1
|
Ramírez-Flores CJ, Hryckowian ND, Gale AN, Babatunde KA, Lares M, Beebe DJ, Kerr SC, Knoll LJ. Modeling Toxoplasma gondii-gut early interactions using a human microphysiological system. PLoS Negl Trop Dis 2025; 19:e0012855. [PMID: 39903779 DOI: 10.1371/journal.pntd.0012855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Oral transmission of parasites via environmentally resistant cyst stages in contaminated food or water is a common route of human infection, but there are no effective vaccines available for any enteric parasitic infection. Our knowledge of parasite cyst stage conversion and interaction with the intestinal tract is limited. Here, we investigate infection dynamics of Toxoplasma gondii cyst-stage in murine jejunum and human intestinal microphysiological systems. We focus on parasite ingress, replication, and conversion of the cyst stage to the rapidly replicating dissemination stage. In vivo bioluminescent imaging of mice fed cysts revealed spots of infection throughout the jejunum and ileum, which were selected for further analyses. Immunostaining showed parasite migration and replication predominantly in the stroma, with minimal replication in enterocytes. We recapitulated bradyzoite infection in human intestinal microphysiological systems and showed stage conversation and migration through collagen. This integrated approach elucidates complex host-parasite interactions, highlighting the value of microphysiological systems in advancing understanding and identifying potential therapeutics.
Collapse
Affiliation(s)
- Carlos J Ramírez-Flores
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (CINVESTAV-IPN), Mexico City, Mexico
| | - Nicole D Hryckowian
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrew N Gale
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kehinde Adebayo Babatunde
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Marcos Lares
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sheena C Kerr
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Aguiar-Martins K, Tomley FM, Blake DP, Marugan-Hernandez V. Comparative study of Eimeria tenella development in different cell culture systems. PLoS One 2024; 19:e0307291. [PMID: 39024284 PMCID: PMC11257319 DOI: 10.1371/journal.pone.0307291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Cell culture systems have long been recognised as great resources to mitigate the use of animals in research, offering effective solutions for replacement or reduction with benefits commonly including lower costs, shorter duration and improved reproducibility. The use of in vitro culture methods has been extensively explored for many apicomplexan parasites, supporting significant research advances, but studies with Eimeria are often limited since they still depend on the animal host. In this study we have used 2.5D and 3D culture systems for the first time to evaluate the growth of Eimeria tenella parasites using a panel of cell lines (MDBK, HD11, COLO-680N and HCC4006). Results were compared to growth in 2D monolayers following established protocols. Observations using the fluorescent transgenic strain Et-dYFP showed invasion and development of parasites inside cells suspended in a collagen matrix (2.5D or 3D), supporting the development of asexual stages with the release of first-generation merozoites. Similar findings were observed when Scaffold-free 3D cell spheroids of HD11 cells were infected with sporozoites. No subsequent developmental stages were identified while evaluating these cell lines and further work will be required to improve in vitro culture systems to a point where reduction and replacement of animal use becomes routine.
Collapse
Affiliation(s)
- Kelsilandia Aguiar-Martins
- The Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawkshead Lane, University of London, London, United Kingdom
| | - Fiona M. Tomley
- The Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawkshead Lane, University of London, London, United Kingdom
| | - Damer P. Blake
- The Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawkshead Lane, University of London, London, United Kingdom
| | - Virginia Marugan-Hernandez
- The Royal Veterinary College, Department of Pathobiology and Population Sciences, Hawkshead Lane, University of London, London, United Kingdom
| |
Collapse
|
3
|
Feix AS, Cruz-Bustos T, Ruttkowski B, Joachim A. In vitro cultivation methods for coccidian parasite research. Int J Parasitol 2023; 53:477-489. [PMID: 36400306 DOI: 10.1016/j.ijpara.2022.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
The subclass Coccidia comprises a large group of protozoan parasites, including important pathogens of humans and animals such as Toxoplasma gondii, Neospora caninum, Eimeria spp., and Cystoisospora spp. Their life cycle includes a switch from asexual to sexual stages and is often restricted to a single host species. Current research on coccidian parasites focuses on cell biology and the underlying mechanisms of protein expression and trafficking in different life stages, host cell invasion and host-parasite interactions. Furthermore, novel anticoccidial drug targets are evaluated. Given the variety of research questions and the requirement to reduce and replace animal experimentation, in vitro cultivation of Coccidia needs to be further developed and refined to meet these requirements. For these purposes, established culture systems are constantly improved. In addition, new in vitro culture systems lately gained considerable importance in research on Coccidia. Well established and optimized in vitro cultures of monolayer cells can support the viability and development of parasite stages and even allow completion of the life cycle in vitro, as shown for Cystoisospora suis and Eimeria tenella. Furthermore, new three-dimensional cell culture models are used for propagation of Cryptosporidium spp. (close relatives of the coccidians), and the infection of three-dimensional organoids with T. gondii also gained popularity as the interaction between the parasite and host tissue can be studied in more detail. The latest advances in three-dimensional culture systems are organ-on-a-chip models, that to date have only been tested for T. gondii but promise to accelerate research in other coccidians. Lastly, the completion of the life cycle of C. suis and Cryptosporidium parvum was reported to continue in a host cell-free environment following the first occurrence of asexual stages. Such axenic cultures are becoming increasingly available and open new avenues for research on parasite life cycle stages and novel intervention strategies.
