REP-PCR analysis, it was determined that the rhizobial isolates were quite diverse, and 5 main groups and many subgroups being found. All of the isolates nodulating wild Vicia species were found to be related to Rhizobium sp., and these isolates were found to be in Clades II, III, IV, and V of the phylogenetic tree based on 16S rRNA. The isolates that nodulated wild Lathyrus species were in Clades I, II, IV, V, VI, VII, and VIII, and they were closely related to Rhizobium leguminasorum, Rhizobium sp., Phyllobacterium sp., Serratia sp., and Pseudomonas sp. According to the genetic analyses, the isolates could not be classified at the species level, the similarity ratio was low, they formed a distinct group that was supported by strong bootstrap values in the phylogenetic tree, and the differences discovered in the network analysis revealed the diversity among the isolates and gave important findings that these isolates may be new species.
Collapse
Affiliation(s)
- Sevil Basbuga
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey.
| | - Selcuk Basbuga
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey
| | - Canan Can
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey
| | - Fatih Yayla
- Biology Department, Science and Letter Faculty, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
3
|
Xavier GR, Jesus EDC, Dias A, Coelho MRR, Molina YC, Rumjanek NG. Contribution of Biofertilizers to Pulse Crops: From Single-Strain Inoculants to New Technologies Based on Microbiomes Strategies. PLANTS (BASEL, SWITZERLAND) 2023; 12:954. [PMID: 36840302 PMCID: PMC9962295 DOI: 10.3390/plants12040954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity and reduces the need for N fertilizers, thus contributing to mitigation of environmental impact mitigation. Additionally, the root region harbors a rich microbial community with multiple traits related to plant growth promotion, such as nutrient increase and tolerance enhancement to abiotic or biotic stresses. We reviewed the eight most common pulses accounting for almost 90% of world production: common beans, chickpeas, peas, cowpeas, mung beans, lentils, broad beans, and pigeon peas. We focused on updated information considering both single-rhizobial inoculation and co-inoculation with plant growth-promoting rhizobacteria. We found approximately 80 microbial taxa with PGPR traits, mainly Bacillus sp., B. subtilis, Pseudomonas sp., P. fluorescens, and arbuscular mycorrhizal fungi, and that contributed to improve plant growth and yield under different conditions. In addition, new data on root, nodule, rhizosphere, and seed microbiomes point to strategies that can be used to design new generations of biofertilizers, highlighting the importance of microorganisms for productive pulse systems.
Collapse
Affiliation(s)
| | | | - Anelise Dias
- Departamento de Fitotecnia, Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, UFRRJ, Rodovia BR-465, Km 7, Seropédica 23890-000, RJ, Brazil
| | | | - Yulimar Castro Molina
- Programa de Pós-graduação em Microbiologia Agrícola, Universidade Federal de Lavras, UFLA, Trevo Rotatório Professor Edmir Sá Santos, Lavras 37203-202, MG, Brazil
| | | |
Collapse
|
4
|
Karavidas I, Ntatsi G, Ntanasi T, Tampakaki A, Giannopoulou A, Pantazopoulou D, Sabatino L, Iannetta PPM, Savvas D. Hydroponic Common-Bean Performance under Reduced N-Supply Level and Rhizobia Application. PLANTS (BASEL, SWITZERLAND) 2023; 12:646. [PMID: 36771728 PMCID: PMC9920343 DOI: 10.3390/plants12030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
This study aims to explore the possibility of a reduced application of inorganic nitrogen (N) fertiliser on the yield, yield qualities, and biological nitrogen fixation (BNF) of the hydroponic common bean (Phaseolus vulgaris L.), without compromising plant performance, by utilizing the inherent ability of this plant to symbiotically fix N2. Until the flowering stage, plants were supplied with a nutrient solution containing N-concentrations of either a, 100%, conventional standard-practice, 13.8 mM; b, 75% of the standard, 10.35 mM; or c, 50% of the standard, 6.9 mM. During the subsequent reproductive stage, inorganic-N treatments b and c were decreased to 25% of the standard, and the standard (100% level) N-application was not altered. The three different inorganic-N supply treatments were combined with two different rhizobia strains, and a control (no-inoculation) treatment, in a two-factorial experiment. The rhizobia strains applied were either the indigenous strain Rhizobium sophoriradicis PVTN21 or the commercially supplied Rhizobium tropici CIAT 899. Results showed that the 50-25% mineral-N application regime led to significant increases in nodulation, BNF, and fresh-pod yield, compared to the other treatment, with a reduced inorganic-N supply. On the other hand, the 75-25% mineral-N regime applied during the vegetative stage restricted nodulation and BNF, thus incurring significant yield losses. Both rhizobia strains stimulated nodulation and BNF. However, the BNF capacity they facilitated was suppressed as the inorganic-N input increased. In addition, strain PVTN21 was superior to CIAT 899-as 50-25% N-treated plants inoculated with the former showed a yield loss of 11%, compared to the 100%-N-treated plants. In conclusion, N-use efficiency optimises BNF, reduces mineral-N-input dependency, and therefore may reduce any consequential negative environmental consequences of mineral-N over-application.
