1
|
Rochera C, Peña M, Picazo A, Morant D, Miralles-Lorenzo J, Camacho-Santamans A, Belenguer-Manzanedo M, Montoya T, Fayos G, Camacho A. Naturalization of treated wastewater by a constructed wetland in a water-scarce Mediterranean region. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120715. [PMID: 38579465 DOI: 10.1016/j.jenvman.2024.120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
The effluents from conventional wastewater treatment plants (WWTP), even if accomplishing quality regulations, substantially differ in their characteristics with those of waters in natural environments. Constructed wetlands (CWs) serve as transitional ecosystems within WWTPs, mitigating these differences and restoring natural features before water is poured into the natural environment. Our study focused on an experimental surface-flow CW naturalizing the WWTP effluent in a semiarid area in Eastern Spain. Despite relatively low pollutant concentrations entering the CW, it effectively further reduced settled organic matter and nitrogen. Dissolved organic matter (DOM) reaching the CW was mainly protein-like, yet optical property changes in the DOM indicated increased humification, aromaticity, and stabilization as it flowed through the CW. Flow cytometry analysis revealed that the CW released less abundant but more active bacterial populations than those received. MiSeq Illumina sequencing highlighted changes in the prokaryotic community composition, with phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria dominating the CW outflow. Functional prediction tools (FaproTax and PICRUSt2) demonstrated a shift towards microbial guilds aligned with those of the natural aquatic environments, increased aerobic chemoheterotrophs, photoautotrophs, and metabolic reactions at higher redox potentials. Enhanced capabilities for degrading plant material correlated well with changes in the DOM pool. Our findings emphasize the role of CWs in releasing biochemically stable DOM and functionally suited microbial populations for natural receiving environments. Consequently, we propose CWs as a naturalization nature-based solution (NBS) in water-scarce regions like the Mediterranean, where reclaimed discharged water can significantly contribute to ecosystem's water resources compared to natural flows.
Collapse
Affiliation(s)
- Carlos Rochera
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain.
| | - María Peña
- Global Omnium Medioambiente, S.L., E46005, Valencia, Spain.
| | - Antonio Picazo
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain.
| | - Daniel Morant
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain.
| | - Javier Miralles-Lorenzo
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain.
| | - Alba Camacho-Santamans
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Avinguda Diagonal, 643, E-08028, Barcelona, Spain.
| | | | | | - Gloria Fayos
- Aguas de Valencia, S.A., Diputación de Valencia, E46005, Valencia, Spain.
| | - Antonio Camacho
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, E-46980, Paterna, Valencia, Spain.
| |
Collapse
|
2
|
Galván V, Pascutti F, Sandoval NE, Lanfranconi MP, Lozada M, Arabolaza AL, Mac Cormack WP, Alvarez HM, Gramajo HC, Dionisi HM. High wax ester and triacylglycerol biosynthesis potential in coastal sediments of Antarctic and Subantarctic environments. PLoS One 2023; 18:e0288509. [PMID: 37459319 PMCID: PMC10351704 DOI: 10.1371/journal.pone.0288509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
The wax ester (WE) and triacylglycerol (TAG) biosynthetic potential of marine microorganisms is poorly understood at the microbial community level. The goal of this work was to uncover the prevalence and diversity of bacteria with the potential to synthesize these neutral lipids in coastal sediments of two high latitude environments, and to characterize the gene clusters related to this process. Homolog sequences of the key enzyme, the wax ester synthase/acyl-CoA:diacylglycerol acyltransferase (WS/DGAT) were retrieved from 13 metagenomes, including subtidal and intertidal sediments of a Subantarctic environment (Ushuaia Bay, Argentina), and subtidal sediments of an Antarctic environment (Potter Cove, Antarctica). The abundance of WS/DGAT homolog sequences in the sediment metagenomes was 1.23 ± 0.42 times the abundance of 12 single-copy genes encoding ribosomal proteins, higher than in seawater (0.13 ± 0.31 times in 338 metagenomes). Homolog sequences were highly diverse, and were assigned to the Pseudomonadota, Actinomycetota, Bacteroidota and Acidobacteriota phyla. The genomic context of WS/DGAT homologs included sequences related to WE and TAG biosynthesis pathways, as well as to other related pathways such as fatty-acid metabolism, suggesting carbon recycling might drive the flux to neutral lipid synthesis. These results indicate the presence of abundant and taxonomically diverse bacterial populations with the potential to synthesize lipid storage compounds in marine sediments, relating this metabolic process to bacterial survival.