Collapse
Affiliation(s)
- Anna Sophia Feix
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Teresa Cruz-Bustos
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Bärbel Ruttkowski
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Anja Joachim
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
4
|
Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells 2023; 12:930. [PMID: 36980271 PMCID: PMC10047824 DOI: 10.3390/cells12060930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. The capability of cell reprogramming, such as induced pluripotent stem cells (iPSCs) technology, solved the complications associated with human embryonic stem cells (hESC) usage. Moreover, iPSCs made significant contributions for human medicine, such as in diagnosis, therapeutic and regenerative medicine. The two-dimensional (2D) models allowed for monolayer cellular culture in vitro; however, they were surpassed by the three-dimensional (3D) cell culture system. The 3D cell culture provides higher cell-cell contact and a multi-layered cell culture, which more closely respects cellular morphology and polarity. It is more tightly able to resemble conditions in vivo and a closer approach to the architecture of human tissues, such as human organoids. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. Although organoid technology is up-and-coming, it also has some limitations that require improvements.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Warschkau D, Seeber F. Advances towards the complete in vitro life cycle of Toxoplasma gondii. Fac Rev 2023; 12:1. [PMID: 36846606 PMCID: PMC9944905 DOI: 10.12703/r/12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
The full life cycle of Toxoplasma gondii cannot be recapitulated in vitro, and access to certain stages, such as mature tissue cysts (bradyzoites) and oocysts (sporozoites), traditionally requires animal experiments. This has greatly hindered the study of the biology of these morphologically and metabolically distinct stages, which are essential for the infection of humans and animals. However, several breakthrough advances have been made in recent years towards obtaining these life stages in vitro, such as the discovery of several molecular factors that induce differentiation and commitment to the sexual cycle, and different culture methods that use, for example, myotubes and intestinal organoids to obtain mature bradyzoites and different sexual stages of the parasite. We review these novel tools and approaches, highlight their limitations and challenges, and discuss what research questions can already be answered with these models. We finally identify future routes for recapitulating the entire sexual cycle in vitro.
Collapse
Affiliation(s)
- David Warschkau
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| | - Frank Seeber
- FG16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
6
|
dos Santos PV, de Toledo DNM, de Souza DMS, Menezes TP, Perucci LO, Silva ZM, Teixeira DC, Vieira EWR, de Andrade-Neto VF, Guimarães NS, Talvani A. The imbalance in the relationship between inflammatory and regulatory cytokines during gestational toxoplasmosis can be harmful to fetuses: A systematic review. Front Immunol 2023; 14:1074760. [PMID: 36742306 PMCID: PMC9889920 DOI: 10.3389/fimmu.2023.1074760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Objective To evaluate the available information on inflammatory and regulatory plasma mediators in pregnant women (PW) diagnosed with toxoplasmosis. Source: The PubMed, Embase, Scopus, and Lilacs databases were evaluated until October 2022. Study eligibility criteria: This review was carried out following the PRISMA and registered on the PROSPERO platform (CRD42020203951). Studies that reported inflammatory mediators in PW with toxoplasmosis were considered. Evaluation methods After excluding duplicate articles, two authors independently carried out the process of title and abstract exclusion, and a third resolved disagreements when necessary. The full text was evaluated to detect related articles. The extraction table was built from the following data: Author, year of publication, journal name and impact factors, country, study design, number of gestations and maternal age (years), gestational period, diagnosis of toxoplasmosis, levels of inflammatory markers, laboratory tests, and clinical significance. Methodological quality was assessed using Joanna Briggs Institute tools. Results Of the 1,024 studies reported, only eight were included. Of the 868 PW included in this review, 20.2% were IgM+/IgG- and 50.8% were IgM-/IgG+ to T. gondii, and 29.0% uninfected. Infected PW presented higher plasma levels ofIL-5, IL-6, IL-8, IL-17, CCL5, and IL-10. Regarding the methodological quality, four studies obtained high quality. Data from this review pointed out the maintenance of the inflammatory pattern during pregnancy with a closely related to the parasite. Conclusion Immune status in PW defined the course of the T. gondii infection, where the equilibrium between inflammatory and regulatory cytokines mitigated the harmful placenta and fetus effects. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD420203951.