Collapse
Affiliation(s)
- Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Anastasia Tampakaki
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Ariadni Giannopoulou
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dimitra Pantazopoulou
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | | | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
5
|
Patra D, Mandal S. Non-rhizobia are the alternative sustainable solution for growth and development of the nonlegume plants. Biotechnol Genet Eng Rev 2022:1-30. [PMID: 36471635 DOI: 10.1080/02648725.2022.2152623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022]
Abstract
The major research focus for biological nitrogen fixation (BNF) has mostly been on typical rhizobia with legumes. But the newly identified non-rhizobial bacteria, both individually or in combination could also be an alternative for nitrogen supplementation in both legumes and nonlegume plants. Although about 90% of BNF is derived from a legume - rhizobia symbiosis, the non-legumes specially the cereals lack canonical nitrogen fixation system through root-nodule organogenesis. The non-rhizobia may colonize in the rhizosphere or present in endophytic/associative nature. The non-rhizobia are well known for facilitating plant growth through their potential to alleviate various stresses (salt, drought, and pathogens), acquisition of minerals (P, K, etc.), or by producing phytohormones. Bacterial symbiosis in non-legumes represents by the Gram-positive Frankia having a major contribution in overall fortification of usable nitrogenous material in soil where they are associated with their hosts. This review discusses the recent updates on the diversity and association of the non-rhizobial species and their impact on the growth and productivity of their host plants with particular emphasis on major economically important cereal plants. The future application possibilities of non-rhizobia for soil fertility and plant growth enhancement for sustainable agriculture have been discussed.
Collapse
Affiliation(s)
- Dipanwita Patra
- Department of Microbiology, University of Calcutta, Kolkata, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, Kolkata, India
| |
Collapse
|
6
|
Kawaka F. Characterization of symbiotic and nitrogen fixing bacteria. AMB Express 2022; 12:99. [PMID: 35907164 PMCID: PMC9339069 DOI: 10.1186/s13568-022-01441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/10/2022] Open
Abstract
Symbiotic nitrogen fixing bacteria comprise of diverse species associated with the root nodules of leguminous plants. Using an appropriate taxonomic method to confirm the identity of superior and elite strains to fix nitrogen in legume crops can improve sustainable global food and nutrition security. The current review describes taxonomic methods preferred and commonly used to characterize symbiotic bacteria in the rhizosphere. Peer reviewed, published and unpublished articles on techniques used for detection, classification and identification of symbiotic bacteria were evaluated by exploring their advantages and limitations. The findings showed that phenotypic and cultural techniques are still affordable and remain the primary basis of species classification despite their challenges. Development of new, robust and informative taxonomic techniques has really improved characterization and identification of symbiotic bacteria and discovery of novel and new species that are effective in biological nitrogen fixation (BNF) in diverse conditions and environments.