Collapse
Affiliation(s)
- Virginia Galván
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Federico Pascutti
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Natalia E. Sandoval
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana P. Lanfranconi
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Mariana Lozada
- Instituto de Biología de Organismos Marinos (IBIOMAR-CONICET), Puerto Madryn, Chubut, Argentina
| | - Ana L. Arabolaza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Walter P. Mac Cormack
- Instituto de Nanobiotecnología (NANOBIOTEC-UBA-CONICET), San Martín, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Antártico Argentino (IAA), San Martín, Buenos Aires, Argentina
| | - Héctor M. Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP-UNPSJB-CONICET), Comodoro Rivadavia, Chubut, Argentina
| | - Hugo C. Gramajo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET, FBIOyF–UNR), Rosario, Santa Fe, Argentina
| | - Hebe M. Dionisi
- Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Puerto Madryn, Chubut, Argentina
| |
Collapse
|
3
|
Dionisi HM, Lozada M, Campos E. Diversity of GH51 α-L-arabinofuranosidase homolog sequences from subantarctic intertidal sediments. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
4
|
Pascoal F, Areosa I, Torgo L, Branco P, Baptista MS, Lee CK, Cary SC, Magalhães C. The spatial distribution and biogeochemical drivers of nitrogen cycle genes in an Antarctic desert. Front Microbiol 2022; 13:927129. [PMID: 36274733 PMCID: PMC9583160 DOI: 10.3389/fmicb.2022.927129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Antarctic deserts, such as the McMurdo Dry Valleys (MDV), represent extremely cold and dry environments. Consequently, MDV are suitable for studying the environment limits on the cycling of key elements that are necessary for life, like nitrogen. The spatial distribution and biogeochemical drivers of nitrogen-cycling pathways remain elusive in the Antarctic deserts because most studies focus on specific nitrogen-cycling genes and/or organisms. In this study, we analyzed metagenome and relevant environmental data of 32 MDV soils to generate a complete picture of the nitrogen-cycling potential in MDV microbial communities and advance our knowledge of the complexity and distribution of nitrogen biogeochemistry in these harsh environments. We found evidence of nitrogen-cycling genes potentially capable of fully oxidizing and reducing molecular nitrogen, despite the inhospitable conditions of MDV. Strong positive correlations were identified between genes involved in nitrogen cycling. Clear relationships between nitrogen-cycling pathways and environmental parameters also indicate abiotic and biotic variables, like pH, water availability, and biological complexity that collectively impose limits on the distribution of nitrogen-cycling genes. Accordingly, the spatial distribution of nitrogen-cycling genes was more concentrated near the lakes and glaciers. Association rules revealed non-linear correlations between complex combinations of environmental variables and nitrogen-cycling genes. Association rules for the presence of denitrification genes presented a distinct combination of environmental variables from the remaining nitrogen-cycling genes. This study contributes to an integrative picture of the nitrogen-cycling potential in MDV.
