1
|
Li X, Huang Q, Gu S, Zheng P. FTO alleviated the diabetic nephropathy progression by regulating the N6-methyladenosine levels of DACT1. Open Life Sci 2025; 20:20221049. [PMID: 40356725 PMCID: PMC12068186 DOI: 10.1515/biol-2022-1049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 05/15/2025] Open
Abstract
Diabetic nephropathy (DN) is one of the most important microvascular complications of diabetes. The role of epigenetic regulation in DN has attracted much attention recently. This research was performed to explore the role of FTO in the DN progression. The renal tissues of DN patients were collected and the podocytes were stimulated with high glucose (HG) to establish the DN model in vitro. Western blot along with reverse transcription quantitative polymerase chain reaction assays was performed to analyze the mRNA as well as protein expressions. Immunohistochemistry and immunofluorescence were carried out to measure the FTO and DACT1 levels. The interaction between FTO/IGF2BP1 and DACT1 was verified by double luciferase reports and RNA-binding protein immunoprecipitation assays. FTO was declined, and DACT1 was enhanced in the HG-treated podocytes as well as renal tissues of DN patients. Overexpressed FTO declined the mRNA levels of MCP-1, IL-6, TNF-α, and the apoptosis rate of HG-treated podocytes. The N6-methyladenosine (m6A) levels, mRNA expression, and stability of FTO were depleted after FTO overexpression. DACT1 overexpression reversed the function of oe-FTO in podocytes stimulated with HG. Furthermore, IGF2BP1 knockdown declined the mRNA expression as well as the stability of FTO. In conclusion, FTO-medicated m6A modification of DACT1 was dependent on IGF2BP1 in DN progression.
Collapse
Affiliation(s)
- Xuanwen Li
- Department of Nutrition, Tianjin Beichen Traditional Chinese Medicine Hospital, Tianjin, China
| | - Qing Huang
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Shinong Gu
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen, Fujian, China
| | - Ping Zheng
- Department of Nutrition, Tianjin Third Central Hospital, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
| |
Collapse
|
2
|
Imamura M, Kadowaki T, Maeda S. Genetic studies on metabolic disorder-associated kidney diseases. Kidney Int 2025:S0085-2538(25)00321-7. [PMID: 40252921 DOI: 10.1016/j.kint.2025.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/17/2024] [Accepted: 01/03/2025] [Indexed: 04/21/2025]
Abstract
Diabetic kidney disease (DKD) and obesity-related kidney diseases are the representative chronic kidney diseases related to metabolic disorders. Genome-wide association studies have been extensively performed, and a substantial number of confirmed loci have been identified to be associated with many common diseases or quantitative traits, including type 2 diabetes, obesity, and chronic kidney diseases. By contrast, genome-wide association studies for DKD have identified a limited number of susceptible loci, and the robust replication of these loci in independent studies has not yet been accomplished. As of 2024, no genome-wide association study has been reported on obesity-related kidney diseases. Therefore, the genetic studies on DKD or obesity-related kidney diseases have not provided satisfiable results. However, genetic correlation studies and Mendelian randomization studies, that were performed using multitrait genome-wide association study data, suggested that DKD, obesity-related kidney diseases, and obesity share common genetic mechanisms. Because obesity or overweight is a reversible condition, the effective interventions to reduce body weights might contribute to the prevention of the development of not only obesity-related kidney diseases, but also DKD or other types of chronic kidney diseases. Further genetic studies are necessary to understand the genetic architecture of DKD and obesity-related kidney diseases and should be expanded.
Collapse
Affiliation(s)
- Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan.
| | | | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan.
| |
Collapse
|
3
|
Yu Y, Li J, Yu B, Yu Y, Sun Y, Wang Y, Wang B, Zhang K, Tang M, Lu Y, Wang N. The Identification of Biomarkers and Therapeutic Targets for Diabetic Kidney Disease by Integrating the Proteome with the Genome. Biomedicines 2025; 13:971. [PMID: 40299563 PMCID: PMC12025092 DOI: 10.3390/biomedicines13040971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025] Open
Abstract
Background: The blood proteome is a major source of biomarkers and therapeutic targets. We conducted a proteome-wide Mendelian randomization (MR) study to identify cardiometabolic protein markers for diabetic kidney disease (DKD). Methods: We measured all 369 proteins in the Olink Explore 384 Cardiometabolic and Cardiometabolic panel of 500 patients with type 2 diabetes from 11 communities in Shanghai. Protein quantitative trait loci (pQTLs) were derived by coupling genomic and proteomic data. Cis-pQTLs identified for proteins were used as instrumental variables in MR analyses of DKD risk, and the outcome data were obtained from 8401 Japanese individuals with type 2 diabetes (2809 cases and 5592 controls). Replication MR analysis was performed in the UK Biobank Pharma Proteomics Project (UKB-PPP). Colocalization analysis and the Heidi test were used to examine whether the identified proteins and DKD shared causal variants. Results: Among the 369 proteins, we identified 66 independent cis-pQTLs for 64 proteins. MR analysis suggested that two cardiometabolic proteins (UMOD and SIRPA) may play a causal role in increasing DKD risk, with UMOD showing replication in UKB-PPP. Bayesian colocalization further supported the causal effects of these proteins. Additional analyses indicated that UMOD is highly expressed in renal macrophages. Further downstream analyses suggested that UMOD could be a potential novel target and that SIRPA could be a potential repurposing target for DKD; however, further validation is needed. Conclusions: By integrating proteomic and genetic data from patients with type 2 diabetes, we identified two protein biomarkers potentially associated with DKD risk. These findings provide insights into DKD pathophysiology and therapeutic target development, but further replication and functional studies are needed to confirm these associations.
Collapse
Affiliation(s)
- Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Jiang Li
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Bowei Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Yuetian Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Bin Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Mengjun Tang
- The 967th Hospital of Joint Logistic Support Force of People’s Liberation Army, Dalian 116011, China;
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (Y.Y.); (J.L.)
| |
Collapse
|
4
|
Hashiba T, Sugawara Y, Hirakawa Y, Sato D, Inagi R, Nangaku M. Pathogenic variants prevalence patients with diabetic kidney disease in Japan: A descriptive study. J Diabetes Investig 2025. [PMID: 40197820 DOI: 10.1111/jdi.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025] Open
Abstract
AIMS/INTRODUCTION The impact of rare pathogenic variants on diabetic kidney disease (DKD) has not been investigated in detail. Previous studies have detected pathogenic variants in 22% of Caucasian patients with DKD; however, this proportion may vary depending on ethnicity and updates to the database. Therefore, we performed a whole-genome analysis of patients with DKD in type 2 diabetes mellitus in Japan, utilizing a recent database to investigate the prevalence of kidney-related pathogenic variants and describe the characteristics of these patients. MATERIALS AND METHODS Whole-genome sequencing was performed, and variants were analyzed following the GATK Best Practices. We extracted data on 790 genes associated with Mendelian kidney and genitourinary diseases. Pathogenic variants were defined based on the American College of Medical Genetics criteria, including both heterozygous and homozygous variants classified as pathogenic or likely pathogenic. RESULTS Among 79 participants, heterozygous pathogenic variants were identified in 27 (34.1%), a higher prevalence than previously reported. No homozygous pathogenic variants were detected. The identified heterozygous pathogenic variants were roughly divided into 23.7% related to glomerulopathy, 36.8% related to tubulointerstitial disease, 10.5% related to cystic disease/ciliopathy, and 28.9% related to others. Diagnostic variants were found in 10 patients (12.7%) in seven genes (ABCC6, ALPL, ASXL1, BMPR2, GCM2, PAX2, and WT1), all associated with autosomal dominant congenital disease. CONCLUSIONS This study identified a considerable number of patients with DKD in Japan who carried kidney-related heterozygous pathogenic variants. These findings suggest potential ethnic differences and highlight the impact of database updates on variant detection.
Collapse
Affiliation(s)
- Toyohiro Hashiba
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuka Sugawara
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yosuke Hirakawa
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Dai Sato
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Singh A, Bocher O, Zeggini E. Insights into the molecular underpinning of type 2 diabetes complications. Hum Mol Genet 2025; 34:469-480. [PMID: 39807636 PMCID: PMC11891870 DOI: 10.1093/hmg/ddae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Type 2 diabetes (T2D) complications pose a significant global health challenge. Omics technologies have been employed to investigate these complications and identify the biological pathways involved. In this review, we focus on four major T2D complications: diabetic kidney disease, diabetic retinopathy, diabetic neuropathy, and cardiovascular complications. We discuss advancements in omics research, summarizing findings from genetic, epigenomic, transcriptomic, proteomic, and metabolomic studies across different ancestries and disease-relevant tissues. We stress the importance of integrating multi-omics techniques to elucidate the biological mechanisms underlying T2D complications and advocate for ancestrally diverse studies. Ultimately, these insights will improve risk prediction for T2D complications and inform translation strategies.