Collapse
Affiliation(s)
- Priscilla Vilela dos Santos
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Débora Nonato Miranda de Toledo
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Tatiana Prata Menezes
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Luiza Oliveira Perucci
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - Zolder Marinho Silva
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Ed Wilson Rodrigues Vieira
- Department of Maternal and Child Nursing and Public Health, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria and Toxoplasmosis Biology, Department of Microbiology and Parasitology, Federal University of the Rio Grande do Norte, Natal, RN, Brazil
| | - Nathalia Sernizon Guimarães
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of the Immunobiology of Inflammation, Department of Biological Sciences/Institute of Exact and Biological Sciences (ICEB), Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program in Health and Nutrition, School of Nutrition, Federal University of Ouro Preto, Ouro Preto, MG, Brazil
- Graduate Program of Health Science, Infectiology and Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Kim MB, Hwangbo S, Jang S, Jo YK. Bioengineered Co-culture of organoids to recapitulate host-microbe interactions. Mater Today Bio 2022; 16:100345. [PMID: 35847376 PMCID: PMC9283667 DOI: 10.1016/j.mtbio.2022.100345] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
The recent spike in the instances of complex physiological host-microbe interactions has raised the demand for developing in vitro models that recapitulate the microbial microenvironment in the human body. Organoids are steadily emerging as an in vitro culture system that closely mimics the structural, functional, and genetic features of complex human organs, particularly for better understanding host-microbe interactions. Recent advances in organoid culture technology have become new avenues for assessing the pathogenesis of symbiotic interactions, pathogen-induced infectious diseases, and various other diseases. The co-cultures of organoids with microbes have shown great promise in simulating host-microbe interactions with a high level of complexity for further advancement in related fields. In this review, we provide an overview of bioengineering approaches for microbe-co-cultured organoids. Latest developments in the applications of microbe-co-cultured organoids to study human physiology and pathophysiology are also highlighted. Further, an outlook on future research on bioengineered organoid co-cultures for various applications is presented.
Collapse
|
8
|
Ramírez-Flores CJ, Tibabuzo Perdomo AM, Gallego-López GM, Knoll LJ. Transcending Dimensions in Apicomplexan Research: from Two-Dimensional to Three-Dimensional In Vitro Cultures. Microbiol Mol Biol Rev 2022; 86:e0002522. [PMID: 35412359 PMCID: PMC9199416 DOI: 10.1128/mmbr.00025-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum are among the most successful pathogens known in nature. They can infect a wide range of hosts, often remain undetected by the immune system, and cause acute and chronic illness. In this phylum, we can find parasites of human and veterinary health relevance, such as Toxoplasma, Plasmodium, Cryptosporidium, and Eimeria. There are still many unknowns about the biology of these pathogens due to the ethical and practical issues of performing research in their natural hosts. Animal models are often difficult or nonexistent, and as a result, there are apicomplexan life cycle stages that have not been studied. One recent alternative has been the use of three-dimensional (3D) systems such as organoids, 3D scaffolds with different matrices, microfluidic devices, organs-on-a-chip, and other tissue culture models. These 3D systems have facilitated and expanded the research of apicomplexans, allowing us to explore life stages that were previously out of reach and experimental procedures that were practically impossible to perform in animal models. Human- and animal-derived 3D systems can be obtained from different organs, allowing us to model host-pathogen interactions for diagnostic methods and vaccine development, drug testing, exploratory biology, and other applications. In this review, we summarize the most recent advances in the use of 3D systems applied to apicomplexans. We show the wide array of strategies that have been successfully used so far and apply them to explore other organisms that have been less studied.