Collapse
Affiliation(s)
- Fanuel Kawaka
- Department of Biological Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O. Box 210-40601, Bondo, Kenya.
| |
Collapse
|
7
|
Wekesa C, Jalloh AA, Muoma JO, Korir H, Omenge KM, Maingi JM, Furch ACU, Oelmüller R. Distribution, Characterization and the Commercialization of Elite Rhizobia Strains in Africa. Int J Mol Sci 2022; 23:ijms23126599. [PMID: 35743041 PMCID: PMC9223902 DOI: 10.3390/ijms23126599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Grain legumes play a significant role in smallholder farming systems in Africa because of their contribution to nutrition and income security and their role in fixing nitrogen. Biological Nitrogen Fixation (BNF) serves a critical role in improving soil fertility for legumes. Although much research has been conducted on rhizobia in nitrogen fixation and their contribution to soil fertility, much less is known about the distribution and diversity of the bacteria strains in different areas of the world and which of the strains achieve optimal benefits for the host plants under specific soil and environmental conditions. This paper reviews the distribution, characterization, and commercialization of elite rhizobia strains in Africa.
Collapse
Affiliation(s)
- Clabe Wekesa
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Abdul A. Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya;
| | - John O. Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya;
| | - Hezekiah Korir
- Crops, Horticulture and Soils Department, Egerton University, P.O. Box 536, Egerton 20115, Kenya;
| | - Keziah M. Omenge
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - John M. Maingi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
- Correspondence: ; Tel.: +49-3641949232
| |
Collapse
|
8
|
Muindi MM, Muthini M, Njeru EM, Maingi J. Symbiotic efficiency and genetic characterization of rhizobia and non rhizobial endophytes associated with cowpea grown in semi-arid tropics of Kenya. Heliyon 2021; 7:e06867. [PMID: 33997399 PMCID: PMC8093882 DOI: 10.1016/j.heliyon.2021.e06867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/08/2020] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cowpea (Vigna unguiculata (L.) Walp) is an important multipurpose legume crop grown in arid and semi-arid areas of sub-Saharan Africa. The crop associates with a wide diversity of high ecological value rhizobia bacteria, improving biological soil fertility and crop production. Here, we evaluated the symbiotic efficiency (SE) and genetic diversity of native rhizobia isolated from root nodules of cowpea genotypes cultivated in semi-arid areas of lower Eastern Kenya. Rhizobia trapping and SE experiments were done in the greenhouse while genetic diversity was evaluated based on 16S rRNA gene sequencing. Twenty morphologically distinct isolates representing a total of 94 isolates were used for genetic analysis. After 16S rRNA gene sequencing, the isolates closely resembled bacteria belonging to the genus Rhizobium, Paraburkholderia and non-rhizobial endophytes (Enterobacter, Strenotrophomonas and Pseudomonas). This study also reports for the first time the presence of an efficient native cowpea nodulating Beta-Rhizobia (Paraburkholderia phenoliruptrix BR3459a) in Africa. Symbiotic efficiency of the native rhizobia isolates varied (p < 0.0001) significantly. Remarkably, two isolates, M2 and M3 recorded higher SE of 82.49 % and 72.76 % respectively compared to the commercial strain Bradyrhizobium sp. USDA 3456 (67.68 %). Our results form an important step in the development of efficient microbial inoculum and sustainable food production.
Collapse
Affiliation(s)
- Mercy Martha Muindi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Morris Muthini
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - Ezekiel Mugendi Njeru
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| | - John Maingi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100, Nairobi, Kenya
| |
Collapse
|
9
|
Diversity of rhizobial and non-rhizobial bacteria nodulating wild ancestors of grain legume crop plants. Int Microbiol 2021; 24:207-218. [PMID: 33423098 DOI: 10.1007/s10123-020-00158-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Chickpeas, lentils, and peas are the oldest grain legume species that spread to other regions after their first domestication in Fertile Crescent, and they could reveal the rhizobial evolution in relation to the microsymbionts of wild species in this region. This study investigated the phenotypic and genotypic diversity of the nodule-forming rhizobial bacteria recovered from Pisum sativum subsp., Cicer pinnatifidum, and Lens culinaris subsp. orientalis exhibiting natural distribution in the Gaziantep province of Turkey. PCA analyses of rhizobial isolates, which were tested to be highly resistant to stress conditions, showed that especially pH and salt concentrations had an important effect on these bacteria. Phylogenetic analysis based on 16S rRNA determined that these wild species were nodulated by at least 7 groups including Rhizobium and non-Rhizobium. The largest group comprised of Rhizobium leguminosarum and Rhizobium sp. while R. pusense, which was previously determined as non-symbiotic species, was found to nodulate C. pinnatifidum and L. culinaris subsp. orientalis. In recent studies, Klebsiella sp., which is stated to be able to nodulate different species, strong evidences have been obtained in present study exhibiting that Klebsiella sp. can nodulate C. pinnatifidum and Pseudomonas sp. was able to nodulate C. pinnatifidum and P. sativum subsp. Additionally, L. culinaris subsp. orientalis unlike other plant species, was nodulated by Burkholderia sp. and Serratia sp. associated isolates. Some isolates could not be characterized at the species level since the 16S rRNA sequence similarity rate was low and the fact that they were in a separate group supported with high bootstrap values in the phylogenetic tree may indicate that these isolates could be new species. The REP-PCR fingerprinting provided results supporting the existence of new species nodulating wild ancestors.
