1
|
Yao K, Wang S, Xu Z, Fan Z, Chen Z, Jia P, Tu S, Liu Y, Lin X, Xu Y, Fang Y, Dou B, Guo Y. Mechanisms of comorbidity between Alzheimer's disease and pain. Alzheimers Dement 2025; 21:e14605. [PMID: 39998175 PMCID: PMC11852355 DOI: 10.1002/alz.14605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025]
Abstract
Clinical studies have revealed a significant correlation between pain and neurodegenerative diseases, particularly Alzheimer's disease (AD). However, due to cognitive and speech impairments, AD patients, especially those in moderate to severe stages, are often overlooked in pain management. The challenges in obtaining pain-related information from this population exacerbate the issue. Although recent clinical research has increasingly recognized the comorbidity of AD and pain, the pathological alterations and interactive mechanisms underlying this relationship remain inadequately explored. This review provides a comprehensive analysis of the clinical features and pathological mechanisms of AD with and without pain comorbidity. It examines underlying processes, including neuroinflammation, peripheral-central immune interactions, and neurotransmitter dynamics. Furthermore, it highlights current pain assessment and management strategies in AD patients. By offering a theoretical framework, this review aims to support the development of effective pain management approaches and serve as a reference for clinical interventions targeting AD-associated pain. HIGHLIGHTS: The comorbidity between AD and CP encompasses multiple interrelated biological pathways, such as neurodegeneration and inflammatory responses. The damage to neurons and synapses in AD patients influences the brain regions responsible for processing pain, thereby reducing the pain response. Neuroinflammation plays a vital role in the development of both AD and CP. Enhanced inflammatory responses have an impact on the CNS and promote sensitization. Common neurotransmitter alterations exist in the comorbidity of AD and CP, influencing cognition, emotion, and pain perception.
Collapse
Affiliation(s)
- Kaifang Yao
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Shenjun Wang
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Zezhi Fan
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Zhihan Chen
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Peng Jia
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Shiwei Tu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Yuan Xu
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Yuxing Fang
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- School of Acupuncture & Moxibustion and TuinaTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
| | - Baomin Dou
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
| | - Yi Guo
- Research Center of Experimental Acupuncture ScienceTianjin University of Traditional Chinese MedicineTianjinP. R. China
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinP. R. China
- School of Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinP. R. China
| |
Collapse
|
2
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2025; 62:1631-1674. [PMID: 39012443 PMCID: PMC11772559 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
3
|
Zhang X, Wu M, Cheng L, Cao W, Liu Z, Yang SB, Kim MS. Fast-spiking parvalbumin-positive interneurons: new perspectives of treatment and future challenges in dementia. Mol Psychiatry 2025; 30:693-704. [PMID: 39695324 DOI: 10.1038/s41380-024-02756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Central nervous system parvalbumin-positive interneurons (PV-INs) are crucial and highly vulnerable to various stressors. They also play a significant role in the pathological processes of many neuropsychiatric diseases, especially those associated with cognitive impairment, such as Alzheimer's disease (AD), vascular dementia (VD), Lewy body dementia, and schizophrenia. Although accumulating evidence suggests that the loss of PV-INs is associated with memory impairment in dementia, the precise molecular mechanisms remain elusive. In this review, we delve into the current evidence regarding the physiological properties of PV-INs and summarize the latest insights into how their loss contributes to cognitive decline in dementia, particularly focusing on AD and VD. Additionally, we discuss the influence of PV-INs on brain development, the variations in their characteristics across different types of dementia, and how their loss affects the etiology and progression of cognitive impairments. Ultimately, our goal is to provide a comprehensive overview of PV-INs and to consider their potential as novel therapeutic targets in dementia treatment.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Moxin Wu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Wa Cao
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Ziying Liu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Seung-Bum Yang
- Department of Paramedicine, Wonkwang Health Science University, Iksan, Republic of Korea
| | - Min-Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
4
|
Allami P, Yazdanpanah N, Rezaei N. The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders. Rev Neurosci 2025:revneuro-2024-0153. [PMID: 39842401 DOI: 10.1515/revneuro-2024-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors. Neuroinflammation is one of the most significant stressors that have an adverse, long-lasting impact on PV interneurons. Neuroinflammation affects PV interneurons through specialized inflammatory pathways triggered by cytokines such as tumor necrosis factor (TNF) and interleukin 6 (IL-6). The crucial cells in neuroinflammation, microglia, also play a significant role. The destructive effect of inflammation on PV interneurons can have comprehensive effects and cause neurological disorders such as schizophrenia, Alzheimer's disease (AD), autism spectrum disorder (ASD), and bipolar disorder. In this article, we provide a comprehensive review of mechanisms in which neuroinflammation leads to PV interneuron hypofunction in these diseases. The integrated knowledge about the role of PV interneurons in cognitive networks of the brain and mechanisms involved in PV interneuron impairment in the pathology of these diseases can help us with better therapeutic interventions.
Collapse
Affiliation(s)
- Pantea Allami
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| | - Niloufar Yazdanpanah
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| |
Collapse
|
5
|
Wang S, Li Z, Liu X, Fan S, Wang X, Chang J, Qin L, Zhao P. Repeated postnatal sevoflurane exposure impairs social recognition in mice by disrupting GABAergic neuronal activity and development in hippocampus. Br J Anaesth 2024; 133:810-822. [PMID: 39142987 DOI: 10.1016/j.bja.2024.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Repeated exposure to sevoflurane during early developmental stages is a risk factor for social behavioural disorders, but the underlying neuropathological mechanisms remain unclear. As the hippocampal cornu ammonis area 2 subregion (CA2) is a critical centre for social cognitive functions, we hypothesised that sevoflurane exposure can lead to social behavioural disorders by disrupting neuronal activity in the CA2. METHODS Neonatal mice were anaesthetised with sevoflurane 3 vol% for 2 h on postnatal day (PND) 6, 8, and 10. Bulk RNA sequencing of CA2 tissue was conducted on PND 12. Social cognitive function was assessed by behavioural experiments, and in vivo CA2 neuronal activity was recorded by multi-channel electrodes on PND 60-65. RESULTS Repeated postnatal exposure to sevoflurane impaired social novelty recognition in adulthood. It also caused a decrease in the synchronisation of neuronal spiking, gamma oscillation power, and spike phase-locking between GABAergic spiking and gamma oscillations in the CA2 during social interaction. After sevoflurane exposure, we observed a reduction in the density and dendritic complexity of CA2 GABAergic neurones, and decreased expression of transcription factors critical for GABAergic neuronal development after. CONCLUSIONS Repeated postnatal exposure to sevoflurane disturbed the development of CA2 GABAergic neurones through downregulation of essential transcription factors. This resulted in impaired electrophysiological function in adult GABAergic neurones, leading to social recognition deficits. These findings reveal a potential electrophysiological mechanism underlying the long-term social recognition deficits induced by sevoflurane and highlight the crucial role of CA2 GABAergic neurones in social interactions.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Zijie Li
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Xin Liu
- Department of Breast Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, People's Republic of China
| | - Shiyue Fan
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xuejiao Wang
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Jianjun Chang
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China
| | - Ling Qin
- School of Life Sciences, China Medical University, Shenyang, People's Republic of China.
| | - Ping Zhao
- Department of Anaesthesiology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
6
|
Rabiller G, Ip Z, Zarrabian S, Zhang H, Sato Y, Yazdan-Shahmorad A, Liu J. Type-2 Diabetes Alters Hippocampal Neural Oscillations and Disrupts Synchrony between the Hippocampus and Cortex. Aging Dis 2024; 15:2255-2270. [PMID: 38029397 PMCID: PMC11346393 DOI: 10.14336/ad.2023.1106] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of neurological diseases, yet how brain oscillations change as age and T2DM interact is not well characterized. To delineate the age and diabetic effect on neurophysiology, we recorded local field potentials with multichannel electrodes spanning the somatosensory cortex and hippocampus (HPC) under urethane anesthesia in diabetic and normoglycemic control mice, at 200 and 400 days of age. We analyzed the signal power of brain oscillations, brain state, sharp wave associate ripples (SPW-Rs), and functional connectivity between the cortex and HPC. We found that while both age and T2DM were correlated with a breakdown in long-range functional connectivity and reduced neurogenesis in the dentate gyrus and subventricular zone, T2DM further slowed brain oscillations and reduced theta-gamma coupling. Age and T2DM also prolonged the duration of SPW-Rs and increased gamma power during SPW-R phase. Our results have identified potential electrophysiological substrates of hippocampal changes associated with T2DM and age. The perturbed brain oscillation features and diminished neurogenesis may underlie T2DM-accelerated cognitive impairment.