Collapse
Affiliation(s)
- Archit Singh
- Technical University of Munich (TUM), TUM School of Medicine and Health, Graduate School of Experimental Medicine and Health Sciences, Ismaninger Straße 22, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
- Munich School for Data Science (MUDS), Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Ozvan Bocher
- Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München- German Research Center for Environmental Health, Ingolstädter Landstraße 1, Neuherberg 85764, Germany
- TUM School of Medicine and Health, Technical University of Munich and Klinikum Rechts der Isar, Ismaninger Straße 22, Munich 81675, Germany
| |
Collapse
|
6
|
Hill C, McKnight AJ, Smyth LJ. Integrated multiomic analyses: An approach to improve understanding of diabetic kidney disease. Diabet Med 2025; 42:e15447. [PMID: 39460977 PMCID: PMC11733670 DOI: 10.1111/dme.15447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
AIM Diabetes is increasing in prevalence worldwide, with a 20% rise in prevalence predicted between 2021 and 2030, bringing an increased burden of complications, such as diabetic kidney disease (DKD). DKD is a leading cause of end-stage kidney disease, with significant impacts on patients, families and healthcare providers. DKD often goes undetected until later stages, due to asymptomatic disease, non-standard presentation or progression, and sub-optimal screening tools and/or provision. Deeper insights are needed to improve DKD diagnosis, facilitating the identification of higher-risk patients. Improved tools to stratify patients based on disease prognosis would facilitate the optimisation of resources and the individualisation of care. This review aimed to identify how multiomic approaches provide an opportunity to understand the complex underlying biology of DKD. METHODS This review explores how multiomic analyses of DKD are improving our understanding of DKD pathology, and aiding in the identification of novel biomarkers to detect disease earlier or predict trajectories. RESULTS Effective multiomic data integration allows novel interactions to be uncovered and empathises the need for harmonised studies and the incorporation of additional data types, such as co-morbidity, environmental and demographic data to understand DKD complexity. This will facilitate a better understanding of kidney health inequalities, such as social-, ethnicity- and sex-related differences in DKD risk, onset and progression. CONCLUSION Multiomics provides opportunities to uncover how lifetime exposures become molecularly embodied to impact kidney health. Such insights would advance DKD diagnosis and treatment, inform preventative strategies and reduce the global impact of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Amy Jayne McKnight
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| | - Laura J. Smyth
- Centre for Public Health, School of Medicine, Dentistry and Biomedical ScienceQueen's University BelfastBelfastUK
| |
Collapse
|
7
|
Rroji M, Spasovski G. Omics Studies in CKD: Diagnostic Opportunities and Therapeutic Potential. Proteomics 2024:e202400151. [PMID: 39523931 DOI: 10.1002/pmic.202400151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Omics technologies have significantly advanced the prediction and therapeutic approaches for chronic kidney disease (CKD) by providing comprehensive molecular insights. This is a review of the current state and future prospects of integrating biomarkers into the clinical practice for CKD, aiming to improve patient outcomes by targeted therapeutic interventions. In fact, the integration of genomic, transcriptomic, proteomic, and metabolomic data has enhanced our understanding of CKD pathogenesis and identified novel biomarkers for an early diagnosis and targeted treatment. Advanced computational methods and artificial intelligence (AI) have further refined multi-omics data analysis, leading to more accurate prediction models for disease progression and therapeutic responses. These developments highlight the potential to improve CKD patient care with a precise and individualized treatment plan .
Collapse
Affiliation(s)
- Merita Rroji
- Faculty of Medicine, Department of Nephrology, University of Medicine Tirana, Tirana, Albania
| | - Goce Spasovski
- Medical Faculty, Department of Nephrology, University of Skopje, Skopje, North Macedonia
| |
Collapse
|
8
|
Tariq Z, Abusnana S, Mussa BM, Zakaria H. New insights on genetic background of major diabetic vascular complications. Diabetol Metab Syndr 2024; 16:243. [PMID: 39375805 PMCID: PMC11457557 DOI: 10.1186/s13098-024-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND By 2045, it is expected that 693 million individuals worldwide will have diabetes and with greater risk of morbidity, mortality, loss of vision, renal failure, and a decreased quality of life due to the devastating effects of macro- and microvascular complications. As such, clinical variables and glycemic control alone cannot predict the onset of vascular problems. An increasing body of research points to the importance of genetic predisposition in the onset of both diabetes and diabetic vascular complications. OBJECTIVES Purpose of this article is to review these approaches and narrow down genetic findings for Diabetic Mellitus and its consequences, highlighting the gaps in the literature necessary to further genomic discovery. MATERIAL AND METHODS In the past, studies looking for genetic risk factors for diabetes complications relied on methods such as candidate gene studies, which were rife with false positives, and underpowered genome-wide association studies, which were constrained by small sample sizes. RESULTS The number of genetic findings for diabetes and diabetic complications has over doubled due to the discovery of novel genomics data, including bioinformatics and the aggregation of global cohort studies. Using genetic analysis to determine whether diabetes individuals are at the most risk for developing diabetic vascular complications (DVC) might lead to the development of more accurate early diagnostic biomarkers and the customization of care plans. CONCLUSIONS A newer method that uses extensive evaluation of single nucleotide polymorphisms (SNP) in big datasets is Genome-Wide Association Studies (GWAS).
Collapse
Affiliation(s)
- Zuira Tariq
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates
| | - Salah Abusnana
- Diabetes and Endocrinology Department, University Hospital Sharjah, P.O. Box: 27272, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| | - Bashair M Mussa
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hala Zakaria
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Imamura M, Maeda S. Genetic studies of type 2 diabetes, and microvascular complications of diabetes. Diabetol Int 2024; 15:699-706. [PMID: 39469559 PMCID: PMC11512959 DOI: 10.1007/s13340-024-00727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/24/2024] [Indexed: 10/30/2024]
Abstract
Genome-wide association studies (GWAS) have significantly advanced the identification of genetic susceptibility variants associated with complex diseases. As of 2023, approximately 800 variants predisposing individuals to the risk of type 2 diabetes (T2D) were identified through GWAS, and the majority of studies were predominantly conducted in European populations. Despite the shared nature of the majority of genetic susceptibility loci across diverse ethnic populations, GWAS in non-European populations, including Japanese and East Asian populations, have revealed population-specific T2D loci. Currently, polygenic risk scores (PRSs), encompassing millions of associated variants, can identify individuals with a higher T2D risk than the general population. However, GWAS focusing on microvascular complications of diabetes have identified a limited number of disease-susceptibility loci. Ongoing efforts are crucial to enhance the applicability of PRS for all ethnic groups and unravel the genetic architecture of microvascular complications of diabetes.
Collapse
Affiliation(s)
- Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0215 Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara-Cho, Okinawa 930-0215 Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Okinawa 903-0215 Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara-Cho, Okinawa 930-0215 Japan
| |
Collapse
|
10
|
Iwasaki H. Association between protein arginine N-methyltransferase 1 polymorphism and overt diabetic nephropathy: Role of asymmetric dimethylarginine in vascular tone. J Clin Transl Endocrinol 2024; 36:100351. [PMID: 38799240 PMCID: PMC11126532 DOI: 10.1016/j.jcte.2024.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Background ω-NG,NG-asymmetric dimethylarginine (ADMA) regulates vascular tone and may participate in the pathogenesis of diabetic nephropathy (DN). Objective To investigate whether single-nucleotide polymorphisms (SNPs) around the protein arginine N-methyltransferase 1 gene (PRMT1) influence ADMA dynamics and DN incidence and severity. Methods This study utilized a hospital-based database containing 310 Japanese patients with type 2 diabetes mellitus (T2DM). The association of PRMT1-related tagged SNPs with DN stage distribution was examined using a dominant model of minor alleles. PRMT1 mRNA, serum ADMA, reactive hyperemia-peripheral arterial tonometry index (RHI), and brachial-ankle pulse wave velocity (baPWV) were compared between the genotype-based subgroups of causal SNP, and correlations between these variables were evaluated. Results The composition of DN stages significantly differed between the GG and GA + AA subgroups of rs892151 (p = 0.026). In a propensity-matching cohort of rs892151, the GA + AA subgroup had an increased incidence of overt DN (odds ratio 2.92, 95 % confidence interval 1.12-7.62, p = 0.028), along with higher PRMT1 mRNA, serum ADMA levels, and baPWV than the GG subgroup (p < 0.001, p = 0.023 and 0.047, respectively). There were correlations between PRMT1 mRNA and serum ADMA levels, between serum ADMA levels and RHI, and between baPWV and urinary albumin excretion (r = 0.335, p < 0.001, r = -0.221, p = 0.029, and r = 0.254, p = 0.004, respectively). Conclusions T2DM patients carrying the PRMT1-related variant rs892151 were susceptible to overt DN. ADMA-mediated endothelial dysfunction and arterial stiffness may be involved in the variant-related pathogenesis of overt DN.
