1
|
Zitzmann C, Dächert C, Schmid B, van der Schaar H, van Hemert M, Perelson AS, van Kuppeveld FJM, Bartenschlager R, Binder M, Kaderali L. Mathematical modeling of plus-strand RNA virus replication to identify broad-spectrum antiviral treatment strategies. PLoS Comput Biol 2023; 19:e1010423. [PMID: 37014904 PMCID: PMC10104377 DOI: 10.1371/journal.pcbi.1010423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/14/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Plus-strand RNA viruses are the largest group of viruses. Many are human pathogens that inflict a socio-economic burden. Interestingly, plus-strand RNA viruses share remarkable similarities in their replication. A hallmark of plus-strand RNA viruses is the remodeling of intracellular membranes to establish replication organelles (so-called "replication factories"), which provide a protected environment for the replicase complex, consisting of the viral genome and proteins necessary for viral RNA synthesis. In the current study, we investigate pan-viral similarities and virus-specific differences in the life cycle of this highly relevant group of viruses. We first measured the kinetics of viral RNA, viral protein, and infectious virus particle production of hepatitis C virus (HCV), dengue virus (DENV), and coxsackievirus B3 (CVB3) in the immuno-compromised Huh7 cell line and thus without perturbations by an intrinsic immune response. Based on these measurements, we developed a detailed mathematical model of the replication of HCV, DENV, and CVB3 and showed that only small virus-specific changes in the model were necessary to describe the in vitro dynamics of the different viruses. Our model correctly predicted virus-specific mechanisms such as host cell translation shut off and different kinetics of replication organelles. Further, our model suggests that the ability to suppress or shut down host cell mRNA translation may be a key factor for in vitro replication efficiency, which may determine acute self-limited or chronic infection. We further analyzed potential broad-spectrum antiviral treatment options in silico and found that targeting viral RNA translation, such as polyprotein cleavage and viral RNA synthesis, may be the most promising drug targets for all plus-strand RNA viruses. Moreover, we found that targeting only the formation of replicase complexes did not stop the in vitro viral replication early in infection, while inhibiting intracellular trafficking processes may even lead to amplified viral growth.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Christopher Dächert
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bianca Schmid
- Dept of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Hilde van der Schaar
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Martijn van Hemert
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Frank J. M. van Kuppeveld
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ralf Bartenschlager
- Division of infectious Diseases and Immunology, Virology Section, Dept of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
- Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg partner site, Heidelberg, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
2
|
Jiyarom B, Giannakopoulos S, Strange DP, Panova N, Gale M, Verma S. RIG-I and MDA5 are modulated by bone morphogenetic protein (BMP6) and are essential for restricting Zika virus infection in human Sertoli cells. Front Microbiol 2023; 13:1062499. [PMID: 36713156 PMCID: PMC9878278 DOI: 10.3389/fmicb.2022.1062499] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Sexual transmission of Zika virus (ZIKV) is associated with virus persistence in the testes and shedding in the seminal fluid for months after recovery. We previously demonstrated that ZIKV can establish long-term replication without causing cytotoxicity in human Sertoli cells (SC), responsible for maintaining the immune privileged compartment of seminiferous tubules. Functional gene expression analyses also predicted activation of multiple virus sensing pathways including TLR3, RIG-I, and MDA5. Here, we elucidated which of the RNA virus sensing receptors play a decisive role in restricting ZIKV replication. We show that both poly I:C and IFN-β treatment induced a robust antiviral state and reduced ZIKV replication significantly, suggesting that virus sensing and antiviral signaling are functional in SC. Silencing of TLR3, 7, and 9 did not affect virus replication kinetics; however, both RIG-I and MDA5 played a synergistic role in inducing an anti-ZIKV response. Further, the impact of SC-specific immunosuppressive pathways that collectively regulate SC function, specifically the TGF-β superfamily members, TGF-β, Activin A, and BMP6, on ZIKV replication was investigated. While ZIKV did not modulate the expression of TGF-β and Activin A, BMP6 signaling was suppressed at later stages of infection. Notably, treatment with BMP6 increased IFN-β, p-IRF3, and p-STAT1 levels, and expression of key interferon-stimulated genes including MDA5, suggesting that BMP6 enhances antiviral response in SC. Collectively, this study further delineates the key role of the RIG-I-like receptors in sensing ZIKV in SC, and reveals a novel role of BMP6 in modulating innate immune and antiviral response in the testes.