Collapse
Affiliation(s)
- Gratianne Rabiller
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| | - Zachary Ip
- Departments of Bioengineering, University of Washington, Seattle, WA, USA
| | - Shahram Zarrabian
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| | - Hongxia Zhang
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| | - Yoshimichi Sato
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Azadeh Yazdan-Shahmorad
- Departments of Bioengineering, University of Washington, Seattle, WA, USA
- Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Jialing Liu
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, USA
- San Francisco VA medical Center, San Francisco, CA, USA
| |
Collapse
|
7
|
L'esperance OJ, McGhee J, Davidson G, Niraula S, Smith AS, Sosunov A, Yan SS, Subramanian J. Functional connectivity favors aberrant visual network c-Fos expression accompanied by cortical synapse loss in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.05.522900. [PMID: 36712054 PMCID: PMC9881957 DOI: 10.1101/2023.01.05.522900] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, sensory network dysfunction has received comparatively less attention despite compelling evidence of its significance in both Alzheimer's disease patients and mouse models. We recently found that neurons in the primary visual cortex of an AD mouse model expressing human amyloid protein precursor with the Swedish and Indiana mutations (hAPP mutations) exhibit aberrant c-Fos expression and altered synaptic structures at a pre-amyloid plaque stage. However, it is unclear whether aberrant c-Fos expression and synaptic pathology vary across the broader visual network and to what extent c-Fos abnormality in the cortex is inherited through functional connectivity. Using both sexes of 4-6-month AD model mice with hAPP mutations (J20[PDGF-APPSw, Ind]), we found that cortical regions of the visual network show aberrant c-Fos expression and impaired experience-dependent modulation while subcortical regions do not. Interestingly, the average network-wide functional connectivity strength of a brain region in wild type (WT) mice significantly predicts its aberrant c-Fos expression, which in turn correlates with impaired experience-dependent modulation in the AD model. Using in vivo two-photon and ex vivo imaging of presynaptic termini, we observed a subtle yet selective weakening of excitatory cortical synapses in the visual cortex. Intriguingly, the change in the size distribution of cortical boutons in the AD model is downscaled relative to those in WT mice, suggesting that synaptic weakening may reflect an adaptation to aberrant activity. Our observations suggest that cellular and synaptic abnormalities in the AD model represent a maladaptive transformation of the baseline physiological state seen in WT conditions rather than entirely novel and unrelated manifestations.
Collapse
|
8
|
Kann O. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. J Neurochem 2024; 168:608-631. [PMID: 37309602 DOI: 10.1111/jnc.15867] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/14/2023]
Abstract
Lactate shuttled from the blood circulation, astrocytes, oligodendrocytes or even activated microglia (resident macrophages) to neurons has been hypothesized to represent a major source of pyruvate compared to what is normally produced endogenously by neuronal glucose metabolism. However, the role of lactate oxidation in fueling neuronal signaling associated with complex cortex function, such as perception, motor activity, and memory formation, is widely unclear. This issue has been experimentally addressed using electrophysiology in hippocampal slice preparations (ex vivo) that permit the induction of different neural network activation states by electrical stimulation, optogenetic tools or receptor ligand application. Collectively, these studies suggest that lactate in the absence of glucose (lactate only) impairs gamma (30-70 Hz) and theta-gamma oscillations, which feature high energy demand revealed by the cerebral metabolic rate of oxygen (CMRO2, set to 100%). The impairment comprises oscillation attenuation or moderate neural bursts (excitation-inhibition imbalance). The bursting is suppressed by elevating the glucose fraction in energy substrate supply. By contrast, lactate can retain certain electric stimulus-induced neural population responses and intermittent sharp wave-ripple activity that features lower energy expenditure (CMRO2 of about 65%). Lactate utilization increases the oxygen consumption by about 9% during sharp wave-ripples reflecting enhanced adenosine-5'-triphosphate (ATP) synthesis by oxidative phosphorylation in mitochondria. Moreover, lactate attenuates neurotransmission in glutamatergic pyramidal cells and fast-spiking, γ-aminobutyric acid (GABA)ergic interneurons by reducing neurotransmitter release from presynaptic terminals. By contrast, the generation and propagation of action potentials in the axon is regular. In conclusion, lactate is less effective than glucose and potentially detrimental during neural network rhythms featuring high energetic costs, likely through the lack of some obligatory ATP synthesis by aerobic glycolysis at excitatory and inhibitory synapses. High lactate/glucose ratios might contribute to central fatigue, cognitive impairment, and epileptic seizures partially seen, for instance, during exhaustive physical exercise, hypoglycemia and neuroinflammation.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
9
|
Kiss E, Kins S, Gorgas K, Venczel Szakács KH, Kirsch J, Kuhse J. Another Use for a Proven Drug: Experimental Evidence for the Potential of Artemisinin and Its Derivatives to Treat Alzheimer's Disease. Int J Mol Sci 2024; 25:4165. [PMID: 38673751 PMCID: PMC11049906 DOI: 10.3390/ijms25084165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Plant-derived multitarget compounds may represent a promising therapeutic strategy for multifactorial diseases, such as Alzheimer's disease (AD). Artemisinin and its derivatives were indicated to beneficially modulate various aspects of AD pathology in different AD animal models through the regulation of a wide range of different cellular processes, such as energy homeostasis, apoptosis, proliferation and inflammatory pathways. In this review, we aimed to provide an up-to-date overview of the experimental evidence documenting the neuroprotective activities of artemi-sinins to underscore the potential of these already-approved drugs for treating AD also in humans and propose their consideration for carefully designed clinical trials. In particular, the benefits to the main pathological hallmarks and events in the pathological cascade throughout AD development in different animal models of AD are summarized. Moreover, dose- and context-dependent effects of artemisinins are noted.
Collapse
Affiliation(s)
- Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania;
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 69120 Kaiserslautern, Germany;
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| | - Kinga Hajnal Venczel Szakács
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania;
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| | - Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| |
Collapse
|
10
|
Portalés A, Sánchez-Aguilera A, Royo M, Jurado S. Assessment of social behavior and chemosensory cue detection in an animal model of neurodegeneration. Methods Cell Biol 2024; 185:137-150. [PMID: 38556445 DOI: 10.1016/bs.mcb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Numerous studies have shown that aging in humans leads to a decline in olfactory function, resulting in deficits in acuity, detection threshold, discrimination, and olfactory-associated memories. Furthermore, impaired olfaction has been identified as a potential indicator for the onset of age-related neurodegenerative diseases, including Alzheimer's disease (AD). Studies conducted on mouse models of AD have largely mirrored the findings in humans, thus providing a valuable system to investigate the cellular and circuit adaptations of the olfactory system during natural and pathological aging. However, the majority of previous research has focused on assessing the detection of neutral or synthetic odors, with little attention given to the impact of aging and neurodegeneration on the recognition of social cues-a critical feature for the survival of mammalian species. Therefore, in this study, we present a battery of olfactory tests that use conspecific urine samples to examine the changes in social odor recognition in a mouse model of neurodegeneration.