Collapse
Affiliation(s)
- Francisco Pascoal
- Interdisciplinary Center of Marine and Environmental Research, University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Inês Areosa
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Luís Torgo
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Paula Branco
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada
| | - Mafalda S. Baptista
- Interdisciplinary Center of Marine and Environmental Research, University of Porto, Porto, Portugal
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
| | - Charles K. Lee
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | - S. Craig Cary
- International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
- S. Craig Cary,
| | - Catarina Magalhães
- Interdisciplinary Center of Marine and Environmental Research, University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
- *Correspondence: Catarina Magalhães,
| |
Collapse
|
5
|
A Review on Biotechnological Approaches Applied for Marine Hydrocarbon Spills Remediation. Microorganisms 2022; 10:microorganisms10071289. [PMID: 35889007 PMCID: PMC9324126 DOI: 10.3390/microorganisms10071289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
The increasing demand for petroleum products generates needs for innovative and reliable methods for cleaning up crude oil spills. Annually, several oil spills occur around the world, which brings numerous ecological and environmental disasters on the surface of deep seawaters like oceans. Biological and physico-chemical remediation technologies can be efficient in terms of spill cleanup and microorganisms—mainly bacteria—are the main ones responsible for petroleum hydrocarbons (PHCs) degradation such as crude oil. Currently, biodegradation is considered as one of the most sustainable and efficient techniques for the removal of PHCs. However, environmental factors associated with the functioning and performance of microorganisms involved in hydrocarbon-degradation have remained relatively unclear. This has limited our understanding on how to select and inoculate microorganisms within technologies of cleaning and to optimize physico-chemical remediation and degradation methods. This review article presents the latest discoveries in bioremediation techniques such as biostimulation, bioaugmentation, and biosurfactants as well as immobilization strategies for increasing the efficiency. Besides, environmental affecting factors and microbial strains engaged in bioremediation and biodegradation of PHCs in marines are discussed.
Collapse
|
6
|
Singh AK, Gupta RK, Purohit HJ, Khardenavis AA. Genomic characterization of denitrifying methylotrophic Pseudomonas aeruginosa strain AAK/M5 isolated from municipal solid waste landfill soil. World J Microbiol Biotechnol 2022; 38:140. [PMID: 35705700 DOI: 10.1007/s11274-022-03311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/15/2022] [Indexed: 11/26/2022]
Abstract
Municipal landfills are known for methane production and a source of nitrate pollution leading to various environmental issues. Therefore, this niche was selected for the isolation of one-carbon (C1) utilizing bacteria with denitrifying capacities using anaerobic enrichment on nitrate mineral salt medium supplemented with methanol as carbon source. Eight axenic cultures were isolated of which, isolate AAK/M5 demonstrated the highest methanol removal (73.28%) in terms of soluble chemical oxygen demand and methane removal (41.27%) at the expense of total nitrate removal of 100% and 33% respectively. The whole genome characterization with phylogenomic approach suggested that the strain AAK/M5 could be assigned to Pseudomonas aeruginosa with close neighbours as type strains DVT779, AES1M, W60856, and LES400. The circular genome annotation showed the presence of complete set of genes essential for methanol utilization and complete denitrification process. The study demonstrates the potential of P. aeruginosa strain AAK/M5 in catalysing methane oxidation thus serving as a methane sink vis-à-vis utilization of nitrate. Considering the existence of such bacteria at landfill site, the study highlights the need to develop strategies for their enrichment and designing of efficient catabolic activity for such environments.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rakesh Kumar Gupta
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India
| | - Anshuman Arun Khardenavis
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, Maharashtra, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Zhang R, Liu Y, Zhao X, Zhao Z, Zhang H, Huang X, Xu W, Shen Y, Lan W. High-throughput sequencing reveals the spatial distribution variability of microbial community in coastal waters in Shenzhen. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1429-1436. [PMID: 33755841 DOI: 10.1007/s10646-021-02391-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Seashore habitats are located between terrestrial and marine ecosystems, which are a hotspot for anthropogenic impacts. Shenzhen is one of the most developed cities in south China, but the microbial functions of its coastal ecosystems remain poorly understood. The study applied 16S rRNA gene sequencing methods to identify the bacterial community from twenty sites of Shenzhen inshore waters. The microbial structure of the samples between eastern Shenzhen and western Shenzhen seashores is notably different, suggesting the spatial variability. Proteobacteria, Cyanobacteria, Actinobacteria, and Bacteroidetes were dominant phyla in the community, and the relative abundance of Bacteroidetes was significantly higher in eastern seashores. Specifically, samples from western Shenzhen contained much more Prochlorococcus, while Synechococcus was more abundant in eastern samples. Moreover, the metabolism of terpenoids and polyketides, and transport and catabolism were significantly more abundant in eastern samples, while antibiotic-resistant pathways were enriched in western samples. The results have important significance to understand bacterial ecosystem of coastal water and promote water quality management and protection activity in Shenzhen. This study can also help developing an optimal strategy for the green economy development and the policy planning of Guangdong-Hong Kong-Macao Greater Bay Area.