Collapse
Affiliation(s)
- Carlos J. Ramírez-Flores
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Andrés M. Tibabuzo Perdomo
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Gina M. Gallego-López
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
de Oliveira M, De Sibio MT, Costa FAS, Sakalem ME. Airway and Alveoli Organoids as Valuable Research Tools in COVID-19. ACS Biomater Sci Eng 2021; 7:3487-3502. [PMID: 34288642 PMCID: PMC8315244 DOI: 10.1021/acsbiomaterials.1c00306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
The coronavirus disease 2019 (COVID-19), caused by the novel coronavirus, SARS-CoV-2, affects tissues from different body systems but mostly the respiratory system, and the damage evoked in the lungs may occasionally result in severe respiratory complications and eventually lead to death. Studies of human respiratory infections have been limited by the scarcity of functional models that mimic in vivo physiology and pathophysiology. In the last decades, organoid models have emerged as potential research tools due to the possibility of reproducing in vivo tissue in culture. Despite being studied for over one year, there is still no effective treatment against COVID-19, and investigations using pulmonary tissue and possible therapeutics are still very limited. Thus, human lung organoids can provide robust support to simulate SARS-CoV-2 infection and replication and aid in a better understanding of their effects in human tissue. The present review describes methodological aspects of different protocols to develop airway and alveoli organoids, which have a promising perspective to further investigate COVID-19.
Collapse
Affiliation(s)
- Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine
School, São Paulo State University (UNESP), District of
Rubião Jr, s/n, 18618-000, Botucatu, São Paulo,
Brazil
| | - Maria T. De Sibio
- Department of Internal Clinic, Botucatu Medicine
School, São Paulo State University (UNESP), District of
Rubião Jr, s/n, 18618-000, Botucatu, São Paulo,
Brazil
| | - Felipe A. S. Costa
- São Paulo State University (UNESP), School of
Agricultural Sciences, Department of Bioprocesses and Biotechnology, Central
Multiuser Laboratory, Av. Universitária, no 3780, Altos do
Paraíso, 18610-034, Botucatu, Sao Paulo, Brazil
| | - Marna E. Sakalem
- Department of Anatomy, CCB, State
University of Londrina (UEL), Campus Universitário s/n, Caixa
Postal 10011, 86057-970, Londrina, Parana, Brazil
| |
Collapse
|
10
|
Seo HH, Han HW, Lee SE, Hong SH, Cho SH, Kim SC, Koo SK, Kim JH. Modelling Toxoplasma gondii infection in human cerebral organoids. Emerg Microbes Infect 2021; 9:1943-1954. [PMID: 32820712 PMCID: PMC7534270 DOI: 10.1080/22221751.2020.1812435] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pluripotent stem cell-derived cerebral organoids have the potential to recapitulate the pathophysiology of in vivo human brain tissue, constituting a valuable resource for modelling brain disorders, including infectious diseases. Toxoplasma gondii, an intracellular protozoan parasite, infects most warm-blooded animals, including humans, causing toxoplasmosis. In immunodeficient patients and pregnant women, infection often results in severe central nervous system disease and fetal miscarriage. However, understanding the molecular pathophysiology of the disease has been challenging due to limited in vitro model systems. Here, we developed a new in vitro model system of T. gondii infection using human brain organoids. We observed that tachyzoites can infect human cerebral organoids and are transformed to bradyzoites and replicate in parasitophorous vacuoles to form cysts, indicating that the T. gondii asexual life cycle is efficiently simulated in the brain organoids. Transcriptomic analysis of T. gondii-infected organoids revealed the activation of the type I interferon immune response against infection. In addition, in brain organoids, T. gondii exhibited a changed transcriptome related to protozoan invasion and replication. This study shows cerebral organoids as physiologically relevant in vitro model systems useful for advancing the understanding of T. gondii infections and host interactions.