Collapse
Affiliation(s)
- Adrián Portalés
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Alicante, Spain.
| | - Alberto Sánchez-Aguilera
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, IdISSC, Madrid, Spain
| | - Maria Royo
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Alicante, Spain
| | - Sandra Jurado
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
11
|
Zhang S, Guo Z, Xu Y, Mi J, Liu J, Li Z, Xie X, Xu G. Transcranial magneto-acoustic stimulation improves spatial memory and modulates hippocampal neural oscillations in a mouse model of Alzheimer's disease. Front Neurosci 2024; 18:1313639. [PMID: 38384480 PMCID: PMC10879395 DOI: 10.3389/fnins.2024.1313639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction In our study, we applied transcranial magneto-acoustic stimulation (TMAS), a technique based on focused ultrasound stimulation within a static magnetic field, in the APP/PS1 mouse model of Alzheimer's disease (AD) to explore the feasibility of TMAS on improving AD related spatial memory deficits and abnormal neural oscillations. Methods The mice treated with TMAS once daily for 21 days. We recorded local field potential signals in the hippocampal CA1 region of the mice after TMAS treatment with in-vivo electrophysiology and evaluated the neural rehabilitative effect of TMAS with sharp-wave ripple (SWR), gamma oscillations during SWRs, and phase-amplitude coupling (PAC). The spatial memory function of the mice was examined by the Morris water maze (MWM) task. Results We found that TMAS improved the performance of MWM related spatial cognitive functions compared with AD group. Furthermore, our results implied that TMAS alleviated abnormalities in hippocampal SWRs, increased slow gamma power during SWRs, and promoted theta-slow gamma phase-amplitude coupling. These findings suggest that TMAS could have a positive influence on spatial memory through the modulation of neural oscillations. Discussion This work emphasizes the potential of TMAS to serve as a non-invasive method for Alzheimer's disease rehabilitation and promote the application of TMAS for the treatment of more neurological and brain aging diseases in the future.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Zhongsheng Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Yihao Xu
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Jinrui Mi
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Jun Liu
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Zichun Li
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Xiaofeng Xie
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| | - Guizhi Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
- Hebei key Laboratory of Bioelectromagnetism and Neural Engineering, Hebei University of Technology, Tianjin, China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Tianjin, China
| |
Collapse
|
12
|
Niraula S, Yan SS, Subramanian J. Amyloid Pathology Impairs Experience-Dependent Inhibitory Synaptic Plasticity. J Neurosci 2024; 44:e0702232023. [PMID: 38050105 PMCID: PMC10860629 DOI: 10.1523/jneurosci.0702-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by subtle broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas 66045
| |
Collapse
|
13
|
García-Carlos CA, Basurto-Islas G, Perry G, Mondragón-Rodríguez S. Meta-Analysis in Transgenic Alzheimer's Disease Mouse Models Reveals Opposite Brain Network Effects of Amyloid-β and Phosphorylated Tau Proteins. J Alzheimers Dis 2024; 99:595-607. [PMID: 38669540 DOI: 10.3233/jad-231365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Background Cognitive deficits observed in Alzheimer's disease (AD) patients have been correlated with altered hippocampal activity. Although the mechanism remains under extensive study, neurofibrillary tangles and amyloid plaques have been proposed as responsible for brain activity alterations. Aiming to unveil the mechanism, researchers have developed several transgenic models of AD. Nevertheless, the variability in hippocampal oscillatory alterations found in different genetic backgrounds and ages remains unclear. Objective To assess the oscillatory alterations in relation to animal developmental age and protein inclusion, amyloid-β (Aβ) load, and abnormally phosphorylated tau (pTau), we reviewed and analyzed the published data on peak power, frequency, and quantification of theta-gamma cross-frequency coupling (modulation index values). Methods To ensure that the search was as current as possible, a systematic review was conducted to locate and abstract all studies published from January 2000 to February 2023 that involved in vivo hippocampal local field potential recording in transgenic mouse models of AD. Results The presence of Aβ was associated with electrophysiological alterations that are mainly reflected in power increases, frequency decreases, and lower modulation index values. Concomitantly, pTau accumulation was associated with electrophysiological alterations that are mainly reflected in power decreases, frequency decreases, and no significant alterations in modulation index values. Conclusions In this study, we showed that electrophysiological parameters are altered from prodromal stages to the late stages of pathology. Thus, we found that Aβ deposition is associated with brain network hyperexcitability, whereas pTau deposition mainly leads to brain network hypoexcitability in transgenic models.
Collapse
Affiliation(s)
- Carlos Antonio García-Carlos
- UNAM Division of Neurosciences, Institute of Cellular Physiology, National Autonomous University of México, México City, México
| | | | - George Perry
- UTSA Neuroscience Institute and Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Siddhartha Mondragón-Rodríguez
- UAQ Centre for Applied Biomedical Research - CIBA, School of Medicine, Autonomous University of Querétaro, Querétaro, México
- CONAHCYT National Council for Science and Technology, México City, México
| |
Collapse
|
14
|
L’Esperance OJ, McGhee J, Davidson G, Niraula S, Smith A, Sosunov AA, Yan SS, Subramanian J. Functional Connectivity Favors Aberrant Visual Network c-Fos Expression Accompanied by Cortical Synapse Loss in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 101:111-131. [PMID: 39121131 PMCID: PMC11810533 DOI: 10.3233/jad-240776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Background While Alzheimer's disease (AD) has been extensively studied with a focus on cognitive networks, visual network dysfunction has received less attention despite compelling evidence of its significance in AD patients and mouse models. We recently reported c-Fos and synaptic dysregulation in the primary visual cortex of a pre-amyloid plaque AD-model. Objective We test whether c-Fos expression and presynaptic density/dynamics differ in cortical and subcortical visual areas in an AD-model. We also examine whether aberrant c-Fos expression is inherited through functional connectivity and shaped by light experience. Methods c-Fos+ cell density, functional connectivity, and their experience-dependent modulation were assessed for visual and whole-brain networks in both sexes of 4-6-month-old J20 (AD-model) and wildtype (WT) mice. Cortical and subcortical differences in presynaptic vulnerability in the AD-model were compared using ex vivo and in vivo imaging. Results Visual cortical, but not subcortical, networks show aberrant c-Fos expression and impaired experience-dependent modulation. The average functional connectivity of a brain region in WT mice significantly predicts aberrant c-Fos expression, which correlates with impaired experience-dependent modulation in the AD-model. We observed a subtle yet selective weakening of excitatory visual cortical synapses. The size distribution of cortical boutons in the AD-model is downscaled relative to those in WT mice, suggesting a synaptic scaling-like adaptation of bouton size. Conclusions Visual network structural and functional disruptions are biased toward cortical regions in pre-plaque J20 mice, and the cellular and synaptic dysregulation in the AD-model represents a maladaptive modification of the baseline physiology seen in WT conditions.
Collapse
Affiliation(s)
- Oliver J. L’Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Josh McGhee
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Garett Davidson
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Alexandre A. Sosunov
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Shirley Shidu Yan
- Department of Neurosurgery, Columbia University Medical Center,630 W. 168th St. New York, NY 10032
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
15
|
Nataraj A, Kala A, Proskauer Pena SL, Jezek K, Blahna K. Impaired Dynamics of Positional and Contextual Neural Coding in an Alzheimer's Disease Rat Model. J Alzheimers Dis 2024; 101:259-276. [PMID: 39177594 PMCID: PMC11612983 DOI: 10.3233/jad-231386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 08/24/2024]
Abstract
Background The hippocampal representation of space, formed by the collective activity of populations of place cells, is considered as a substrate of spatial memory. Alzheimer's disease (AD), a widespread severe neurodegenerative condition of multifactorial origin, typically exhibits spatial memory deficits among its early clinical signs before more severe cognitive impacts develop. Objective To investigate mechanisms of spatial memory impairment in a double transgenic rat model of AD. Methods In this study, we utilized 9-12-month-old double-transgenic TgF344-AD rats and age-matched controls to analyze the spatial coding properties of CA1 place cells. We characterized the spatial memory representation, assessed cells' spatial information content and direction-specific activity, and compared their population coding in familiar and novel conditions. Results Our findings revealed that TgF344-AD animals exhibited lower precision in coding, as evidenced by reduced spatial information and larger receptive zones. This impairment was evident in maps representing novel environments. While controls instantly encoded directional context during their initial exposure to a novel environment, transgenics struggled to incorporate this information into the newly developed hippocampal spatial representation. This resulted in impairment in orthogonalization of stored activity patterns, an important feature directly related to episodic memory encoding capacity. Conclusions Overall, the results shed light on the nature of impairment at both the single-cell and population levels in the transgenic AD model. In addition to the observed spatial coding inaccuracy, the findings reveal a significantly impaired ability to adaptively modify and refine newly stored hippocampal memory patterns.