Collapse
Affiliation(s)
- Rui Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, Guangdong, PR China
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, 518088, Guangdong, PR China
| | - Yu Liu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, Guangdong, PR China
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, 518088, Guangdong, PR China
| | - Xianfeng Zhao
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Science and Technology for Inspection and Quarantine, Technology Center for Animal and Plant Inspection and Quarantine, Shenzhen Customs, Shenzhen, 518045, Guangdong, PR China
| | - Zhihui Zhao
- College of Agriculture, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, PR China
| | - Honglian Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, Guangdong, PR China
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, 518088, Guangdong, PR China
| | - Xiaoping Huang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, Guangdong, PR China
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, 518088, Guangdong, PR China
| | - Weiqing Xu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, Guangdong, PR China
- College of Food Science and Technology, Modern Biochemistry Experimental Center, Guangdong Ocean University, Zhanjiang, 518088, Guangdong, PR China
| | - Yuchun Shen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, Guangdong, PR China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, PR China
| | - Wensheng Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, The Shenzhen Academy of Science and Technology for Inspection and Quarantine, Technology Center for Animal and Plant Inspection and Quarantine, Shenzhen Customs, Shenzhen, 518045, Guangdong, PR China.
| |
Collapse
|
8
|
Cao Q, Najnine F, Han H, Wu B, Cai J. BALOs Improved Gut Microbiota Health in Postlarval Shrimp ( Litopenaeus vannamei) After Being Subjected to Salinity Reduction Treatment. Front Microbiol 2020; 11:1296. [PMID: 32714290 PMCID: PMC7344170 DOI: 10.3389/fmicb.2020.01296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
White shrimp, Litopenaeus vannamei, is a widely farmed species. In China, shrimp postlarvae (PL) are frequently subjected to salinity reduction treatment to meet end growers' needs. However, although this treatment effectively reduces vibrio counts, its impact on gut microbiota health is still unknown. In this study, we applied a euryhaline strain of BALOs, BDN-1F2 (BD), and Bacillus subtilis (SD) to the rearing of second-generation shrimp PL after salinity reduction treatment so as to determine if they could impact PL gut microbiota by using high-throughput sequencing analysis. Results show that PL gut microbiota, both compositionally and functionally, have been badly wrecked after salinity reduction treatment with the generally recognized as opportunistic pathogens Gammaproteobacteria being the only dominant class at day 1 of test, viz., 99.43, 85.61, and 83.28% in BD, SD, and control (CD) groups, respectively. At day 7, Gammaproteobacteria was still the only dominant class in the SD and CD groups with relative abundance of 99.77 and 99.87% correspondingly, whereas in the BD group, its value dropped to 8.44%. Regarding biodiversity parameter the Shannon index, over the 7-day test period, while the SD group was unchanged (0.98-0.93), the CD group dropped to 0.94 from 2.94, and the BD group was raised to 7.14 from 0.93. Functionally, compared to control, the SD group displayed similar strength of various predicted community functions, but the BD group had hugely enhanced its various capabilities (p < 0.05). These results demonstrated that the addition of BDN-1F2 had exceedingly improved PL gut microbiota health by raising its biodiversities and strengthening its functionalities. On reviewing data derived from this as well as relevant studies, a Shannon index cutoff value was tentatively suggested so as to differentiate microbiota-healthy PL7-15 from the unhealthy ones. Furthermore, a conceptual mechanism of BALOs in the rectification/improvement of the microbial community health has also been proposed.
Collapse
Affiliation(s)
- Qingqing Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Farhana Najnine
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hongcao Han
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Bing Wu
- Modern Analysis Centre, South China University of Technology, Guangzhou, China
| | - Junpeng Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|