Collapse
|
10
|
Application of biochar and inorganic phosphorus fertilizer influenced rhizosphere soil characteristics, nodule formation and phytoconstituents of cowpea grown on tropical soil. Heliyon 2020; 6:e05255. [PMID: 33088981 PMCID: PMC7566107 DOI: 10.1016/j.heliyon.2020.e05255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/27/2020] [Accepted: 10/09/2020] [Indexed: 11/23/2022] Open
Abstract
The effect of biochar alone or co-applied with triple superphosphate on rhizosphere soil characteristics, nodule formation, phytoconstituents and antioxidant property of cowpea (Vigna uguiculata) is yet to be adequately examined in sub Saharan Africa. A field experiment was conducted where cowpea (Vigna unguiculata) was grown in a tropical sandy loam soil amended with biochar at 1.5 t ha−1 and 2.5 t ha−1 solely or together with inorganic phosphate fertilizer (Triple superphosphate), applied at a rate of 60 kg P ha −1. At 50% flowering, changes in selected rhizosphere soil properties (pH, total nitrogen, available phosphorus, soil organic carbon, cation exchange capacity), nodule count, phytochemicals (phenols, flavonoids, alkaloids, tannins, saponins) and antioxidant property of cowpea roots and leaves were determined by standard laboratory procedures. Differences between means of the measured parameters were established using ANOVA, and relationships among the parameters were explored using Pearson correlation (p < 0.05). Addition of biochar solely or in combination with TSP significantly (p < 0.05) increased soil pH, total nitrogen, available phosphorus, soil organic carbon, cation exchange capacity and root nodule count. Flavonoids, phenols, alkaloids, saponin, tannin contents and antioxidant activity in the roots and leaves were significantly (p < 0.05) higher in the amended soils compared with the unamended soil. Similarly, soil flavonoids, phenols, alkaloids and antioxidant activity were significantly higher in amended soils compared with control. Significant, positive inter and intra correlation with varying strength was found between soil properties, nodule number and phytoconstituents. This is an indication that biochar can be co-applied with triple superphosphate to sustain soil fertility, improve nodulation and enhance concentrations of phytoconstituents in soil, cowpea roots and leaves.
Collapse
|
11
|
Shamseldin A, Velázquez E. The promiscuity of Phaseolus vulgaris L. (common bean) for nodulation with rhizobia: a review. World J Microbiol Biotechnol 2020; 36:63. [PMID: 32314065 DOI: 10.1007/s11274-020-02839-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/09/2020] [Indexed: 11/24/2022]
Abstract
Phaseolus vulgaris L. (common bean) is a legume indigenous to American countries currently cultivated in all continents, which is nodulated by different rhizobial species and symbiovars. Most of species able to nodulate this legume worldwide belong to the genus Rhizobium, followed by those belonging to the genera Ensifer (formerly Sinorhizobium) and Pararhizobium (formerly Rhizobium) and minority by species of the genus Bradyrhizobium. All these genera belong to the phylum alpha-Proteobacteria, but the nodulation of P. vulgaris has also been reported for some species belonging to Paraburkholderia and Cupriavidus from the beta-Proteobacteria. Several species nodulating P. vulgaris were originally isolated from nodules of this legume in American countries and are linked to the symbiovars phaseoli and tropici, which are currently present in other continents probably because they were spread in their soils together with the P. vulgaris seeds. In addition, this legume can be nodulated by species and symbiovars originally isolated from nodules of other legumes due its high promiscuity, a concept currently related with the ability of a legume to be nodulated by several symbiovars rather than by several species. In this article we review the species and symbiovars able to nodulate P. vulgaris in different countries and continents and the challenges on the study of the P. vulgaris endosymbionts diversity in those countries where they have not been studied yet, that will allow to select highly effective rhizobial strains in order to guarantee the success of P. vulgaris inoculation.