Collapse
Affiliation(s)
- Athira Nataraj
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| | - Annu Kala
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| | | | - Karel Jezek
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| | - Karel Blahna
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, , Prague, Czech Republic
| |
Collapse
|
16
|
Hijazi S, Smit AB, van Kesteren RE. Fast-spiking parvalbumin-positive interneurons in brain physiology and Alzheimer's disease. Mol Psychiatry 2023; 28:4954-4967. [PMID: 37419975 PMCID: PMC11041664 DOI: 10.1038/s41380-023-02168-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Fast-spiking parvalbumin (PV) interneurons are inhibitory interneurons with unique morphological and functional properties that allow them to precisely control local circuitry, brain networks and memory processing. Since the discovery in 1987 that PV is expressed in a subset of fast-spiking GABAergic inhibitory neurons, our knowledge of the complex molecular and physiological properties of these cells has been expanding. In this review, we highlight the specific properties of PV neurons that allow them to fire at high frequency and with high reliability, enabling them to control network oscillations and shape the encoding, consolidation and retrieval of memories. We next discuss multiple studies reporting PV neuron impairment as a critical step in neuronal network dysfunction and cognitive decline in mouse models of Alzheimer's disease (AD). Finally, we propose potential mechanisms underlying PV neuron dysfunction in AD and we argue that early changes in PV neuron activity could be a causal step in AD-associated network and memory impairment and a significant contributor to disease pathogenesis.
Collapse
Affiliation(s)
- Sara Hijazi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Chen KS, Noureldein MH, Rigan DM, Hayes JM, Savelieff MG, Feldman EL. Regional interneuron transcriptional changes reveal pathologic markers of disease progression in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565165. [PMID: 37961679 PMCID: PMC10635060 DOI: 10.1101/2023.11.01.565165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and leading cause of dementia, characterized by neuronal and synapse loss, amyloid-β and tau protein aggregates, and a multifactorial pathology involving neuroinflammation, vascular dysfunction, and disrupted metabolism. Additionally, there is growing evidence of imbalance between neuronal excitation and inhibition in the AD brain secondary to dysfunction of parvalbumin (PV)- and somatostatin (SST)-positive interneurons, which differentially modulate neuronal activity. Importantly, impaired interneuron activity in AD may occur upstream of amyloid-β pathology rendering it a potential therapeutic target. To determine the underlying pathologic processes involved in interneuron dysfunction, we spatially profiled the brain transcriptome of the 5XFAD AD mouse model versus controls, across four brain regions, dentate gyrus, hippocampal CA1 and CA3, and cortex, at early-stage (12 weeks-of-age) and late-stage (30 weeks-of-age) disease. Global comparison of differentially expressed genes (DEGs) followed by enrichment analysis of 5XFAD versus control highlighted various biological pathways related to RNA and protein processing, transport, and clearance in early-stage disease and neurodegeneration pathways at late-stage disease. Early-stage DEGs examination found shared, e.g ., RNA and protein biology, and distinct, e.g ., N-glycan biosynthesis, pathways enriched in PV-versus somatostatin SST-positive interneurons and in excitatory neurons, which expressed neurodegenerative and axon- and synapse-related pathways. At late-stage disease, PV-positive interneurons featured cancer and cancer signaling pathways along with neuronal and synapse pathways, whereas SST-positive interneurons showcased glycan biosynthesis and various infection pathways. Late-state excitatory neurons were primarily characterized by neurodegenerative pathways. These fine-grained transcriptomic profiles for PV- and SST-positive interneurons in a time- and spatial-dependent manner offer new insight into potential AD pathophysiology and therapeutic targets.
Collapse
|
18
|
Isla AG, Balleza-Tapia H, Chu F, Chen G, Johansson J, Nilsson P, Fisahn A. Low dose of levetiracetam counteracts amyloid β-induced alterations of hippocampal gamma oscillations by restoring fast-spiking interneuron activity. Exp Neurol 2023; 369:114545. [PMID: 37726047 DOI: 10.1016/j.expneurol.2023.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/31/2023] [Accepted: 09/16/2023] [Indexed: 09/21/2023]
Abstract
Alzheimer's disease (AD) is characterized at an early stage by memory alterations that worsen during the development of the disease. Several clinical trials in phase 3 have failed despite being able to counteract classical AD-related alterations, possibly because of the lack of recovery of the regular neuronal network activity essential for memory including low gamma oscillations (γ-Osc). Nowadays, Levetiracetam (LEV), an SV2A modulator approved for epilepsy, is being used in trials with AD patients without further support for neurophysiological relevant effects on restoring the normal function of hippocampal neuronal network activity. Using concomitant recordings of local field potential γ-Osc and patch-clamp recordings of fast-spiking interneurons (FS-IN) on hippocampal slices of WT and AppNL-G-F AD animals, we found that LEV restores the power and rhythmicity of γ-Osc previously reduced by acute application of amyloid-β on WT hippocampal slices, this effect is accompanied by the recovery of the synchronicity in the firing of FS-IN. In addition, we found that LEV counteracts the hippocampal γ-Osc alterations in the early prodromal stage of the disease in AppNL-G-F mice by recovering the rhythmicity of γ-Osc and the synchronicity in the firing of FS-IN. Altogether the results show that the precise modulation of neuronal circuits with LEV is a promising strategy to counteract early-stage alterations in hippocampal activity by modulating FS-IN in a memory-relevant neuronal network state like γ-Osc.
Collapse
Affiliation(s)
- Arturo G Isla
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Stockholm, Sweden; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud.
| | - Hugo Balleza-Tapia
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Fengna Chu
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Stockholm, Sweden; Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 14 183, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 14 183, Huddinge, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Stockholm, Sweden
| | - André Fisahn
- Department of Biosciences and Nutrition, Karolinska Institutet, 14 183, Huddinge, Sweden.