Collapse
Affiliation(s)
- Hiroaki Iwasaki
- Toshiba Rinkan Hospital, Division of Endocrinology and Metabolism, Department of Internal Medicine, 7-9-1 Kami-tsuruma, Minami-ku, Sagamihara, Kanagawa 252-0302, Japan
- Minamiyamato Hospital, Division of Endocrinology and Metabolism, Department of Internal Medicine, 1331-2 Shimowada, Yamato, Kanagawa 242-0015, Japan
| |
Collapse
|
11
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
12
|
Yin D, Li Y, Liao X, Tian D, Xu Y, Zhou C, Liu J, Li S, Zhou J, Nie Y, Liao H, Peng C. FTO: a critical role in obesity and obesity-related diseases. Br J Nutr 2023; 130:1657-1664. [PMID: 36944362 DOI: 10.1017/s0007114523000764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In recent years, obesity is a growing pandemic in the world and has likely contributed to increasing the incidence of obesity-related diseases. Fat mass and obesity-associated gene (FTO) is the first gene discovered which has a close connection with fat. Recent studies suggested that FTO gene has played an important role in the molecular mechanisms of many diseases. Obesity is considered to be a hereditary disease and can evoke many kinds of diseases, including polycystic ovary syndrome (PCOS), type 2 diabetes mellitus (T2DM), cancer, etc., whose exact possible molecular mechanisms responsible for the effect of FTO on obesity and obesity-related diseases remain largely unknown. In this review, we comprehensively discuss the correlation between FTO gene and obesity, cancer, PCOS, T2DM, as well as the molecular mechanism involved in these diseases.
Collapse
Affiliation(s)
- Dan Yin
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Yiyang Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Xingyue Liao
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Dewei Tian
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Yunsi Xu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Cuilan Zhou
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Suyun Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| | - Jing Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, Hunan421001, People's Republic of China
| | - Yulin Nie
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, Hunan421001, People's Republic of China
| | - Hongqing Liao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital, University of South China, 30# Jiefang Road, Hengyang, Hunan421001, People's Republic of China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan421001, People's Republic of China
| |
Collapse
|
13
|
Yang WS, Chuang GT, Che TPH, Chueh LY, Li WY, Hsu CN, Hsiung CN, Ku HC, Lin YC, Chen YS, Hee SW, Chang TJ, Chen SM, Hsieh ML, Lee HL, Liao KCW, Shen CY, Chang YC. Genome-Wide Association Studies for Albuminuria of Nondiabetic Taiwanese Population. Am J Nephrol 2023; 54:359-369. [PMID: 37437553 DOI: 10.1159/000531783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Chronic kidney disease, which is defined by a reduced estimated glomerular filtration rate and albuminuria, imposes a large health burden worldwide. Ethnicity-specific associations are frequently observed in genome-wide association studies (GWAS). This study conducts a GWAS of albuminuria in the nondiabetic population of Taiwan. METHODS Nondiabetic individuals aged 30-70 years without a history of cancer were enrolled from the Taiwan Biobank. A total of 6,768 subjects were subjected to a spot urine examination. After quality control using PLINK and imputation using SHAPEIT and IMPUTE2, a total of 3,638,350 single-nucleotide polymorphisms (SNPs) remained for testing. SNPs with a minor allele frequency of less than 0.1% were excluded. Linear regression was used to determine the relationship between SNPs and log urine albumin-to-creatinine ratio. RESULTS Six suggestive loci are identified in or near the FCRL3 (p = 2.56 × 10-6), TMEM161 (p = 4.43 × 10-6), EFCAB1 (p = 2.03 × 10-6), ELMOD1 (p = 2.97 × 10-6), RYR3 (p = 1.34 × 10-6), and PIEZO2 (p = 2.19 × 10-7). Genetic variants in the FCRL3 gene that encode a secretory IgA receptor are found to be associated with IgA nephropathy, which can manifest as proteinuria. The PIEZO2 gene encodes a sensor for mechanical forces in mesangial cells and renin-producing cells. Five SNPs with a p-value between 5 × 10-6 and 5 × 10-5 are also identified in five genes that may have a biological role in the development of albuminuria. CONCLUSION Five new loci and one known suggestive locus for albuminuria are identified in the nondiabetic Taiwanese population.
Collapse
Affiliation(s)
- Wei-Shun Yang
- Department of Internal Medicine, Division of Nephrology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan,
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan,
| | - Gwo-Tsann Chuang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Division of Nephrology, Department of Pediatrics, National Taiwan University Children's Hospital, Taipei, Taiwan
| | - Tony Pan-Hou Che
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Li-Yun Chueh
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Wen-Yi Li
- Department of Internal Medicine, Division of Nephrology, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chih-Neng Hsu
- Cardiovascular Center, National Taiwan University Hospital Yun-Lin Branch, Yunlin, Taiwan
| | - Chia-Ni Hsiung
- Data Science Statistical Cooperation Center, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Chia Ku
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yi-Ching Lin
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Yi-Shun Chen
- Department of Laboratory Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Jyun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiau-Mei Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Meng-Lun Hsieh
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Hsiao-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Sandholm N, Dahlström EH, Groop PH. Genetic and epigenetic background of diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1163001. [PMID: 37324271 PMCID: PMC10262849 DOI: 10.3389/fendo.2023.1163001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe diabetic complication that affects up to half of the individuals with diabetes. Elevated blood glucose levels are a key underlying cause of DKD, but DKD is a complex multifactorial disease, which takes years to develop. Family studies have shown that inherited factors also contribute to the risk of the disease. During the last decade, genome-wide association studies (GWASs) have emerged as a powerful tool to identify genetic risk factors for DKD. In recent years, the GWASs have acquired larger number of participants, leading to increased statistical power to detect more genetic risk factors. In addition, whole-exome and whole-genome sequencing studies are emerging, aiming to identify rare genetic risk factors for DKD, as well as epigenome-wide association studies, investigating DNA methylation in relation to DKD. This article aims to review the identified genetic and epigenetic risk factors for DKD.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Emma H. Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Shojima N, Yamauchi T. Progress in genetics of type 2 diabetes and diabetic complications. J Diabetes Investig 2023; 14:503-515. [PMID: 36639962 PMCID: PMC10034958 DOI: 10.1111/jdi.13970] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Type 2 diabetes results from a complex interaction between genetic and environmental factors. Precision medicine for type 2 diabetes using genetic data is expected to predict the risk of developing diabetes and complications and to predict the effects of medications and life-style intervention more accurately for individuals. Genome-wide association studies (GWAS) have been conducted in European and Asian populations and new genetic loci have been identified that modulate the risk of developing type 2 diabetes. Novel loci were discovered by GWAS in diabetic complications with increasing sample sizes. Large-scale genome-wide association analysis and polygenic risk scores using biobank information is making it possible to predict the development of type 2 diabetes. In the ADVANCE clinical trial of type 2 diabetes, a multi-polygenic risk score was useful to predict diabetic complications and their response to treatment. Proteomics and metabolomics studies have been conducted and have revealed the associations between type 2 diabetes and inflammatory signals and amino acid synthesis. Using multi-omics analysis, comprehensive molecular mechanisms have been elucidated to guide the development of targeted therapy for type 2 diabetes and diabetic complications.
Collapse
Affiliation(s)
- Nobuhiro Shojima
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Osman W, Mousa M, Albreiki M, Baalfaqih Z, Daggag H, Hill C, McKnight AJ, Maxwell AP, Al Safar H. A genome-wide association study identifies a possible role for cannabinoid signalling in the pathogenesis of diabetic kidney disease. Sci Rep 2023; 13:4661. [PMID: 36949158 PMCID: PMC10033677 DOI: 10.1038/s41598-023-31701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
Diabetic kidney disease (DKD), also known as diabetic nephropathy, is the leading cause of renal impairment and end-stage renal disease. Patients with diabetes are at risk for DKD because of poor control of their blood glucose, as well as nonmodifiable risk factors including age, ethnicity, and genetics. This genome-wide association study (GWAS) was conducted for the first time in the Emirati population to investigate possible genetic factors associated with the development and progression of DKD. We included data on 7,921,925 single nucleotide polymorphism (SNPs) in 258 cases of type 2 diabetes mellitus (T2DM) who developed DKD and 938 control subjects with T2DM who did not develop DKD. GWAS suggestive results (P < 1 × 10-5) were further replicated using summary statistics from three cohorts with T2DM-induced DKD (Bio Bank Japan data, UK Biobank, and FinnGen Project data) and T1DM-induced DKD (UK-ROI cohort data from Belfast, UK). When conducting a multiple linear regression model for gene-set analyses, the CNR2 gene demonstrated genome-wide significance at 1.46 × 10-6. SNPs in CNR2 gene, encodes cannabinoid receptor 2 or CB2, were replicated in Japanese samples with the leading SNP rs2501391 showing a Pcombined = 9.3 × 10-7, and odds ratio = 0.67 in association with DKD associated with T2DM, but not with T1DM, without any significant association with T2DM itself. The allele frequencies of our cohort and those of the replication cohorts were in most cases markedly different. In addition, we replicated the association between rs1564939 in the GLRA3 gene and DKD in T2DM (P = 0.016, odds ratio = 0.54 per allele C). Our findings suggest evidence that cannabinoid signalling may be involved in the development of DKD through CB2, which is expressed in different kidney regions and known to be involved in insulin resistance, inflammation, and the development of kidney fibrosis.