Collapse
Affiliation(s)
- Hyang-Hee Seo
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea.,National Stem Cell Bank of Korea, Korea Institute of Health, Cheongju, Republic of Korea
| | - Hyo-Won Han
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea.,National Stem Cell Bank of Korea, Korea Institute of Health, Cheongju, Republic of Korea
| | - Sang-Eun Lee
- Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Sung-Hee Hong
- Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Shin-Hyeong Cho
- Division of Vectors and Parasitic Diseases, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Sang Cheol Kim
- Division of Bio-Medical Informatics, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea
| | - Soo Kyung Koo
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea.,National Stem Cell Bank of Korea, Korea Institute of Health, Cheongju, Republic of Korea
| | - Jung-Hyun Kim
- Division of Intractable Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Republic of Korea.,National Stem Cell Bank of Korea, Korea Institute of Health, Cheongju, Republic of Korea
| |
Collapse
|
11
|
Li Y, Zhang S, Li W, Zheng X, Xue Y, Hu K, Zhou H. Substance P-induced RAD16-I scaffold mediated hUCMSCs stereo-culture triggers production of mineralized nodules and collagen-like fibers by promoting osteogenic genes expression. Am J Transl Res 2021; 13:1990-2005. [PMID: 34017371 PMCID: PMC8129421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 05/05/2020] [Indexed: 06/12/2023]
Abstract
Tissue engineering has become an important therapeutic method for injuries. This study aimed to generate collagen-like matrix constructed by hUCMSCs combining self-assembled polypeptide and evaluate differentiated capacity, safety and biocompatibility. Human umbilical cord tissues were isolated and used to primarily culture hUCMSCs. hUCMSCs were identified using immunofluorescence and flow cytometry. Adipogenic- and osteogenic-differentiation of hUCMSCs were evaluated using Oil-red O and Alizarin-Red staining. Self-assembling collagen peptide RAD16-I hydrogel and substance P (SP) were prepared and combined together to form RAD16-I/SP complex. Surface morphology and ultrastructures were observed with scanning electron microscopic (SEM). hUCMSCs in simulated collagen-like matrix environment were plane-cultured and stereo-cultured. Cell viability was examined using CCK-8 and fluorescent staining assay. Osteogenic genes were detected with qRT-PCR and western blot assay. HE staining and Masson staining were used to assess production of mineralized nodules and collagen-like fibers, respectively. Collagen-like matrix complex by combining RAD16-I/SP complex with stereo-cultured hUCMSCs was successfully generated. hUCMSCs in collagen-like matrix complex demonstrated adipogenic-differentiation and osteogenic-differentiation potential. SP-induced RAD16-I mediated stereo-culture of hUCMSCs demonstrated higher cell activity and proliferation potential. SP-induced RAD16-I mediated stereo-culture of hUCMSCs promoted osteogenesis-related molecules expression. SP-induced RAD16-I mediated stereo-culture of hUCMSCs promoted production of mineralized nodules and triggered formation of collagen-like fibers. Cell-collagen-like matrix complex injection (RAD16-I/SP/hUCMSCs complex) exhibited better biocompatibility and no cytotoxicity. In conclusion, SP-induced RAD16-I mediated stereo-culture of hUCMSCs remarkably promoted osteogenesis-related gene expression, triggered production of mineralized nodules and formation of collagen-like fibers. This established cell-collagen-like matrix complex (RAD16-I/SP/hUCMSCs) injection exhibited better biocompatibility, without cytotoxicity.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University Xi'an 710032, PR China
| | - Shuyin Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University Xi'an 710032, PR China
| | - Wantao Li
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University Xi'an 710032, PR China
| | - Xueni Zheng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University Xi'an 710032, PR China
| | - Yang Xue
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University Xi'an 710032, PR China
| | - Kaijin Hu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University Xi'an 710032, PR China
| | - Hongzhi Zhou
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University Xi'an 710032, PR China
| |
Collapse
|
12
|
Sakalem ME, De Sibio MT, da Costa FADS, de Oliveira M. Historical evolution of spheroids and organoids, and possibilities of use in life sciences and medicine. Biotechnol J 2021; 16:e2000463. [PMID: 33491924 DOI: 10.1002/biot.202000463] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND An impressive percentage of biomedical advances were achieved through animal research and cell culture investigations. For drug testing and disease researches, both animal models and preclinical trials with cell cultures are extremely important, but present some limitations, such as ethical concern and inability of representing complex tissues and organs. 3D cell cultures arise providing a more realistic in vitro representation of tissues and organs. Environment and cell type in 3D cultures can represent in vivo conditions and thus provide accurate data on cell-to-cell interactions, and cultivation techniques are based on a scaffold, usually hydrogel or another polymeric material, or without scaffold, such as suspended microplates, magnetic levitation, and microplates for spheroids with ultra-low fixation coating. PURPOSE AND SCOPE This review aims at presenting an updated summary of the most common 3D cell culture models available, as well as a historical background of their establishment and possible applications. SUMMARY Even though 3D culturing is incapable of replacing other current research types, they will continue to substitute some unnecessary animal experimentation, as well as complement monolayer cultures. CONCLUSION In this aspect, 3D culture emerges as a valuable alternative to the investigation of functional, biochemical, and molecular aspects of human pathologies.