| |
Collapse
|
19
|
Niraula S, Yan SS, Subramanian J. Amyloid pathology impairs experience-dependent inhibitory synaptic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539450. [PMID: 37205469 PMCID: PMC10187277 DOI: 10.1101/2023.05.04.539450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Alzheimer's disease patients and mouse models exhibit aberrant neuronal activity and altered excitatory-to-inhibitory synaptic ratio. Using multicolor two-photon microscopy, we test how amyloid pathology alters the structural dynamics of excitatory and inhibitory synapses and their adaptation to altered visual experience in vivo in the visual cortex. We show that the baseline dynamics of mature excitatory synapses and their adaptation to visual deprivation are not altered in amyloidosis. Likewise, the baseline dynamics of inhibitory synapses are not affected. In contrast, visual deprivation fails to induce inhibitory synapse loss in amyloidosis, a phenomenon observed in nonpathological conditions. Intriguingly, inhibitory synapse loss associated with visual deprivation in nonpathological mice is accompanied by the broadening of spontaneous but not visually evoked calcium transients. However, such broadening does not manifest in the context of amyloidosis. We also show that excitatory and inhibitory synapse loss is locally clustered under the nonpathological state. In contrast, a fraction of synapse loss is not locally clustered in amyloidosis, indicating an impairment in inhibitory synapse adaptation to changes in excitatory synaptic activity.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
- Department of Surgery, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
20
|
Hernández-Frausto M, Bilash OM, Masurkar AV, Basu J. Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease. Front Neural Circuits 2023; 17:1223891. [PMID: 37841892 PMCID: PMC10570439 DOI: 10.3389/fncir.2023.1223891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Olesia M. Bilash
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Arjun V. Masurkar
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
21
|
Rabiller G, Ip Z, Zarrabian S, Zhang H, Sato Y, Yazdan-Shahmorad A, Liu J. Type-2 diabetes alters hippocampal neural oscillations and disrupts synchrony between hippocampus and cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542288. [PMID: 37292743 PMCID: PMC10245872 DOI: 10.1101/2023.05.25.542288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Type 2 diabetes mellitus (T2DM) increases the risk of neurological diseases, yet how brain oscillations change as age and T2DM interact is not well characterized. To delineate the age and diabetic effect on neurophysiology, we recorded local field potentials with multichannel electrodes spanning the somatosensory cortex and hippocampus (HPC) under urethane anesthesia in diabetic and normoglycemic control mice, at 200 and 400 days of age. We analyzed the signal power of brain oscillations, brain state, sharp wave associate ripples (SPW-Rs), and functional connectivity between the cortex and HPC. We found that while both age and T2DM were correlated with a breakdown in long-range functional connectivity and reduced neurogenesis in the dentate gyrus and subventricular zone, T2DM further slowed brain oscillations and reduced theta-gamma coupling. Age and T2DM also prolonged the duration of SPW-Rs and increased gamma power during SPW-R phase. Our results have identified potential electrophysiological substrates of hippocampal changes associated with T2DM and age. The perturbed brain oscillation features and diminished neurogenesis may underlie T2DM-accelerated cognitive impairment.
Collapse
|
22
|
Brady ES, Griffiths J, Andrianova L, Bielska M, Saito T, Saido TC, Randall AD, Tamagnini F, Witton J, Craig MT. Alterations to parvalbumin-expressing interneuron function and associated network oscillations in the hippocampal - medial prefrontal cortex circuit during natural sleep in App NL-G-F/NL-G-F mice. Neurobiol Dis 2023; 182:106151. [PMID: 37172910 DOI: 10.1016/j.nbd.2023.106151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
In the early stages of Alzheimer's disease (AD), the accumulation of the peptide amyloid-β (Aβ) damages synapses and disrupts neuronal activity, leading to the disruption of neuronal oscillations associated with cognition. This is thought to be largely due to impairments in CNS synaptic inhibition, particularly via parvalbumin (PV)-expressing interneurons that are essential for generating several key oscillations. Research in this field has largely been conducted in mouse models that over-express humanised, mutated forms of AD-associated genes that produce exaggerated pathology. This has prompted the development and use of knock-in mouse lines that express these genes at an endogenous level, such as the AppNL-G-F/NL-G-F mouse model used in the present study. These mice appear to model the early stages of Aβ-induced network impairments, yet an in-depth characterisation of these impairments in currently lacking. Therefore, using 16 month-old AppNL-G-F/NL-G-F mice, we analysed neuronal oscillations found in the hippocampus and medial prefrontal cortex (mPFC) during awake behaviour, rapid eye movement (REM) and non-REM (NREM) sleep to assess the extent of network dysfunction. No alterations to gamma oscillations were found to occur in the hippocampus or mPFC during either awake behaviour, REM or NREM sleep. However, during NREM sleep an increase in the power of mPFC spindles and decrease in the power of hippocampal sharp-wave ripples was identified. The latter was accompanied by an increase in the synchronisation of PV-expressing interneuron activity, as measured using two-photon Ca2+ imaging, as well as a decrease in PV-expressing interneuron density. Furthermore, although changes were detected in local network function of mPFC and hippocampus, long-range communication between these regions appeared intact. Altogether, our results suggest that these NREM sleep-specific impairments represent the early stages of circuit breakdown in response to amyloidopathy.
Collapse
Affiliation(s)
- Erica S Brady
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; Gladstone Institute for Neurological Disease, 1650 Owens Street, San Francisco, CA 91458, United States of America
| | - Jessica Griffiths
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK
| | - Lilya Andrianova
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Monika Bielska
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Andrew D Randall
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | - Francesco Tamagnini
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6LA, UK
| | - Jonathan Witton
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK.
| | - Michael T Craig
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Prince of Wales Road, Exeter EX4 4PS, England, UK; School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
23
|
Chiantia G, Hidisoglu E, Marcantoni A. The Role of Ryanodine Receptors in Regulating Neuronal Activity and Its Connection to the Development of Alzheimer's Disease. Cells 2023; 12:cells12091236. [PMID: 37174636 PMCID: PMC10177020 DOI: 10.3390/cells12091236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Research into the early impacts of Alzheimer's disease (AD) on synapse function is one of the most promising approaches to finding a treatment. In this context, we have recently demonstrated that the Abeta42 peptide, which builds up in the brain during the processing of the amyloid precursor protein (APP), targets the ryanodine receptors (RyRs) of mouse hippocampal neurons and potentiates calcium (Ca2+) release from the endoplasmic reticulum (ER). The uncontrolled increase in intracellular calcium concentration ([Ca2+]i), leading to the development of Ca2+ dysregulation events and related excitable and synaptic dysfunctions, is a consolidated hallmark of AD onset and possibly other neurodegenerative diseases. Since RyRs contribute to increasing [Ca2+]i and are thought to be a promising target for AD treatment, the goal of this review is to summarize the current level of knowledge regarding the involvement of RyRs in governing neuronal function both in physiological conditions and during the onset of AD.
Collapse
Affiliation(s)
| | - Enis Hidisoglu
- Department of Drug and Science Technology, University of Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Andrea Marcantoni
- Department of Drug and Science Technology, University of Torino, Corso Raffaello 30, 10125 Torino, Italy
- N.I.S. Center, University of Torino, 10125 Turin, Italy
| |
Collapse
|
24
|
Melgosa-Ecenarro L, Doostdar N, Radulescu CI, Jackson JS, Barnes SJ. Pinpointing the locus of GABAergic vulnerability in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:35-54. [PMID: 35963663 DOI: 10.1016/j.semcdb.2022.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/31/2022]
Abstract
The early stages of Alzheimer's disease (AD) have been linked to microcircuit dysfunction and pathophysiological neuronal firing in several brain regions. Inhibitory GABAergic microcircuitry is a critical feature of stable neural-circuit function in the healthy brain, and its dysregulation has therefore been proposed as contributing to AD-related pathophysiology. However, exactly how the critical balance between excitatory and inhibitory microcircuitry is modified by AD pathogenesis remains unclear. Here, we set the current evidence implicating dysfunctional GABAergic microcircuitry as a driver of early AD pathophysiology in a simple conceptual framework. Our framework is based on a generalised reductionist model of firing-rate control by local feedback inhibition. We use this framework to consider multiple loci that may be vulnerable to disruption by AD pathogenesis. We first start with evidence investigating how AD-related processes may impact the gross number of inhibitory neurons in the network. We then move to discuss how pathology may impact intrinsic cellular properties and firing thresholds of GABAergic neurons. Finally, we cover how AD-related pathogenesis may disrupt synaptic connectivity between excitatory and inhibitory neurons. We use the feedback inhibition framework to discuss and organise the available evidence from both preclinical rodent work and human studies in AD patients and conclude by identifying key questions and understudied areas for future investigation.