Collapse
Affiliation(s)
- Wael Osman
- Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Mira Mousa
- Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammed Albreiki
- Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Zahrah Baalfaqih
- Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hinda Daggag
- Imperial College of London Diabetes Centre, Abu Dhabi, United Arab Emirates
| | - Claire Hill
- Centre for Public Health, Queen's University of Belfast, Belfast, UK
| | | | | | - Habiba Al Safar
- Center for Biotechnology, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
- Department of Biomedical Engineering, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
17
|
Hill C, Duffy S, Coulter T, Maxwell AP, McKnight AJ. Harnessing Genomic Analysis to Explore the Role of Telomeres in the Pathogenesis and Progression of Diabetic Kidney Disease. Genes (Basel) 2023; 14:609. [PMID: 36980881 PMCID: PMC10048490 DOI: 10.3390/genes14030609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of diabetes is increasing globally, and this trend is predicted to continue for future decades. Research is needed to uncover new ways to manage diabetes and its co-morbidities. A significant secondary complication of diabetes is kidney disease, which can ultimately result in the need for renal replacement therapy, via dialysis or transplantation. Diabetic kidney disease presents a substantial burden to patients, their families and global healthcare services. This review highlights studies that have harnessed genomic, epigenomic and functional prediction tools to uncover novel genes and pathways associated with DKD that are useful for the identification of therapeutic targets or novel biomarkers for risk stratification. Telomere length regulation is a specific pathway gaining attention recently because of its association with DKD. Researchers are employing both observational and genetics-based studies to identify telomere-related genes associated with kidney function decline in diabetes. Studies have also uncovered novel functions for telomere-related genes beyond the immediate regulation of telomere length, such as transcriptional regulation and inflammation. This review summarises studies that have revealed the potential to harness therapeutics that modulate telomere length, or the associated epigenetic modifications, for the treatment of DKD, to potentially slow renal function decline and reduce the global burden of this disease.
Collapse
Affiliation(s)
- Claire Hill
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Seamus Duffy
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Tiernan Coulter
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| | - Alexander Peter Maxwell
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast BT9 7AB, UK
| | - Amy Jayne McKnight
- Centre for Public Health, Queen’s University of Belfast, Belfast BT12 6BA, UK
| |
Collapse
|
18
|
Long noncoding RNA ENST00000436340 promotes podocyte injury in diabetic kidney disease by facilitating the association of PTBP1 with RAB3B. Cell Death Dis 2023; 14:130. [PMID: 36792603 PMCID: PMC9932062 DOI: 10.1038/s41419-023-05658-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Dysfunction of podocytes has been regarded as an important early pathologic characteristic of diabetic kidney disease (DKD), but the regulatory role of long noncoding RNAs (lncRNAs) in this process remains largely unknown. Here, we performed RNA sequencing in kidney tissues isolated from DKD patients and nondiabetic renal cancer patients undergoing surgical resection and discovered that the novel lncRNA ENST00000436340 was upregulated in DKD patients and high glucose-induced podocytes, and we showed a significant correlation between ENST00000436340 and kidney injury. Gain- and loss-of-function experiments showed that silencing ENST00000436340 alleviated high glucose-induced podocyte injury and cytoskeleton rearrangement. Mechanistically, we showed that fat mass and obesity- associate gene (FTO)-mediated m6A induced the upregulation of ENST00000436340. ENST00000436340 interacted with polypyrimidine tract binding protein 1 (PTBP1) and augmented PTBP1 binding to RAB3B mRNA, promoted RAB3B mRNA degradation, and thereby caused cytoskeleton rearrangement and inhibition of GLUT4 translocation to the plasma membrane, leading to podocyte injury and DKD progression. Together, our results suggested that upregulation of ENST00000436340 could promote podocyte injury through PTBP1-dependent RAB3B regulation, thus suggesting a novel form of lncRNA-mediated epigenetic regulation of podocytes that contributes to the pathogenesis of DKD.
Collapse
|
19
|
Liu N, Wang G, Liu C, Liu J, Huang S, Zhou Y, Xiao E. Non-alcoholic fatty liver disease and complications in type 1 and type 2 diabetes: A Mendelian randomization study. Diabetes Obes Metab 2023; 25:365-376. [PMID: 36181433 DOI: 10.1111/dom.14877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 02/02/2023]
Abstract
AIM To investigate the potential causal relationship between non-alcoholic fatty liver disease (NAFLD) and complications in type 1 diabetes (T1D) and type 2 diabetes (T2D). MATERIALS AND METHODS Two-sample Mendelian randomization (MR) analysis was conducted to appraise after controlling for the confounding factors. Genetic instrument variables for NAFLD surrogated by chronically elevated serum alanine transferase were derived from a recent genome-wide association study. Diabetes-related complications, including diabetic ketoacidosis, nephropathy and retinopathy, were included as outcomes. Four complementary MR methods were used to test reliability. RESULTS Genetically instrumented NAFLD showed a suggestive causal association with ketoacidosis in T1D (odds ratio [OR]: 1.574; 95% confidence interval [CI]: 1.076, 2.302; P = .019; false discovery rate [FDR] = 0.096) and a significant causal association with early-stage kidney disease in T1D (OR: 1.249; 95% CI: 1.089, 1.432; P = 1.457 × 10-3 , FDR = 0.015). Sensitivity analysis indicated low heterogeneity, low pleiotropy and high reliability of the causal estimates. However, the MR analyses failed to show a causal association between NAFLD and T1D retinopathy, T2D ketoacidosis, nephropathy and retinopathy. CONCLUSIONS This study supports a causal effect of genetically driven chronic serum alanine aminotransferase-associated NAFLD on early-stage kidney disease in T1D and a suggestive causal effect on ketoacidosis in T1D. However, MR studies did not provide enough evidence to suggest that NAFLD independently increases the risk of retinopathy in T1D and of ketoacidosis, nephropathy and retinopathy in T2D.
Collapse
Affiliation(s)
- Ningyuan Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ge Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Liu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shengyuan Huang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Jin H, Kim YA, Lee Y, Kwon SH, Do AR, Seo S, Won S, Seo JH. Identification of genetic variants associated with diabetic kidney disease in multiple Korean cohorts via a genome-wide association study mega-analysis. BMC Med 2023; 21:16. [PMID: 36627639 PMCID: PMC9832630 DOI: 10.1186/s12916-022-02723-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The pathogenesis of diabetic kidney disease (DKD) is complex, involving metabolic and hemodynamic factors. Although DKD has been established as a heritable disorder and several genetic studies have been conducted, the identification of unique genetic variants for DKD is limited by its multiplex classification based on the phenotypes of diabetes mellitus (DM) and chronic kidney disease (CKD). Thus, we aimed to identify the genetic variants related to DKD that differentiate it from type 2 DM and CKD. METHODS We conducted a large-scale genome-wide association study mega-analysis, combining Korean multi-cohorts using multinomial logistic regression. A total of 33,879 patients were classified into four groups-normal, DM without CKD, CKD without DM, and DKD-and were further analyzed to identify novel single-nucleotide polymorphisms (SNPs) associated with DKD. Additionally, fine-mapping analysis was conducted to investigate whether the variants of interest contribute to a trait. Conditional analyses adjusting for the effect of type 1 DM (T1D)-associated HLA variants were also performed to remove confounding factors of genetic association with T1D. Moreover, analysis of expression quantitative trait loci (eQTL) was performed using the Genotype-Tissue Expression project. Differentially expressed genes (DEGs) were analyzed using the Gene Expression Omnibus database (GSE30529). The significant eQTL DEGs were used to explore the predicted interaction networks using search tools for the retrieval of interacting genes and proteins. RESULTS We identified three novel SNPs [rs3128852 (P = 8.21×10-25), rs117744700 (P = 8.28×10-10), and rs28366355 (P = 2.04×10-8)] associated with DKD. Moreover, the fine-mapping study validated the causal relationship between rs3128852 and DKD. rs3128852 is an eQTL for TRIM27 in whole blood tissues and HLA-A in adipose-subcutaneous tissues. rs28366355 is an eQTL for HLA-group genes present in most tissues. CONCLUSIONS We successfully identified SNPs (rs3128852, rs117744700, and rs28366355) associated with DKD and verified the causal association between rs3128852 and DKD. According to the in silico analysis, TRIM27 and HLA-A can define DKD pathophysiology and are associated with immune response and autophagy. However, further research is necessary to understand the mechanism of immunity and autophagy in the pathophysiology of DKD and to prevent and treat DKD.