Collapse
Affiliation(s)
- Abdelaal Shamseldin
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, New Borg El-Arab, Alexandria, Egypt.
| | - Encarna Velázquez
- Departamento de Microbiología Y Genética and CIALE, Universidad de Salamanca, Salamanca, Spain.,Unidad Asociada Grupo de Interacción Planta-Microorganismo (Universidad de Salamanca-IRNASA-CSIC), Salamanca, Spain
| |
Collapse
|
12
|
Gunnabo AH, Geurts R, Wolde-Meskel E, Degefu T, Giller KE, van Heerwaarden J. Genetic Interaction Studies Reveal Superior Performance of Rhizobium tropici CIAT899 on a Range of Diverse East African Common Bean (Phaseolus vulgaris L.) Genotypes. Appl Environ Microbiol 2019; 85:e01763-19. [PMID: 31562174 PMCID: PMC6881787 DOI: 10.1128/aem.01763-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
We studied symbiotic performance of factorial combinations of diverse rhizobial genotypes (GR) and East African common bean varieties (GL) that comprise Andean and Mesoamerican genetic groups. An initial wide screening in modified Leonard jars (LJ) was followed by evaluation of a subset of strains and genotypes in pots (contained the same, sterile medium) in which fixed nitrogen was also quantified. An additive main effect and multiplicative interaction (AMMI) model was used to identify the contribution of individual strains and plant genotypes to the GL × GR interaction. Strong and highly significant GL × GR interaction was found in the LJ experiment but with little evidence of a relation to genetic background or growth habits. The interaction was much weaker in the pot experiment, with all bean genotypes and Rhizobium strains having relatively stable performance. We found that R. etli strain CFN42 and R. tropici strains CIAT899 and NAK91 were effective across bean genotypes but with the latter showing evidence of positive interaction with two specific bean genotypes. This suggests that selection of bean varieties based on their response to inoculation is possible. On the other hand, we show that symbiotic performance is not predicted by any a priori grouping, limiting the scope for more general recommendations. The fact that the strength and pattern of GL × GR depended on growing conditions provides an important cautionary message for future studies.IMPORTANCE The existence of genotype-by-strain (GL × GR) interaction has implications for the expected stability of performance of legume inoculants and could represent both challenges and opportunities for improvement of nitrogen fixation. We find that significant genotype-by-strain interaction exists in common bean (Phaseolus vulgaris L.) but that the strength and direction of this interaction depends on the growing environment used to evaluate biomass. Strong genotype and strain main effects, combined with a lack of predictable patterns in GL × GR, suggests that at best individual bean genotypes and strains can be selected for superior additive performance. The observation that the screening environment may affect experimental outcome of GL × GR means that identified patterns should be corroborated under more realistic conditions.
Collapse
Affiliation(s)
- A H Gunnabo
- Plant Production Systems Group, Wageningen University and Research, Wageningen, The Netherlands
| | - R Geurts
- Laboratory of Molecular Biology, Department of Plant Science, Wageningen University and Research, Wageningen, The Netherlands
| | - E Wolde-Meskel
- World Agroforestry Centre (ICRAF), Addis Ababa, Ethiopia
| | - T Degefu
- International Crops Research Institute for the Semi-Arid Tropics, Addis Ababa, Ethiopia
| | - K E Giller
- Plant Production Systems Group, Wageningen University and Research, Wageningen, The Netherlands
| | - J van Heerwaarden
- Plant Production Systems Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|