Collapse
Affiliation(s)
- Boonyanudh Jiyarom
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Stefanos Giannakopoulos
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Daniel P. Strange
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Nataliya Panova
- John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA, United States
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States,*Correspondence: Saguna Verma, ✉
| |
Collapse
|
3
|
Caruso M, Meurant S, Detraux D, Mathieu A, Gilson M, Dieu M, Fattaccioli A, Demazy C, Najimi M, Sokal E, Arnould T, Verfaillie C, Lafontaine DLJ, Renard P. The global downregulation of protein synthesis observed during hepatogenic maturation is associated with a decrease in TOP mRNA translation. Stem Cell Reports 2022; 18:254-268. [PMID: 36563686 PMCID: PMC9860114 DOI: 10.1016/j.stemcr.2022.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Translational regulation is of paramount importance for proteome remodeling during stem cell differentiation at both the global and the transcript-specific levels. In this study, we characterized translational remodeling during hepatogenic differentiation of induced pluripotent stem cells (iPSCs) by polysome profiling. We demonstrate that protein synthesis increases during exit from pluripotency and is then globally repressed during later steps of hepatogenic maturation. This global downregulation of translation is accompanied by a decrease in the abundance of protein components of the translation machinery, which involves a global reduction in translational efficiency of terminal oligopyrimidine tract (TOP) mRNA encoding translation-related factors. Despite global translational repression during hepatogenic differentiation, key hepatogenic genes remain efficiently translated, and the translation of several transcripts involved in hepatospecific functions and metabolic maturation is even induced. We conclude that, during hepatogenic differentiation, a global decrease in protein synthesis is accompanied by a specific translational rewiring of hepatospecific transcripts.
Collapse
Affiliation(s)
- Marino Caruso
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Sébastien Meurant
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Damien Detraux
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Amandine Mathieu
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium; Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC), Catholic University of Louvain, Brussels, Belgium
| | - Manon Gilson
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Marc Dieu
- Mass Spectrometry Facility (MaSUN), University of Namur, Namur, Belgium
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Catherine Demazy
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium; Mass Spectrometry Facility (MaSUN), University of Namur, Namur, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC), Catholic University of Louvain, Brussels, Belgium
| | - Etienne Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC), Catholic University of Louvain, Brussels, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (FRS/FNRS), Université Libre de Bruxelles (ULB), Biopark Campus, Gosselies, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium; Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Clinique et Expérimentale (IREC), Catholic University of Louvain, Brussels, Belgium.
| |
Collapse
|
4
|
Scoon WA, Mancio-Silva L, Suder EL, Villacorta-Martin C, Lindstrom-Vautrin J, Bernbaum JG, Mazur S, Johnson RF, Olejnik J, Flores EY, Mithal A, Wang F, Hume AJ, Kaserman JE, March-Riera S, Wilson AA, Bhatia SN, Mühlberger E, Mostoslavsky G. Ebola virus infection induces a delayed type I IFN response in bystander cells and the shutdown of key liver genes in human iPSC-derived hepatocytes. Stem Cell Reports 2022; 17:2286-2302. [PMID: 36084636 PMCID: PMC9561183 DOI: 10.1016/j.stemcr.2022.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
Liver damage and an exacerbated inflammatory response are hallmarks of Ebola virus (EBOV) infection. Little is known about the intrinsic response to infection in human hepatocytes and their contribution to inflammation. Here, we present an induced pluripotent stem cell (iPSC)-derived hepatocyte-like cell (HLC) platform to define the hepato-intrinsic response to EBOV infection. We used this platform to show robust EBOV infection, with characteristic ultrastructural changes and evidence for viral replication. Transcriptomics analysis revealed a delayed response with minimal early transcriptomic changes, followed by a general downregulation of hepatic function and upregulation of interferon signaling, providing a potential mechanism by which hepatocytes participate in disease severity and liver damage. Using RNA-fluorescence in situ hybridization (FISH), we showed that IFNB1 and CXCL10 were mainly expressed in non-infected bystander cells. We did not observe an inflammatory signature during infection. In conclusion, iPSC-HLCs are an immune competent platform to study responses to EBOV infection.
Collapse
Affiliation(s)
- Whitney A. Scoon
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Liliana Mancio-Silva
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, MA 02139, USA
| | - Ellen L. Suder
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA
| | - Jonathan Lindstrom-Vautrin
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA
| | - John G. Bernbaum
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Disease, National Institutes of Health, Frederick, MD 21702, USA
| | - Steve Mazur
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Disease, National Institutes of Health, Frederick, MD 21702, USA
| | - Reed F. Johnson
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Disease, National Institutes of Health, Frederick, MD 21702, USA,Emerging Viral Pathogens Section, Laboratory of Immunoregulation, Division of Intramural Research, National Institute for Allergy and Infectious Disease, National Institutes of Health, Frederick, MD 21702, USA
| | - Judith Olejnik
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Elizabeth Y. Flores
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA,National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Aditya Mithal
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Feiya Wang
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA
| | - Adam J. Hume
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA,Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA
| | - Joseph E. Kaserman
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sandra March-Riera
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, MA 02139, USA
| | - Andrew A. Wilson
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA,The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Sangeeta N. Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, MA 02139, USA,Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA,Broad Institute, Cambridge, MA 02139, USA,Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Elke Mühlberger
- National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA; Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA.