Collapse
Affiliation(s)
- Heejin Jin
- Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Ye An Kim
- Division of Endocrinology, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Young Lee
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Jinhwangdo-ro 61-gil 53, Gangdong-gu, Seoul, Korea
| | - Seung-Hyun Kwon
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Jinhwangdo-ro 61-gil 53, Gangdong-gu, Seoul, Korea
| | - Ah Ra Do
- Interdisciplinary Program of Bioinformatics, College of National Sciences, Seoul National University, Seoul, South Korea
| | - Sujin Seo
- Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Sungho Won
- Institute of Health and Environment, Seoul National University, Seoul, Korea.,Department of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul, Korea.,RexSoft Corps, Seoul, Korea
| | - Je Hyun Seo
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Jinhwangdo-ro 61-gil 53, Gangdong-gu, Seoul, Korea.
| |
Collapse
|
21
|
Liu Y, Chen Y, Yang Q, Shen D, Du Z, Zhang G. Single nucleotide polymorphisms in the GFR-related gene and the SNP-SNP interactions on the risk of diabetic kidney disease in Chinese Han population. Acta Diabetol 2023; 60:115-125. [PMID: 36378321 DOI: 10.1007/s00592-022-01988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Genetic susceptibility is an important pathogenic mechanism in diabetic kidney disease (DKD). However, the specific gene variant associated with DKD susceptibility remains unclear. Glomerular filtration rate (GFR), an important indicator for the process of DKD, has a heritable component. This study aimed to explore whether these GFR-related single nucleotide polymorphisms (SNPs) were associated with DKD. METHODS GFR-related SNPs were collected from the Phenotype-Genotype Integrator (PheGenI) database. SNPs for population cohort analysis were selected following the criteria of complete records of eQTL and MAF > 5% in the Chinese Han population. Totally 498 subjects participated, including166 patients with DKD, 166 patients with T2DM, and 166 controls. The genotypes of SNPs were determined using a Sequenom MassARRAY system. Plink software was employed to analyze the SNP-SNP interactions. RESULTS By screening the GFR-related SNPs recorded in the PheGenI database, four SNPs (rs1260326, rs17319721, rs35716097, and rs6420094) were finally selected to investigate the association with DKD. It was shown that one of the four SNPs was related to DKD. The G allele of SLC34A1 rs6420094 was associated with a decreased risk of DKD in DKD and T2DM groups (OR 0.716; P = 0.049). Genetic model analysis revealed that rs6420094 was a protective factor for DKD in T2DM in a dominant model and an additive model (P = 0.03; P = 0.032, respectively). Although rs17319721 was not associated with the risk of DKD, the SNP-SNP interactions between rs17319721 and rs6420094 predicted a significantly decreased risk of DKD (OR 0.464; P = 0.047). CONCLUSION SLC34A1 rs6420094 was associated with a decreased DKD risk in the Chinese Han population. SNP-SNP interaction between rs17319721 and rs6420094 was associated with a lower risk of DKD.
Collapse
Affiliation(s)
- Yanxiu Liu
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Pediatric Nephrology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yan Chen
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiwei Yang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dihan Shen
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenwu Du
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China.
| | - Guizhen Zhang
- Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China.
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
22
|
Tziastoudi M, Theoharides TC, Nikolaou E, Efthymiadi M, Eleftheriadis T, Stefanidis I. Key Genetic Components of Fibrosis in Diabetic Nephropathy: An Updated Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:15331. [PMID: 36499658 PMCID: PMC9736240 DOI: 10.3390/ijms232315331] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Renal fibrosis (RF) constitutes the common end-point of all kinds of chronic kidney disease (CKD), regardless of the initial cause of disease. The aim of the present study was to identify the key players of fibrosis in the context of diabetic nephropathy (DN). A systematic review and meta-analysis of all available genetic association studies regarding the genes that are included in signaling pathways related to RF were performed. The evaluated studies were published in English and they were included in PubMed and the GWAS Catalog. After an extensive literature review and search of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, eight signaling pathways related to RF were selected and all available genetic association studies of these genes were meta-analyzed. ACE, AGT, EDN1, EPO, FLT4, GREM1, IL1B, IL6, IL10, IL12RB1, NOS3, TGFB1, IGF2/INS/TH cluster, and VEGFA were highlighted as the key genetic components driving the fibrosis process in DN. The present systematic review and meta-analysis indicate, as key players of fibrosis in DN, sixteen genes. However, the results should be interpreted with caution because the number of studies was relatively small.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02155, USA
- School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02155, USA
- Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA 02155, USA
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33314, USA
| | - Evdokia Nikolaou
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Maria Efthymiadi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
23
|
Priya SH, Kedari G, Naidu MP. Higher serum Sirtuin 1 levels and GA heterozygote of SIRT1 gene polymorphism rs10823108 serve as independent risk factor for diabetic nephropathy in women. HUMAN GENE 2022; 34:201084. [DOI: 10.1016/j.humgen.2022.201084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
|
24
|
Kadowaki T, Maegawa H, Watada H, Yabe D, Node K, Murohara T, Wada J. Interconnection between cardiovascular, renal and metabolic disorders: A narrative review with a focus on Japan. Diabetes Obes Metab 2022; 24:2283-2296. [PMID: 35929483 PMCID: PMC9804928 DOI: 10.1111/dom.14829] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023]
Abstract
Insights from epidemiological, clinical and basic research are illuminating the interplay between metabolic disorders, cardiovascular disease (CVD) and kidney dysfunction, termed cardio-renal-metabolic (CRM) disease. Broadly defined, CRM disease involves multidirectional interactions between metabolic diseases such as type 2 diabetes (T2D), various types of CVD and chronic kidney disease (CKD). T2D confers increased risk for heart failure, which-although well known-has only recently come into focus for treatment, and may differ by ethnicity, whereas atherosclerotic heart disease is a well-established complication of T2D. Many people with T2D also have CKD, with a higher risk in Asians than their Western counterparts. Furthermore, CVD increases the risk of CKD and vice versa, with heart failure, notably, present in approximately half of CKD patients. Molecular mechanisms involved in CRM disease include hyperglycaemia, insulin resistance, hyperactivity of the renin-angiotensin-aldosterone system, production of advanced glycation end-products, oxidative stress, lipotoxicity, endoplasmic reticulum stress, calcium-handling abnormalities, mitochondrial malfunction and deficient energy production, and chronic inflammation. Pathophysiological manifestations of these processes include diabetic cardiomyopathy, vascular endothelial dysfunction, cardiac and renal fibrosis, glomerular hyperfiltration, renal hypoperfusion and venous congestion, reduced exercise tolerance leading to metabolic dysfunction, and calcification of atherosclerotic plaque. Importantly, recognition of the interaction between CRM diseases would enable a more holistic approach to CRM care, rather than isolated treatment of individual conditions, which may improve patient outcomes. Finally, aspects of CRM diseases may differ between Western and East Asian countries such as Japan, a super-ageing country, with potential differences in epidemiology, complications and prognosis that represent an important avenue for future research.
Collapse
Affiliation(s)
| | | | - Hirotaka Watada
- Department of Metabolism and EndocrinologyJuntendo UniversityTokyoJapan
| | - Daisuke Yabe
- Department of Diabetes, Endocrinology and Metabolism and Department of Rheumatology and Clinical ImmunologyGifu University Graduate School of MedicineGifuJapan
- Yutaka Seino Distinguished Center for Diabetes ResearchKansai Electric Power Medical Research InstituteKyotoJapan
- Preemptive Food Research CenterGifu University Institute for Advanced StudyGifuJapan
- Center for Healthcare Information TechnologyTokai National Higher Education and Research SystemNagoyaJapan
| | - Koichi Node
- Department of Cardiovascular MedicineSaga UniversitySagaJapan
| | | | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and MetabolismOkayama UniversityOkayamaJapan
| |
Collapse
|
25
|
Hoseini Tavassol Z, Mousavi SM, Molaei B, Bandarian F, Ejtahed HS, Khalagi K, Ghannadi S, Larijani B, Hasani-Ranjbar S. Association of fat mass and obesity-associated ( FTO) gene polymorphisms with non-communicable diseases (NCDs) in the Iranian population: A systematic review of observational studies. J Diabetes Metab Disord 2022; 21:1975-1989. [PMID: 36404828 PMCID: PMC9672241 DOI: 10.1007/s40200-022-01139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/03/2022] [Indexed: 10/31/2022]
Abstract
Background Single nucleotide polymorphisms have been implicated in various diseases, most notably non-communicable diseases (NCDs). The aim of this study was to review available evidence regarding associations between FTO polymorphisms and NCDs in the Iranian population. Methods A comprehensive search was conducted through PubMed/Medline and Scopus databases up to December 2021, as well as reference lists of pertinent articles and key journals. All observational studies that examined the association between FTO gene polymorphisms and NCDs in the Iranian population were included. There was no limitation on the publication year. The Newcastle-Ottawa Scale (NOS) was used to assess the study's quality. Results The initial search yielded 95 studies, of which 30 studies were included in the current systematic review. The underlying disorders were obesity, type 2 diabetes, breast and colorectal cancers, depression, and metabolic syndrome. These studies found an association between FTO gene polymorphisms and obesity in the Iranian population, but the relationship with other NCDs was debatable. Even though, other diseases such as diabetes and metabolic syndrome, which are closely related to obesity, may also be associated with FTO gene polymorphisms. Conclusion FTO gene polymorphism appears to play a role in the occurrence of NCDs. Some of the study results may be misleading due to ethnic differences and the effect of other genetic factors on disease onset, which needs to be investigated further. Finally, FTO gene polymorphisms can be studied as a preventive or therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-01139-4.