Collapse
Affiliation(s)
- Leire Melgosa-Ecenarro
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nazanin Doostdar
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Carola I Radulescu
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Johanna S Jackson
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Samuel J Barnes
- UK Dementia Research Institute, Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
25
|
Meftah S, Gan J. Alzheimer's disease as a synaptopathy: Evidence for dysfunction of synapses during disease progression. Front Synaptic Neurosci 2023; 15:1129036. [PMID: 36970154 PMCID: PMC10033629 DOI: 10.3389/fnsyn.2023.1129036] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
The synapse has consistently been considered a vulnerable and critical target within Alzheimer's disease, and synapse loss is, to date, one of the main biological correlates of cognitive decline within Alzheimer's disease. This occurs prior to neuronal loss with ample evidence that synaptic dysfunction precedes this, in support of the idea that synaptic failure is a crucial stage within disease pathogenesis. The two main pathological hallmarks of Alzheimer's disease, abnormal aggregates of amyloid or tau proteins, have had demonstrable effects on synaptic physiology in animal and cellular models of Alzheimer's disease. There is also growing evidence that these two proteins may have a synergistic effect on neurophysiological dysfunction. Here, we review some of the main findings of synaptic alterations in Alzheimer's disease, and what we know from Alzheimer's disease animal and cellular models. First, we briefly summarize some of the human evidence to suggest that synapses are altered, including how this relates to network activity. Subsequently, animal and cellular models of Alzheimer's disease are considered, highlighting mouse models of amyloid and tau pathology and the role these proteins may play in synaptic dysfunction, either in isolation or examining how the two pathologies may interact in dysfunction. This specifically focuses on neurophysiological function and dysfunction observed within these animal models, typically measured using electrophysiology or calcium imaging. Following synaptic dysfunction and loss, it would be impossible to imagine that this would not alter oscillatory activity within the brain. Therefore, this review also discusses how this may underpin some of the aberrant oscillatory patterns seen in animal models of Alzheimer's disease and human patients. Finally, an overview of some key directions and considerations in the field of synaptic dysfunction in Alzheimer's disease is covered. This includes current therapeutics that are targeted specifically at synaptic dysfunction, but also methods that modulate activity to rescue aberrant oscillatory patterns. Other important future avenues of note in this field include the role of non-neuronal cell types such as astrocytes and microglia, and mechanisms of dysfunction independent of amyloid and tau in Alzheimer's disease. The synapse will certainly continue to be an important target within Alzheimer's disease for the foreseeable future.
Collapse
Affiliation(s)
- Soraya Meftah
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jian Gan
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Kuhse J, Groeneweg F, Kins S, Gorgas K, Nawrotzki R, Kirsch J, Kiss E. Loss of Extrasynaptic Inhibitory Glycine Receptors in the Hippocampus of an AD Mouse Model Is Restored by Treatment with Artesunate. Int J Mol Sci 2023; 24:ijms24054623. [PMID: 36902054 PMCID: PMC10002537 DOI: 10.3390/ijms24054623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by synaptic failure and neuronal loss. Recently, we demonstrated that artemisinins restored the levels of key proteins of inhibitory GABAergic synapses in the hippocampus of APP/PS1 mice, a model of cerebral amyloidosis. In the present study, we analyzed the protein levels and subcellular localization of α2 and α3 subunits of GlyRs, indicated as the most abundant receptor subtypes in the mature hippocampus, in early and late stages of AD pathogenesis, and upon treatment with two different doses of artesunate (ARS). Immunofluorescence microscopy and Western blot analysis demonstrated that the protein levels of both α2 and α3 GlyRs are considerably reduced in the CA1 and the dentate gyrus of 12-month-old APP/PS1 mice when compared to WT mice. Notably, treatment with low-dose ARS affected GlyR expression in a subunit-specific way; the protein levels of α3 GlyR subunits were rescued to about WT levels, whereas that of α2 GlyRs were not affected significantly. Moreover, double labeling with a presynaptic marker indicated that the changes in GlyR α3 expression levels primarily involve extracellular GlyRs. Correspondingly, low concentrations of artesunate (≤1 µM) also increased the extrasynaptic GlyR cluster density in hAPPswe-transfected primary hippocampal neurons, whereas the number of GlyR clusters overlapping presynaptic VIAAT immunoreactivities remained unchanged. Thus, here we provide evidence that the protein levels and subcellular localization of α2 and α3 subunits of GlyRs show regional and temporal alterations in the hippocampus of APP/PS1 mice that can be modulated by the application of artesunate.
Collapse
Affiliation(s)
- Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Femke Groeneweg
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
- Institute of Neuroanatomy, Medical Faculty Mannheim, University Heidelberg, 68167 Mannheim, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Ralph Nawrotzki
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
- Correspondence:
| |
Collapse
|
27
|
Neurotransmitters in Prevention and Treatment of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24043841. [PMID: 36835251 PMCID: PMC9966535 DOI: 10.3390/ijms24043841] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
Alzheimer's disease (AD) is the most frequent cause of cognitive impairment in middle-aged and older populations. There is a lack of drugs that demonstrate significant efficacy in AD, so the study of the pathogenesis of AD is of great importance. More efficacious interventions are needed, as reflected by our population's fast aging. Synaptic plasticity is the capacity of neurons to adjust their connections, and it is strongly tied to learning and memory, cognitive function, and brain injury recovery. Changes in synaptic strength, such as long-term potentiation (LTP) or inhibition (LTD), are thought to represent the biological foundation of the early stages of learning and memory. The results of numerous studies confirm that neurotransmitters and their receptors play an important role in the regulation of synaptic plasticity. However, so far, there is no definite correlation between the function of neurotransmitters in aberrant neural oscillation and AD-related cognitive impairment. We summarized the AD process to understand the impact of neurotransmitters in the progression and pathogenesis of AD, including the current status of neurotransmitter target drugs, and the latest evidence of neurotransmitters' function and changes in the AD process.
Collapse
|
28
|
Niraula S, Doderer JJ, Indulkar S, Berry KP, Hauser WL, L'Esperance OJ, Deng JZ, Keeter G, Rouse AG, Subramanian J. Excitation-inhibition imbalance disrupts visual familiarity in amyloid and non-pathology conditions. Cell Rep 2023; 42:111946. [PMID: 36640331 PMCID: PMC9939293 DOI: 10.1016/j.celrep.2022.111946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Neuronal hyperactivity induces memory deficits in Alzheimer's disease. However, how hyperactivity disrupts memory is unclear. Using in vivo synaptic imaging in the mouse visual cortex, we show that structural excitatory-inhibitory synapse imbalance in the apical dendrites favors hyperactivity in early amyloidosis. Consistent with this, natural images elicit neuronal hyperactivity in these mice. Compensatory changes that maintain activity homeostasis disrupt functional connectivity and increase population sparseness such that a small fraction of neurons dominates population activity. These properties reduce the selectivity of neural response to natural images and render visual recognition memory vulnerable to interference. Deprivation of non-specific visual experiences improves the neural representation and behavioral expression of visual familiarity. In contrast, in non-pathological conditions, deprivation of non-specific visual experiences induces disinhibition, increases excitability, and disrupts visual familiarity. We show that disrupted familiarity occurs when the fraction of high-responsive neurons and the persistence of neural representation of a memory-associated stimulus are not constrained.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Julia J Doderer
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Shreya Indulkar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Kalen P Berry
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William L Hauser
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Oliver J L'Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Jasmine Z Deng
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Griffin Keeter
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
29
|
Adinolfi A, Di Sante G, Rivignani Vaccari L, Tredicine M, Ria F, Bonvissuto D, Corvino V, Sette C, Geloso MC. Regionally restricted modulation of Sam68 expression and Arhgef9 alternative splicing in the hippocampus of a murine model of multiple sclerosis. Front Mol Neurosci 2023; 15:1073627. [PMID: 36710925 PMCID: PMC9878567 DOI: 10.3389/fnmol.2022.1073627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) and its preclinical models are characterized by marked changes in neuroplasticity, including excitatory/inhibitory imbalance and synaptic dysfunction that are believed to underlie the progressive cognitive impairment (CI), which represents a significant clinical hallmark of the disease. In this study, we investigated several parameters of neuroplasticity in the hippocampus of the experimental autoimmune encephalomyelitis (EAE) SJL/J mouse model, characterized by rostral inflammatory and demyelinating lesions similar to Relapsing-Remitting MS. By combining morphological and molecular analyses, we found that the hippocampus undergoes extensive inflammation in EAE-mice, more pronounced in the CA3 and dentate gyrus (DG) subfields than in the CA1, associated with changes in GABAergic circuitry, as indicated by the increased expression of the interneuron marker Parvalbumin selectively in CA3. By laser-microdissection, we investigated the impact of EAE on the alternative splicing of Arhgef9, a gene encoding a post-synaptic protein playing an essential role in GABAergic synapses and whose mutations have been related to CI and epilepsy. Our results indicate that EAE induces a specific increase in inclusion of the alternative exon 11a only in the CA3 and DG subfields, in line with the higher local levels of inflammation. Consistently, we found a region-specific downregulation of Sam68, a splicing-factor that represses this splicing event. Collectively, our findings confirm a regionalized distribution of inflammation in the hippocampus of EAE-mice. Moreover, since neuronal circuit rearrangement and dynamic remodeling of structural components of the synapse are key processes that contribute to neuroplasticity, our study suggests potential new molecular players involved in EAE-induced hippocampal dysfunction.