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, 670 Albany Street, Suite 209, Boston, MA 02118, USA; National Emerging Infectious Diseases Laboratories (NEIDL), Boston University, 620 Albany Street, Boston, MA 02118, USA; Department of Microbiology, Boston University School of Medicine, 620 Albany Street, Boston, MA 02118, USA; Section of Gastroenterology, Department of Medicine, Boston University School of Medicine, 670 Albany Street, Suite 209, Boston, MA 02118, USA.
| |
Collapse
|
5
|
Tricot T, Verfaillie CM, Kumar M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022; 11:442. [PMID: 35159250 PMCID: PMC8834601 DOI: 10.3390/cells11030442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/13/2022] [Accepted: 01/24/2022] [Indexed: 02/08/2023] Open
Abstract
The pharmaceutical industry is in high need of efficient and relevant in vitro liver models, which can be incorporated in their drug discovery pipelines to identify potential drugs and their toxicity profiles. Current liver models often rely on cancer cell lines or primary cells, which both have major limitations. However, the development of human induced pluripotent stem cells (hiPSCs) has created a new opportunity for liver disease modeling, drug discovery and liver toxicity research. hiPSCs can be differentiated to any cell of interest, which makes them good candidates for disease modeling and drug discovery. Moreover, hiPSCs, unlike primary cells, can be easily genome-edited, allowing the creation of reporter lines or isogenic controls for patient-derived hiPSCs. Unfortunately, even though liver progeny from hiPSCs has characteristics similar to their in vivo counterparts, the differentiation of iPSCs to fully mature progeny remains highly challenging and is a major obstacle for the full exploitation of these models by pharmaceutical industries. In this review, we discuss current liver-cell differentiation protocols and in vitro iPSC-based liver models that could be used for disease modeling and drug discovery. Furthermore, we will discuss the challenges that still need to be overcome to allow for the successful implementation of these models into pharmaceutical drug discovery platforms.
Collapse
Affiliation(s)
| | | | - Manoj Kumar
- Stem Cell Institute, KU Leuven, 3000 Leuven, Belgium; (T.T.); (C.M.V.)
| |
Collapse
|
6
|
Abstract
Zika virus (ZIKV) infection became a worldwide concern due to its correlation with the development of microcephaly and other neurological disorders. ZIKV neurotropism is well characterized, but the role of peripheral viral amplification to brain infection remains unknown. Here, we found that ZIKV replicates in human primary skeletal muscle myoblasts, impairing its differentiation into myotubes but not interfering with the integrity of the already-formed muscle fibers. Using mouse models, we showed ZIKV tropism to muscle tissue either during embryogenesis after maternal transmission or when infection occurred after birth. Interestingly, ZIKV replication in the mouse skeletal muscle started immediately after ZIKV inoculation, preceding viral RNA detection in the brain and causing no disruption to the integrity of the blood brain barrier, and remained active for more than 2 weeks, whereas replication in the spleen and liver were not sustained over time. In addition, ZIKV infection of the skeletal muscle induces necrotic lesions, inflammation, and fiber atrophy. We also found a reduction in the expression of regulatory myogenic factors that are essential for muscle repair after injury. Taken together, our results indicate that the skeletal muscle is an early site of viral amplification and lesion that may result in late consequences in muscle development after ZIKV infection. IMPORTANCE Zika Virus (ZIKV) neurotropism and its deleterious effects on central nervous system have been well characterized. However, investigations of the initial replication sites for the establishment of infection and viral spread to neural tissues remain underexplored. A complete description of the range of ZIKV-induced lesions and others factors that can influence the severity of the disease is necessary to prevent ZIKV’s deleterious effects. ZIKV has been shown to access the central nervous system without significantly affecting blood-brain barrier permeability. Here, we demonstrated that skeletal muscle is an earlier site of ZIKV replication, contributing to the increase of peripheral ZIKV load. ZIKV replication in muscle promotes necrotic lesions and inflammation and also impairs myogenesis. Overall, our findings showed that skeletal muscle is involved in pathogenesis and opens new fields in the investigation of the long-term consequences of early infection.