Collapse
Affiliation(s)
- Zahra Hoseini Tavassol
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Mousavi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Molaei
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institutes, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Khalagi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Ghannadi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hasani-Ranjbar
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Genetics in chronic kidney disease: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int 2022; 101:1126-1141. [PMID: 35460632 PMCID: PMC9922534 DOI: 10.1016/j.kint.2022.03.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 01/19/2023]
Abstract
Numerous genes for monogenic kidney diseases with classical patterns of inheritance, as well as genes for complex kidney diseases that manifest in combination with environmental factors, have been discovered. Genetic findings are increasingly used to inform clinical management of nephropathies, and have led to improved diagnostics, disease surveillance, choice of therapy, and family counseling. All of these steps rely on accurate interpretation of genetic data, which can be outpaced by current rates of data collection. In March of 2021, Kidney Diseases: Improving Global Outcomes (KDIGO) held a Controversies Conference on "Genetics in Chronic Kidney Disease (CKD)" to review the current state of understanding of monogenic and complex (polygenic) kidney diseases, processes for applying genetic findings in clinical medicine, and use of genomics for defining and stratifying CKD. Given the important contribution of genetic variants to CKD, practitioners with CKD patients are advised to "think genetic," which specifically involves obtaining a family history, collecting detailed information on age of CKD onset, performing clinical examination for extrarenal symptoms, and considering genetic testing. To improve the use of genetics in nephrology, meeting participants advised developing an advanced training or subspecialty track for nephrologists, crafting guidelines for testing and treatment, and educating patients, students, and practitioners. Key areas of future research, including clinical interpretation of genome variation, electronic phenotyping, global representation, kidney-specific molecular data, polygenic scores, translational epidemiology, and open data resources, were also identified.
Collapse
|
27
|
Tziastoudi M, Dardiotis E, Pissas G, Filippidis G, Golfinopoulos S, Siokas V, Tachmitzi SV, Eleftheriadis T, Hadjigeorgiou GM, Tsironi E, Stefanidis I. Serpin Family E Member 1 Tag Single-Nucleotide Polymorphisms in Patients with Diabetic Nephropathy: An Association Study and Meta-Analysis Using a Genetic Model-Free Approach. Genes (Basel) 2021; 12:1887. [PMID: 34946835 PMCID: PMC8701119 DOI: 10.3390/genes12121887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Many lines of evidence highlight the genetic contribution on the development of diabetic nephropathy (DN). One of the studied genes is SERPINE1 whose the role in the risk of developing DN remains questionable. In order to elucidate the contribution of SERPINE1 in DN progression in the context of type 2 diabetes mellitus (T2DM), we conducted an association study and meta-analysis of SERPINE1 genetic variants. MATERIALS AND METHODS A total of 190 patients with DN, 150 T2DM (type 2 diabetes mellitus) patients without DN and 238 healthy controls were recruited. We selected five tag single-nucleotide polymorphisms (SNPs) from the HapMap. The generalized odds ratio (ORG) was calculated to estimate the risk on DN development. Subgroup analyses based on ethnicity and type of diabetes were also performed. RESULTS Both the present association study regarding SERPINE1 SNPs (rs2227667, rs2070682, rs1050813, rs2227690, rs2227692) did not found any significant association between SERPINE1 variants and DN and the meta-analysis of variant 4G>5G (rs1799889) did not also reveal a significant association between 4G>5G variant and DN in main and subgroup analyses. DISCUSSION In conclusion, the present association study and meta-analysis provides strong evidence that SERPINE1 genetic variant 4G>5G is not implicated in the risk or development of DN in Caucasians. Further studies in other populations remain to further investigate the role of this variant in the course of DN.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (G.P.); (G.F.); (S.G.); (T.E.); (I.S.)
| | - Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece; (E.D.); (V.S.); (G.M.H.)
| | - Georgios Pissas
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (G.P.); (G.F.); (S.G.); (T.E.); (I.S.)
| | - Georgios Filippidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (G.P.); (G.F.); (S.G.); (T.E.); (I.S.)
| | - Spyridon Golfinopoulos
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (G.P.); (G.F.); (S.G.); (T.E.); (I.S.)
| | - Vasileios Siokas
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece; (E.D.); (V.S.); (G.M.H.)
| | - Sophia V. Tachmitzi
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (S.V.T.); (E.T.)
| | - Theodoros Eleftheriadis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (G.P.); (G.F.); (S.G.); (T.E.); (I.S.)
| | - Georgios M. Hadjigeorgiou
- Laboratory of Neurogenetics, Department of Neurology, University Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece; (E.D.); (V.S.); (G.M.H.)
- Department of Neurology, Medical School, University of Cyprus, Nicosia 22006, Cyprus
| | - Evangelia Tsironi
- Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (S.V.T.); (E.T.)
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (G.P.); (G.F.); (S.G.); (T.E.); (I.S.)
| |
Collapse
|
28
|
Govender MA, Brandenburg JT, Fabian J, Ramsay M. The Use of 'Omics for Diagnosing and Predicting Progression of Chronic Kidney Disease: A Scoping Review. Front Genet 2021; 12:682929. [PMID: 34819944 PMCID: PMC8606569 DOI: 10.3389/fgene.2021.682929] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Globally, chronic kidney disease (CKD) contributes substantial morbidity and mortality. Recently, various 'omics platforms have provided insight into the molecular basis of kidney dysfunction. This scoping review is a synthesis of the current literature on the use of different 'omics platforms to identify biomarkers that could be used to detect early-stage CKD, predict disease progression, and identify pathways leading to CKD. This review includes 123 articles published from January 2007 to May 2021, following a structured selection process. The most common type of 'omic platform was proteomics, appearing in 55 of the studies and two of these included a metabolomics component. Most studies (n = 91) reported on CKD associated with diabetes mellitus. Thirteen studies that provided information on the biomarkers associated with CKD and explored potential pathways involved in CKD are discussed. The biomarkers that are associated with risk or early detection of CKD are SNPs in the MYH9/APOL1 and UMOD genes, the proteomic CKD273 biomarker panel and metabolite pantothenic acid. Pantothenic acid and the CKD273 biomarker panel were also involved in predicting CKD progression. Retinoic acid pathway genes, UMOD, and pantothenic acid provided insight into potential pathways leading to CKD. The biomarkers were mainly used to detect CKD and predict progression in high-income, European ancestry populations, highlighting the need for representative 'omics research in other populations with disparate socio-economic strata, including Africans, since disease etiologies may differ across ethnic groups. To assess the transferability of findings, it is essential to do research in diverse populations.
Collapse
Affiliation(s)
- Melanie A. Govender
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - June Fabian
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
29
|
Li M, Deng L, Xu G. METTL14 promotes glomerular endothelial cell injury and diabetic nephropathy via m6A modification of α-klotho. Mol Med 2021; 27:106. [PMID: 34503454 PMCID: PMC8427885 DOI: 10.1186/s10020-021-00365-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background N6-Methyladenosine (m6A) modification has been implicated in many bioprocesses. However, its functions in diabetic nephropathy (DN) have not been determined. Here, we investigated the role of METTL14, a key component of the m6A methyltransferase complex, in DN. Methods The expression of METTL14 was detected in DN patients and human renal glomerular endothelial cells (HRGECs). In vitro and in vivo experiments were performed to explore the functions of METTL14 on high glocse-induced HRGECs and renal injury of DN mice. We also investigated whether METTL14 works by regulating α-klotho expression through m6A modification. Results METTL14 were highly expressed in kidneys of DN patients and high glocse-induced HRGECs both at the mRNA and protein level. Overexpression of METTL14 increased ROS, TNF-α and IL-6 levels and apoptosis in HRGECs. Conversely, METTL14 silence decreased the levels of ROS, TNF-α and IL-6 and cell apoptosis. We confirmed that METTL14 down-regulated α-klotho expression in an m6A-dependent manner. In addition, we also found that METTL14 aggravated renal injury and inflammation of db/db mice, which could partially rescued by α-klotho. Conclusion Our data revealed that METTL14 plays a vital role in high glucose-induced glomerular endothelial cells and diabetic nephropathy through m6A modification of α-klotho.
Collapse
Affiliation(s)
- Manna Li
- Department of Nephrology, The Second Affiliated Hospital to Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, China
| | - Le Deng
- Department of Nephrology, The Second Affiliated Hospital to Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital to Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, 330006, China.
| |
Collapse
|
30
|
Liu Y, Zhang X, Lee J, Smelser D, Cade B, Chen H, Zhou H, Kirchner HL, Lin X, Mukherjee S, Hillman D, Liu CT, Redline S, Sofer T. Genome-wide association study of neck circumference identifies sex-specific loci independent of generalized adiposity. Int J Obes (Lond) 2021; 45:1532-1541. [PMID: 33907307 PMCID: PMC8236408 DOI: 10.1038/s41366-021-00817-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/06/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND/OBJECTIVES Neck circumference, an index of upper airway fat, has been suggested to be an important measure of body-fat distribution with unique associations with health outcomes such as obstructive sleep apnea and metabolic disease. This study aims to study the genetic bases of neck circumference. METHODS We conducted a multi-ethnic genome-wide association study of neck circumference, adjusted and unadjusted for BMI, in up to 15,090 European Ancestry (EA) and African American (AA) individuals. Because sexually dimorphic associations have been observed for anthropometric traits, we conducted both sex-combined and sex-specific analysis. RESULTS We identified rs227724 near the Noggin (NOG) gene as a possible quantitative locus for neck circumference in men (N = 8831, P = 1.74 × 10-9) but not in women (P = 0.08). The association was replicated in men (N = 1554, P = 0.045) in an independent dataset. This locus was previously reported to be associated with human height and with self-reported snoring. We also identified rs13087058 on chromosome 3 as a suggestive locus in sex-combined analysis (N = 15090, P = 2.94 × 10-7; replication P =0.049). This locus was also associated with electrocardiogram-assessed PR interval and is a cis-expression quantitative locus for the PDZ Domain-containing ring finger 2 (PDZRN3) gene. Both NOG and PDZRN3 interact with members of transforming growth factor-beta superfamily signaling proteins. CONCLUSIONS Our study suggests that neck circumference may have unique genetic basis independent of BMI.