Collapse
Affiliation(s)
- Annalisa Adinolfi
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Di Sante
- Section of Human, Clinic and Forensic Anatomy, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Rivignani Vaccari
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Tredicine
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Ria
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Corvino
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy,*Correspondence: Claudio Sette, ✉
| | - Maria Concetta Geloso
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,Maria Concetta Geloso, ✉
| |
Collapse
|
30
|
Morrissey ZD, Gao J, Zhan L, Li W, Fortel I, Saido T, Saito T, Bakker A, Mackin S, Ajilore O, Lazarov O, Leow AD. Hippocampal functional connectivity across age in an App knock-in mouse model of Alzheimer's disease. Front Aging Neurosci 2023; 14:1085989. [PMID: 36711209 PMCID: PMC9878347 DOI: 10.3389/fnagi.2022.1085989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a progressive neurodegenerative disease. The early processes of AD, however, are not fully understood and likely begin years before symptoms manifest. Importantly, disruption of the default mode network, including the hippocampus, has been implicated in AD. METHODS To examine the role of functional network connectivity changes in the early stages of AD, we performed resting-state functional magnetic resonance imaging (rs-fMRI) using a mouse model harboring three familial AD mutations (App NL-G-F/NL-G-F knock-in, APPKI) in female mice in early, middle, and late age groups. The interhemispheric and intrahemispheric functional connectivity (FC) of the hippocampus was modeled across age. RESULTS We observed higher interhemispheric functional connectivity (FC) in the hippocampus across age. This was reduced, however, in APPKI mice in later age. Further, we observed loss of hemispheric asymmetry in FC in APPKI mice. DISCUSSION Together, this suggests that there are early changes in hippocampal FC prior to heavy onset of amyloid β plaques, and which may be clinically relevant as an early biomarker of AD.
Collapse
Affiliation(s)
- Zachery D. Morrissey
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Anatomy & Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Jin Gao
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Preclinical Imaging Core, University of Illinois at Chicago, Chicago, IL, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Weiguo Li
- Preclinical Imaging Core, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Radiology, Northwestern University, Chicago, IL, United States
| | - Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University, Nagoya, Japan
| | - Arnold Bakker
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University, Baltimore, MD, United States
| | - Scott Mackin
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Orly Lazarov
- Department of Anatomy & Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex D. Leow
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
31
|
Černotová D, Hrůzová K, Levčík D, Svoboda J, Stuchlík A. Linking Social Cognition, Parvalbumin Interneurons, and Oxytocin in Alzheimer's Disease: An Update. J Alzheimers Dis 2023; 96:861-875. [PMID: 37980658 PMCID: PMC10741376 DOI: 10.3233/jad-230333] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 11/21/2023]
Abstract
Finding a cure for Alzheimer's disease (AD) has been notoriously challenging for many decades. Therefore, the current focus is mainly on prevention, timely intervention, and slowing the progression in the earliest stages. A better understanding of underlying mechanisms at the beginning of the disease could aid in early diagnosis and intervention, including alleviating symptoms or slowing down the disease progression. Changes in social cognition and progressive parvalbumin (PV) interneuron dysfunction are among the earliest observable effects of AD. Various AD rodent models mimic these early alterations, but only a narrow field of study has considered their mutual relationship. In this review, we discuss current knowledge about PV interneuron dysfunction in AD and emphasize their importance in social cognition and memory. Next, we propose oxytocin (OT) as a potent modulator of PV interneurons and as a promising treatment for managing some of the early symptoms. We further discuss the supporting evidence on its beneficial effects on AD-related pathology. Clinical trials have employed the use of OT in various neuropsychiatric diseases with promising results, but little is known about its prospective impacts on AD. On the other hand, the modulatory effects of OT in specific structures and local circuits need to be clarified in future studies. This review highlights the connection between PV interneurons and social cognition impairment in the early stages of AD and considers OT as a promising therapeutic agent for addressing these early deficits.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
32
|
Rabanel JM, Mirbagheri M, Olszewski M, Xie G, Le Goas M, Latreille PL, Counil H, Hervé V, Silva RO, Zaouter C, Adibnia V, Acevedo M, Servant MJ, Martinez VA, Patten SA, Matyjaszewski K, Ramassamy C, Banquy X. Deep Tissue Penetration of Bottle-Brush Polymers via Cell Capture Evasion and Fast Diffusion. ACS NANO 2022; 16:21583-21599. [PMID: 36516979 DOI: 10.1021/acsnano.2c10554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Drug nanocarriers (NCs) capable of crossing the vascular endothelium and deeply penetrating into dense tissues of the CNS could potentially transform the management of neurological diseases. In the present study, we investigated the interaction of bottle-brush (BB) polymers with different biological barriers in vitro and in vivo and compared it to nanospheres of similar composition. In vitro internalization and permeability assays revealed that BB polymers are not internalized by brain-associated cell lines and translocate much faster across a blood-brain barrier model compared to nanospheres of similar hydrodynamic diameter. These observations performed under static, no-flow conditions were complemented by dynamic assays performed in microvessel arrays on chip and confirmed that BB polymers can escape the vasculature compartment via a paracellular route. BB polymers injected in mice and zebrafish larvae exhibit higher penetration in brain tissues and faster extravasation of microvessels located in the brain compared to nanospheres of similar sizes. The superior diffusivity of BBs in extracellular matrix-like gels combined with their ability to efficiently cross endothelial barriers via a paracellular route position them as promising drug carriers to translocate across the blood-brain barrier and penetrate dense tissue such as the brain, two unmet challenges and ultimate frontiers in nanomedicine.