Collapse
Affiliation(s)
| | - Maria Teresa De Sibio
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Felipe Allan da Silva da Costa
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences of the Sao Paulo State University (UNESP), Botucatu, Brazil
| | - Miriane de Oliveira
- Department of Internal Clinic, Botucatu Medicine School of the Sao Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
13
|
Willner MJ, Xiao Y, Kim HS, Chen X, Xu B, Leong KW. Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 2021; 12:2041731420985299. [PMID: 33738089 PMCID: PMC7934045 DOI: 10.1177/2041731420985299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 01/10/2023] Open
Abstract
The COVID-19 pandemic has aggravated a preexisting epidemic: the opioid crisis. Much literature has shown that the circumstances imposed by COVID-19, such as social distancing regulations, medical and financial instability, and increased mental health issues, have been detrimental to those with opioid use disorder (OUD). In addition, unexpected neurological sequelae in COVID-19 patients suggest that COVID-19 compromises neuroimmunity, induces hypoxia, and causes respiratory depression, provoking similar effects as those caused by opioid exposure. Combined conditions of COVID-19 and OUD could lead to exacerbated complications. With limited human in vivo options to study these complications, we suggest that iPSC-derived brain organoid models may serve as a useful platform to investigate the physiological connection between COVID-19 and OUD. This mini-review highlights the advances of brain organoids in other neuropsychiatric and infectious diseases and suggests their potential utility for investigating OUD and COVID-19, respectively.
Collapse
Affiliation(s)
- Moshe J Willner
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hye Sung Kim
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, Republic of Korea
| | - Xuejing Chen
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Physics, Tsinghua University, Beijing, China
| | - Bin Xu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
14
|
Shimazaki Y, Inoue A, Ikeuchi H. Electrophoretic injection and reaction of dye-bound enzymes to protein and bacteria within gel. J Microbiol Methods 2020; 176:106028. [PMID: 32795638 DOI: 10.1016/j.mimet.2020.106028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022]
Abstract
Three-dimensional (3D) cell cultures within gels are used to examine physiological reactions between cells, including bacteria and macromolecules such as enzymes. Using non-denaturing electrophoresis, an anionic Coomassie Brilliant Blue (CBB) dye successfully bound to enzymes such as trypsin and lysozyme, and reacted with a protein and a bacterium within a gel. Both CBB-bound trypsin and lysozyme retained their enzymatic activities and migrated toward the anode in non-denaturing electrophoresis. CBB-bound trypsin successfully digested the iron-binding protein, transferrin, within the gel. Furthermore, the activity of esterase extracted from the bacteria, Bacillus subtilis was analyzed by the non-denaturing electrophoresis containing both the bacteria and the CBB-bound lysozyme after the bacteriolysis of the bacteria by the addition of CBB-bound lysozyme. This method can be applied to deliver enzymes to organisms including bacteria within 3D cell cultures.
Collapse
Affiliation(s)
- Youji Shimazaki
- Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan; Faculty of Science, Ehime University, Matsuyama, Japan.