Collapse
Affiliation(s)
- Yaowu Liu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaoyu Zhang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jiwon Lee
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Diane Smelser
- Department of Molecular and Functional Genomics, Geisinger Clinic, Danville, PA, USA
| | - Brian Cade
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - H Lester Kirchner
- Department of Population Health Sciences, Geisinger Clinic, Danville, PA, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA, USA
| | - Sutapa Mukherjee
- Sleep Health Service, Respiratory and Sleep Services, Southern Adelaide Local Health Network, Adelaide, SA, Australia
- Adelaide Institute for Sleep Health, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David Hillman
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Susan Redline
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tamar Sofer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Marchetti J, Balbino KP, Hermsdorff HHM, Juvanhol LL, Martinez JA, Steemburgo T. Relationship between the FTO Genotype and Early Chronic Kidney Disease in Type 2 Diabetes: The Mediating Role of Central Obesity, Hypertension, and High Albuminuria. Lifestyle Genom 2021; 14:73-80. [PMID: 34134115 DOI: 10.1159/000516118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/23/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Single nucleotide polymorphisms (SNP) in the fat mass and obesity-associated (FTO) gene have been associated with type 2 diabetes (T2D) and its complications. The aim of the present research was to investigate which and how (directly or indirectly) clinical and metabolic variables mediate the association between fat mass and the FTO gene and early chronic kidney disease (CKD) in individuals with T2D. METHODS This cross-sectional study was conducted in a sample of 236 participants with T2D (53.4% women, mean age 60 ± 10 years). DNA samples were genotyped for the rs7204609 polymorphism (C/T) in the FTO gene. Clinical, anthropometric, and metabolic data were collected. Path analysis was used to evaluate the associations. RESULTS Of the sample, 78 individuals with T2D had CKD (33%). Presence of the risk allele (C) was higher among participants with CKD (21.8 vs. 10.8%; p = 0.023). This polymorphism was positively associated with higher waist circumference, which in turn was associated with higher glycated hemoglobin and higher blood pressure. A higher blood-pressure level was associated with higher urinary albumin excretion (UAE) and as expected, higher UAE was associated with CKD. Path analysis showed an indirect relationship between the FTO gene and early CKD, mediated by waist circumference, blood-pressure levels, and UAE. CONCLUSIONS These findings suggest that the C allele may contribute to genetic susceptibility to CKD in individuals with T2D through the presence of central obesity, hypertension, and high albuminuria.
Collapse
Affiliation(s)
- Júlia Marchetti
- Postgraduate Program in Food, Nutrition, and Health, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| | - Karla P Balbino
- Department of Nutrition and Health, Universidade Federal de Viçosa - UFV, Viçosa, Brazil
| | | | - Leidjaira L Juvanhol
- Department of Nutrition and Health, Universidade Federal de Viçosa - UFV, Viçosa, Brazil
| | - José Alfredo Martinez
- Centro de Nutrición, Universidad de Navarra, Pamplona, IMDEA (CSIC-UAM) Precision Nutrition Program CIBERobn, Instituto Carlos III, Madrid, Spain
| | - Thais Steemburgo
- Postgraduate Program in Food, Nutrition, and Health, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Brazil
| |
Collapse
|
32
|
Imamura M, Takahashi A, Matsunami M, Horikoshi M, Iwata M, Araki SI, Toyoda M, Susarla G, Ahn J, Park KH, Kong J, Moon S, Sobrin L, International Diabetic Retinopathy and Genetics CONsortium (iDRAGON), Yamauchi T, Tobe K, Maegawa H, Kadowaki T, Maeda S. Genome-wide association studies identify two novel loci conferring susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. Hum Mol Genet 2021; 30:716-726. [PMID: 33607655 PMCID: PMC9022108 DOI: 10.1093/hmg/ddab044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Several reports have suggested that genetic susceptibility contributes to the development and progression of diabetic retinopathy. We aimed to identify genetic loci that confer susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. We analysed 5 790 508 single nucleotide polymorphisms (SNPs) in 8880 Japanese patients with type 2 diabetes, 4839 retinopathy cases and 4041 controls, as well as 2217 independent Japanese patients with type 2 diabetes, 693 retinopathy cases and 1524 controls. The results of these two genome-wide association studies (GWAS) were combined with an inverse variance meta-analysis (Stage-1), followed by de novo genotyping for the candidate SNP loci (P < 1.0 × 10-4) in an independent case-control study (Stage-2, 2260 cases and 723 controls). After combining the association data (Stages 1 and 2) using meta-analysis, the associations of two loci reached a genome-wide significance level: rs12630354 near STT3B on chromosome 3, P = 1.62 × 10-9, odds ratio (OR) = 1.17, 95% confidence interval (CI) 1.11-1.23, and rs140508424 within PALM2 on chromosome 9, P = 4.19 × 10-8, OR = 1.61, 95% CI 1.36-1.91. However, the association of these two loci was not replicated in Korean, European or African American populations. Gene-based analysis using Stage-1 GWAS data identified a gene-level association of EHD3 with susceptibility to diabetic retinopathy (P = 2.17 × 10-6). In conclusion, we identified two novel SNP loci, STT3B and PALM2, and a novel gene, EHD3, that confers susceptibility to diabetic retinopathy; however, further replication studies are required to validate these associations.
Collapse
Affiliation(s)
- Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa 903-0215, Japan
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Takahashi
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Osaka 564-8565, Japan
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Minoru Iwata
- First Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan
- Itoigawa Community Medical Unit, Toyama University Hospital, Toyama 930-0194, Japan
| | - Shin-ichi Araki
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Masao Toyoda
- Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Gayatri Susarla
- Massachusetts Eye and Ear Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul Municipal Government Seoul National University Boramae Medical Center, Seoul 07061, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jinhwa Kong
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| | - Sanghoon Moon
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do 28159, Korea
| | - Lucia Sobrin
- Massachusetts Eye and Ear Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
- Toranomon Hospital, Tokyo 105-8470, Japan
- Okinaka Memorial Institute for Medical Research, Tokyo 105-8470, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa 903-0215, Japan
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
33
|
Tziastoudi M, Stefanidis I, Zintzaras E. The genetic map of diabetic nephropathy: evidence from a systematic review and meta-analysis of genetic association studies. Clin Kidney J 2020; 13:768-781. [PMID: 33123356 PMCID: PMC7577775 DOI: 10.1093/ckj/sfaa077] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Indexed: 12/20/2022] Open
Abstract
Despite the extensive efforts of scientists, the genetic background of diabetic nephropathy (DN) has not yet been clarified. To elucidate the genetic variants that predispose to the development of DN, we conducted a systematic review and meta-analysis of all available genetic association studies (GAS) of DN. We searched in the Human Genome Epidemiology Navigator (HuGE Navigator) and PubMed for available GAS of DN. The threshold for meta-analysis was three studies per genetic variant. The association between genotype distribution and DN was examined using the generalized linear odds ratio (ORG). For variants with available allele frequencies, the examined model was the allele contrast. The pooled OR was estimated using the DerSimonian and Laird random effects model. The publication bias was assessed with Egger’s test. We performed pathway analysis of significant genes with DAVID 6.7. Genetic data of 606 variants located in 228 genes were retrieved from 360 GASs and were synthesized with meta-analytic methods. ACACB, angiotensin I-converting enzyme (ACE), ADIPOQ, AGT, AGTR1, AKR1B1, APOC1, APOE, ATP1B2, ATP2A3, CARS, CCR5, CGNL1, Carnosine dipeptidase 1 (CNDP1), CYGB-PRCD, EDN1, Engulfment and cell motility 1 (ELMO1), ENPP1, EPO, FLT4, FTO, GLO1, HMGA2, IGF2/INS/TH cluster, interleukin 1B (IL1B), IL8, IL10, KCNQ1, KNG, LOC101927627, Methylenetetrahydrofolate reductase, nitric oxide synthase 3 (NOS3), SET domain containing seven, histone lysine methyltransferase (SETD7), Sirtuin 1 (SIRT1), SLC2A1, SLC2A2, SLC12A3, SLC19A3, TCF7L2, TGFB1, TIMP1, TTC39C, UNC13B, VEGFA, WTAPP1, WWC1 as well as XYLT1 and three intergenic polymorphisms showed significant association with DN. Pathway analysis revealed the overrepresentation of six signalling pathways. The significant findings provide further evidence for genetic factors implication in DN offering new perspectives in discovery of new therapies.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Biomathematics, University of Thessaly, School of Medicine, Larissa, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, University of Thessaly, School of Medicine, Larissa, Greece
| | - Elias Zintzaras
- Department of Biomathematics, University of Thessaly, School of Medicine, Larissa, Greece.,The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
34
|
Abstract
Diabetes is one of the fastest growing diseases worldwide, projected to affect 693 million adults by 2045. Devastating macrovascular complications (cardiovascular disease) and microvascular complications (such as diabetic kidney disease, diabetic retinopathy and neuropathy) lead to increased mortality, blindness, kidney failure and an overall decreased quality of life in individuals with diabetes. Clinical risk factors and glycaemic control alone cannot predict the development of vascular complications; numerous genetic studies have demonstrated a clear genetic component to both diabetes and its complications. Early research aimed at identifying genetic determinants of diabetes complications relied on familial linkage analysis suited to strong-effect loci, candidate gene studies prone to false positives, and underpowered genome-wide association studies limited by sample size. The explosion of new genomic datasets, both in terms of biobanks and aggregation of worldwide cohorts, has more than doubled the number of genetic discoveries for both diabetes and diabetes complications. We focus herein on genetic discoveries for diabetes and diabetes complications, empowered primarily through genome-wide association studies, and emphasize the gaps in research for taking genomic discovery to the next level.