Collapse
|
7
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Systematic transcriptome-based comparison of cellular adaptive stress response activation networks in hepatic stem cell-derived progeny and primary human hepatocytes. Toxicol In Vitro 2021; 73:105107. [PMID: 33545341 DOI: 10.1016/j.tiv.2021.105107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/12/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022]
Abstract
Various adaptive cellular stress response pathways are critical in the pathophysiology of liver disease and drug-induced liver injury. Human-induced pluripotent stem cell (hiPSC)-derived hepatocyte-like cells (HLCs) provide a promising tool to study cellular stress response pathways, but in this context there is limited insight on how HLCs compare to other in vitro liver models. Here, we systematically compared the transcriptomic profiles upon chemical activation in HLCs, hiPSC, primary human hepatocytes (PHH) and HepG2 liver cancer cells. We used targeted RNA-sequencing to map concentration transcriptional response using benchmark concentration modeling for the various stress responses in the different test systems. We found that HLCs are very sensitive towards oxidative stress and inflammation conditions as corresponding genes were activated at over 3 fold lower concentrations of the corresponding pathway inducing compounds as compared to PHH. PHH were the most sensitive model when studying UPR related effects. Due to the non-proliferative nature of PHH and HLCs, these do not pose a good/sensitive model to pick up DNA damage responses, while hiPSC and HepG2 were more sensitive in these conditions. We envision that this study contributes to a better understanding on how HLCs can contribute to the assessment of cell physiological stress response activation to predict hepatotoxic events.
Collapse
|
9
|
Fu RM, Decker CC, Dao Thi VL. Cell Culture Models for Hepatitis E Virus. Viruses 2019; 11:E608. [PMID: 31277308 PMCID: PMC6669563 DOI: 10.3390/v11070608] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 12/14/2022] Open
Abstract
Despite a growing awareness, hepatitis E virus (HEV) remains understudied and investigations have been historically hampered by the absence of efficient cell culture systems. As a result, the pathogenesis of HEV infection and basic steps of the HEV life cycle are poorly understood. Major efforts have recently been made through the development of HEV infectious clones and cellular systems that significantly advanced HEV research. Here, we summarize these systems, discussing their advantages and disadvantages for HEV studies. We further capitalize on the need for HEV-permissive polarized cell models to better recapitulate the entire HEV life cycle and transmission.
Collapse
Affiliation(s)
- Rebecca Menhua Fu
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Charlotte Caroline Decker
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
The Polyphenol-Rich Extract from Psiloxylon mauritianum, an Endemic Medicinal Plant from Reunion Island, Inhibits the Early Stages of Dengue and Zika Virus Infection. Int J Mol Sci 2019; 20:ijms20081860. [PMID: 30991717 PMCID: PMC6515236 DOI: 10.3390/ijms20081860] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
The recent emergence and re-emergence of viral infections transmitted by vectors, such as the Zika virus (ZIKV) and Dengue virus (DENV), is a cause for international concern. These highly pathogenic arboviruses represent a serious health burden in tropical and subtropical areas of the world. Despite the high morbidity and mortality associated with these viral infections, antiviral therapies are missing. Medicinal plants have been widely used to treat various infectious diseases since millenaries. Several compounds extracted from plants exhibit potent effects against viruses in vitro, calling for further investigations regarding their efficacy as antiviral drugs. Here, we demonstrate that an extract from Psiloxylon mauritianum, an endemic medicinal plant from Reunion Island, inhibits the infection of ZIKV in vitro without exhibiting cytotoxic effects. The extract was active against different ZIKV African and Asian strains, including an epidemic one. Time-of-drug-addition assays revealed that the P. mauritianum extract interfered with the attachment of the viral particles to the host cells. Importantly, the P. mauritianum extract was also able to prevent the infection of human cells by four dengue virus serotypes. Due to its potency and ability to target ZIKV and DENV particles, P. mauritianum may be of value for identifying and characterizing antiviral compounds to fight medically-important flaviviruses.
Collapse
|
11
|
Dengue drug discovery: Progress, challenges and outlook. Antiviral Res 2018; 163:156-178. [PMID: 30597183 DOI: 10.1016/j.antiviral.2018.12.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/14/2022]
Abstract
In the context of the only available vaccine (DENGVAXIA) that was marketed in several countries, but poses higher risks to unexposed individuals, the development of antivirals for dengue virus (DENV), whilst challenging, would bring significant benefits to public health. Here recent progress in the field of DENV drug discovery made in academic laboratories and industry is reviewed. Characteristics of an ideal DENV antiviral molecule, given the specific immunopathology provoked by this acute viral infection, are described. New chemical classes identified from biochemical, biophysical and phenotypic screens that target viral (especially NS4B) and host proteins, offer promising opportunities for further development. In particular, new methodologies ("omics") can accelerate the discovery of much awaited flavivirus specific inhibitors. Challenges and opportunities in lead identification activities as well as the path to clinical development of dengue drugs are discussed. To galvanize DENV drug discovery, collaborative public-public partnerships and open-access resources will greatly benefit both the DENV research community and DENV patients.
Collapse
|