| | - Aoshi Inoue
- Faculty of Science, Ehime University, Matsuyama, Japan
| | | |
Collapse
|
15
|
Patterns of Herpes Simplex Virus 1 Infection in Neural Progenitor Cells. J Virol 2020; 94:JVI.00994-20. [PMID: 32493817 PMCID: PMC7394888 DOI: 10.1128/jvi.00994-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
This study employed human induced pluripotent stem cells (hiPSCs) to model the interaction of HSV-1 with NPCs, which reside in the neurogenic niches of the CNS and play a fundamental role in adult neurogenesis. Herein, we provide evidence that in NPCs infected at an MOI as low as 0.001, HSV-1 can establish a latent state, suggesting that (i) a variant of classical HSV-1 latency can be established during earlier stages of neuronal differentiation and (ii) neurogenic niches in the brain may constitute additional sites of viral reactivation. Lytic HSV-1 infections impaired NPC migration, which represents a critical step in neurogenesis. A difference in susceptibility to HSV-1 infection between two-dimensional (2D) and three-dimensional (3D) NPC cultures was observed, highlighting the potential value of 3D cultures for modeling host-pathogen interactions. Together, our results are relevant in light of observations relating HSV-1 infection to postencephalitic cognitive dysfunction. Herpes simplex virus 1 (HSV-1) can induce damage in brain regions that include the hippocampus and associated limbic structures. These neurogenic niches are important because they are associated with memory formation and are highly enriched with neural progenitor cells (NPCs). The susceptibility and fate of HSV-1-infected NPCs are largely unexplored. We differentiated human induced pluripotent stem cells (hiPSCs) into NPCs to generate two-dimensional (2D) and three-dimensional (3D) culture models to examine the interaction of HSV-1 with NPCs. Here, we show that (i) NPCs can be efficiently infected by HSV-1, but infection does not result in cell death of most NPCs, even at high multiplicities of infection (MOIs); (ii) limited HSV-1 replication and gene expression can be detected in the infected NPCs; (iii) a viral silencing mechanism is established in NPCs exposed to the antivirals (E)-5-(2-bromovinyl)-2′-deoxyuridine (5BVdU) and alpha interferon (IFN-α) and when the antivirals are removed, spontaneous reactivation can occur at low frequency; (iv) HSV-1 impairs the ability of NPCs to migrate in a dose-dependent fashion in the presence of 5BVdU plus IFN-α; and (v) 3D cultures of NPCs are less susceptible to HSV-1 infection than 2D cultures. These results suggest that NPC pools could be sites of HSV-1 reactivation in the central nervous system (CNS). Finally, our results highlight the potential value of hiPSC-derived 3D cultures to model HSV-1–NPC interaction. IMPORTANCE This study employed human induced pluripotent stem cells (hiPSCs) to model the interaction of HSV-1 with NPCs, which reside in the neurogenic niches of the CNS and play a fundamental role in adult neurogenesis. Herein, we provide evidence that in NPCs infected at an MOI as low as 0.001, HSV-1 can establish a latent state, suggesting that (i) a variant of classical HSV-1 latency can be established during earlier stages of neuronal differentiation and (ii) neurogenic niches in the brain may constitute additional sites of viral reactivation. Lytic HSV-1 infections impaired NPC migration, which represents a critical step in neurogenesis. A difference in susceptibility to HSV-1 infection between two-dimensional (2D) and three-dimensional (3D) NPC cultures was observed, highlighting the potential value of 3D cultures for modeling host-pathogen interactions. Together, our results are relevant in light of observations relating HSV-1 infection to postencephalitic cognitive dysfunction.
Collapse
|
16
|
Delgado Betancourt E, Hamid B, Fabian BT, Klotz C, Hartmann S, Seeber F. From Entry to Early Dissemination- Toxoplasma gondii's Initial Encounter With Its Host. Front Cell Infect Microbiol 2019; 9:46. [PMID: 30891433 PMCID: PMC6411707 DOI: 10.3389/fcimb.2019.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is a zoonotic intracellular parasite, able to infect any warm-blooded animal via ingestion of infective stages, either contained in tissue cysts or oocysts released into the environment. While immune responses during infection are well-studied, there is still limited knowledge about the very early infection events in the gut tissue after infection via the oral route. Here we briefly discuss differences in host-specific responses following infection with oocyst-derived sporozoites vs. tissue cyst-derived bradyzoites. A focus is given to innate intestinal defense mechanisms and early immune cell events that precede T. gondii's dissemination in the host. We propose stem cell-derived intestinal organoids as a model to study early events of natural host-pathogen interaction. These offer several advantages such as live cell imaging and transcriptomic profiling of the earliest invasion processes. We additionally highlight the necessity of an appropriate large animal model reflecting human infection more closely than conventional infection models, to study the roles of dendritic cells and macrophages during early infection.
Collapse
Affiliation(s)
| | - Benjamin Hamid
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Benedikt T Fabian
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Christian Klotz
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Susanne Hartmann
- Department of Veterinary Medicine, Institute of Immunology, Freie Universität Berlin, Berlin, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|