Collapse
Affiliation(s)
- Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Clinical correlations and genetic associations of metabolic syndrome in the United Arab Emirates. Gene 2020; 738:144476. [PMID: 32061761 DOI: 10.1016/j.gene.2020.144476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/22/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Metabolic syndrome (MetS) contributes to increased risk of morbidity and mortality. The United Arab Emirates (UAE) has a high prevalence of MetS which may be linked to modifiable and genetic risk factors in the local population. The association between MetS as a phenotype and key genetic variants in the UAE has not been investigated. This study reports on the clinical, biochemical and genetic associations of MetS and its risk factors to improve individualized medicine outcomes. METHODS There were 471 subjects included in this cross-sectional study, 367 with MetS and 104 without MetS. Along with clinical and laboratory parameters, multiple risk genetic variants were tested for their association with MetS, which include 49 variants that have previously been shown to be linked with MetS development as a phenotype, 116 variants for association with waist-hip ratio (WHR), 398 variants with body-mass index (BMI), 213 variants with T2DM and insulin resistance, 307 variants with different lipid traits, 308 variants with blood pressure traits, and 64 variants with coronary and cerebrovascular accidents. RESULTS Patients with MetS had higher rates of type 2 diabetes mellitus (T2DM), hypertension and dyslipidemia (p < 0.0001). Waist circumference and T2DM were identified as the key risk factors for MetS development. Individuals with MetS were also found to have a higher rate of clinical complications than those without MetS (76% vs. 52%). Several gene variants including those of the FTO gene were found to be associated with a predisposition to developing MetS or some of its components (PFTO ~0.005-0.009). CONCLUSIONS This study showed associations between MetS as well as clinical factors contributing to MetS and specific genetic and metabolic risk factors, providing an insight into the metabolic and genetic links to disease development. Knowledge with respect to population specific risk markers including at risk genotypes will help in early identification of individuals with increased susceptibility to MetS in the UAE and provide the opportunity for timely intervention to prevent or delay the onset of MetS.
Collapse
|
36
|
Osman WM, Jelinek HF, Tay GK, Hassan MH, Almahmeed W, Khandoker AH, Khalaf K, Alsafar HS. Genetics of diabetic kidney disease: A follow-up study in the Arab population of the United Arab Emirates. Mol Genet Genomic Med 2019; 7:e985. [PMID: 31568687 PMCID: PMC6900378 DOI: 10.1002/mgg3.985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Two genome-wide association studies in European and Japanese populations reported on new loci for diabetic kidney disease (DKD), including FTO. In this study, we have replicated these investigations on a cohort of 410 Type 2 diabetes mellitus (T2DM) patients of Arab origin from the United Arab Emirates (UAE). METHODS AND RESULTS The cohort included 145 diabetic patients diagnosed with DKD and 265 diabetics free of the disease. In general, we were able to confirm the association between the FTO locus and DKD, as reported in the Japanese population. Specifically, there were significant associations with two single nucleotide polymorphisms (SNPs), namely rs1421086 (p = .013, OR = 1.52 depending on allele G, 95% CI: 1.09-2.11) and rs17817449 (p = .0088, OR = 1.55 depending on allele C, 95% CI: 1.12-2.14) of the FTO locus. Both SNPs were in linkage disequilibrium with rs56094641, also as reported in the Japanese population. While the alleles of both SNPs, which increase the risk of DKD, were associated with higher Body Mass Index (BMI), their associations with DKD were independent of the BMI effects. CONCLUSIONS This study confirms that FTO is a multiethnic locus for DKD which is independent from any influence of BMI and/or obesity.
Collapse
Affiliation(s)
- Wael M. Osman
- Center for BiotechnologyKhalifa UniversityAbu DhabiUnited Arab Emirates
| | - Herbert F. Jelinek
- School of Community HealthCharles Sturt UniversityAlburyAustralia
- Australian School of Advanced MedicineMacquarie UniversitySydneyAustralia
| | - Guan K. Tay
- Center for BiotechnologyKhalifa UniversityAbu DhabiUnited Arab Emirates
- School of Health and Medical SciencesEdith Cowan UniversityJoondalupAustralia
- School of Psychiatry and Clinical NeurosciencesUniversity of Western AustraliaCrawleyAustralia
- Department of Biomedical EngineeringKhalifa UniversityAbu DhabiUnited Arab Emirates
| | - Mohamed H. Hassan
- Nephrology DivisionMedical InstituteSheikh Khalifa Medical CityAbu DhabiUnited Arab Emirates
| | - Wael Almahmeed
- Institute of Cardiac ScienceSheikh Khalifa Medical CityAbu DhabiUnited Arab Emirates
- Heart and Vascular InstituteCleveland ClinicAbu DhabiUnited Arab Emirates
| | - Ahsan H. Khandoker
- Department of Biomedical EngineeringKhalifa UniversityAbu DhabiUnited Arab Emirates
| | - Kinda Khalaf
- Department of Biomedical EngineeringKhalifa UniversityAbu DhabiUnited Arab Emirates
| | - Habiba S. Alsafar
- Center for BiotechnologyKhalifa UniversityAbu DhabiUnited Arab Emirates
- Department of Biomedical EngineeringKhalifa UniversityAbu DhabiUnited Arab Emirates
- College of Medicine and Health SciencesKhalifa University of Science and TechnologyAbu DhabiUnited Arab Emirates
| |
Collapse
|
37
|
Vuori N, Sandholm N, Kumar A, Hietala K, Syreeni A, Forsblom C, Juuti-Uusitalo K, Skottman H, Imamura M, Maeda S, Summanen PA, Lehto M, Groop PH. CACNB2 Is a Novel Susceptibility Gene for Diabetic Retinopathy in Type 1 Diabetes. Diabetes 2019; 68:2165-2174. [PMID: 31439644 PMCID: PMC6804633 DOI: 10.2337/db19-0130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023]
Abstract
Diabetic retinopathy is a common diabetes complication that threatens the eyesight and may eventually lead to acquired visual impairment or blindness. While a substantial heritability has been reported for proliferative diabetic retinopathy (PDR), only a few genetic risk factors have been identified. Using genome-wide sib pair linkage analysis including 361 individuals with type 1 diabetes, we found suggestive evidence of linkage with PDR at chromosome 10p12 overlapping the CACNB2 gene (logarithm of odds = 2.73). Evidence of association between variants in CACNB2 and PDR was also found in association analysis of 4,005 individuals with type 1 diabetes with an odds ratio of 0.83 and P value of 8.6 × 10-4 for rs11014284. Sequencing of CACNB2 revealed two coding variants, R476C/rs202152674 and S502L/rs137886839. CACNB2 is abundantly expressed in retinal cells and encodes the β2 subunit of the L-type calcium channel. Blocking vascular endothelial growth factor (VEGF) by intravitreous anti-VEGF injections is a promising clinical therapy to treat PDR. Our data show that L-type calcium channels regulate VEGF expression and secretion from retinal pigment epithelial cells (ARPE19) and support the role of CACNB2 via regulation of VEGF in the pathogenesis of PDR. However, further genetic and functional studies are necessary to consolidate the findings.
Collapse
Affiliation(s)
- Nadja Vuori
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anmol Kumar
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Anna Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carol Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kati Juuti-Uusitalo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Minako Imamura
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Shiro Maeda
- Laboratory for Endocrinology, Metabolism and Kidney Diseases, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Paula A. Summanen
- Ophthalmology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Corresponding author: Per-Henrik Groop,
| |
Collapse
|