Collapse
Affiliation(s)
- Jean-Michel Rabanel
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Marziye Mirbagheri
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Guojun Xie
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Marine Le Goas
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Pierre-Luc Latreille
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Hermine Counil
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Vincent Hervé
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Rummenigge Oliveira Silva
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Charlotte Zaouter
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Vahid Adibnia
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Mariana Acevedo
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Marc J Servant
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| | - Vincent A Martinez
- School of Physics and Astronomy, University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh, United Kingdom EH9 3FD
| | - Shunmoogum A Patten
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania, United States 15213-3815
| | - Charles Ramassamy
- INRS Centre Armand-Frappier Santé Biotechnologie, 531, boul. des Prairies, Laval, QC, Canada H7V 1B7
| | - Xavier Banquy
- Faculté de pharmacie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
33
|
Hidisoglu E, Chiantia G, Franchino C, Tomagra G, Giustetto M, Carbone E, Carabelli V, Marcantoni A. The ryanodine receptor-calstabin interaction stabilizer S107 protects hippocampal neurons from GABAergic synaptic alterations induced by Abeta42 oligomers. J Physiol 2022; 600:5295-5309. [PMID: 36284365 DOI: 10.1113/jp283537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/12/2022] [Indexed: 01/05/2023] Open
Abstract
The oligomeric form of the peptide amyloid beta 42 (Abeta42) contributes to the development of synaptic abnormalities and cognitive impairments associated with Alzheimer's disease (AD). To date, there is a gap in knowledge regarding how Abeta42 alters the elementary parameters of GABAergic synaptic function. Here we found that Abeta42 increased the frequency and amplitude of miniature GABAergic currents as well as the amplitude of evoked inhibitory postsynaptic currents. When we focused on paired pulse depression (PPD) to establish whether GABA release probability was affected by Abeta42, we did not observe any significant change. On the other hand, a more detailed investigation of the presynaptic effects induced by Abeta42 by means of multiple probability fluctuation analysis and cumulative amplitude analysis showed an increase in both the size of the readily releasable pool responsible for synchronous release and the number of release sites. We further explored whether ryanodine receptors (RyRs) contributed to exacerbating these changes by stabilizing the interaction between RyRs and the accessory protein calstabin. We observed that the RyR-calstabin interaction stabilizer S107 restored the synaptic parameters to values comparable to those measured in control conditions. In conclusion, our results clarify the mechanisms of potentiation of GABAergic synapses induced by Abeta42. We further suggest that RyRs are involved in the control of synaptic activity during the early stage of AD onset and that their stabilization could represent a new therapeutical approach for AD treatment. KEY POINTS: Accumulation of the peptide amyloid beta 42 (Abeta42) is a key characteristic of Alzheimer's disease (AD) and causes synaptic dysfunctions. To date, the effects of Abeta42 accumulation on GABAergic synapses are poorly understood. The findings reported here suggest that, similarly to what is observed on glutamatergic synapses, Abeta42 modifies GABAergic synapses by targeting ryanodine receptors and causing calcium dysregulation. The GABAergic impairments can be restored by the ryanodine receptor-calstabin interaction stabilizer S107. Based on this research, RyRs stabilization may represent a novel pharmaceutical strategy for preventing or delaying AD.
Collapse
Affiliation(s)
- Enis Hidisoglu
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| | | | - Claudio Franchino
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| | - Giulia Tomagra
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| | | | - Emilio Carbone
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| | - Valentina Carabelli
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| | - Andrea Marcantoni
- Department of Drug Science and Technology, NIS Centre, University of Turin, Turin, Italy
| |
Collapse
|
34
|
Alfaro‐Ruiz R, Aguado C, Martín‐Belmonte A, Moreno‐Martínez AE, Merchán‐Rubira J, Hernández F, Ávila J, Fukazawa Y, Luján R. Different modes of synaptic and extrasynaptic NMDA receptor alteration in the hippocampus of P301S tau transgenic mice. Brain Pathol 2022; 33:e13115. [PMID: 36058615 PMCID: PMC9836375 DOI: 10.1111/bpa.13115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are pivotal players in the synaptic transmission and synaptic plasticity underlying learning and memory. Accordingly, dysfunction of NMDARs has been implicated in the pathophysiology of Alzheimer disease (AD). Here, we used histoblot and sodium dodecylsulphate-digested freeze-fracture replica labelling (SDS-FRL) techniques to investigate the expression and subcellular localisation of GluN1, the obligatory subunit of NMDARs, in the hippocampus of P301S mice. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus of P301S mice in a laminar-specific manner at 10 months of age but was unaltered at 3 months. Using the SDS-FRL technique, excitatory synapses and extrasynaptic sites on spines of pyramidal cells and interneuron dendrites were analysed throughout all dendritic layers in the CA1 field. Our ultrastructural approach revealed a high density of GluN1 in synaptic sites and a substantially lower density at extrasynaptic sites. Labelling density for GluN1 in excitatory synapses established on spines was significantly reduced in P301S mice, compared with age-matched wild-type mice, in the stratum oriens (so), stratum radiatum (sr) and stratum lacunosum-moleculare (slm). Density for synaptic GluN1 on interneuron dendrites was significantly reduced in P301S mice in the so and sr but unaltered in the slm. Labelling density for GluN1 at extrasynaptic sites showed no significant differences in pyramidal cells, and only increased density in the interneuron dendrites of the sr. This differential alteration of synaptic versus extrasynaptic NMDARs supports the notion that the progressive accumulation of phospho-tau is associated with changes in NMDARs, in the absence of amyloid-β pathology, and may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit.
Collapse
Affiliation(s)
- Rocío Alfaro‐Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Alejandro Martín‐Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain,Present address:
Pharmacology Unit, Department of Pathology and Experimental TherapeuticsFaculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona08907 L'Hospitalet de LlobregatSpain
| | - Ana Esther Moreno‐Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasISCIIIMadridSpain
| | - Jesús Ávila
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasISCIIIMadridSpain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical ScienceUniversity of FukuiFukuiJapan,Life Science Innovation CenterUniversity of FukuiFukuiJapan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| |
Collapse
|
35
|
Kumar S, Orlov E, Gowda P, Bose C, Swerdlow RH, Lahiri DK, Reddy PH. Synaptosome microRNAs regulate synapse functions in Alzheimer's disease. NPJ Genom Med 2022; 7:47. [PMID: 35941185 PMCID: PMC9359989 DOI: 10.1038/s41525-022-00319-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are found in nerve terminals, synaptic vesicles, and synaptosomes, but it is unclear whether synaptic and cytosolic miRNA populations differ in Alzheimer's disease (AD) or if synaptosomal miRNAs affect AD synapse activity. To address these questions, we generated synaptosomes and cytosolic fractions from postmortem brains of AD and unaffected control (UC) samples and analyzed them using a global Affymetrix miRNAs microarray platform. A group of miRNAs significantly differed (P < 0.0001) with high fold changes variance (+/- >200-fold) in their expressions in different comparisons: (1) UC synaptosome vs UC cytosol, (2) AD synaptosomes vs AD cytosol, (3) AD cytosol vs UC cytosol, and (4) AD synaptosomes vs UC synaptosomes. MiRNAs data analysis revealed that some potential miRNAs were consistently different across sample groups. These differentially expressed miRNAs were further validated using AD postmortem brains, brains of APP transgenic (Tg2576), Tau transgenic (P301L), and wild-type mice. The miR-501-3p, miR-502-3p, and miR-877-5p were identified as potential synaptosomal miRNAs upregulated with disease progression based on AD Braak stages. Gene Ontology Enrichment and Ingenuity Pathway Analysis of synaptosomal miRNAs showed the involvement of miRNAs in nervous system development, cell junction organization, synapse assembly formation, and function of GABAergic synapse. This is the first description of synaptic versus cytosolic miRNAs in AD and their significance in synapse function.
Collapse
Affiliation(s)
- Subodh Kumar
- grid.416992.10000 0001 2179 3554Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905 USA ,grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Erika Orlov
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Prashanth Gowda
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Chhanda Bose
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Russell H. Swerdlow
- grid.266515.30000 0001 2106 0692Department of Neurology, the University of Kansas Medical Center, University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66205 USA
| | - Debomoy K. Lahiri
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics’ Departments of Psychiatry and Medical & Molecular Genetics, Indiana University School of Medicine’ Indiana Alzheimer’s Disease Research Center, Stark Neuroscience Research Institute, Indianapolis, IN 46202 USA
| | - P. Hemachandra Reddy
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Neurology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Public Health, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| |
Collapse
|
36
|
Katsuki F, Gerashchenko D, Brown RE. Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus. Brain Res Bull 2022; 187:181-198. [PMID: 35850189 DOI: 10.1016/j.brainresbull.2022.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Sleep abnormalities are widely reported in patients with Alzheimer's disease (AD) and are linked to cognitive impairments. Sleep abnormalities could be potential biomarkers to detect AD since they are often observed at the preclinical stage. Moreover, sleep could be a target for early intervention to prevent or slow AD progression. Thus, here we review changes in brain oscillations observed during sleep, their connection to AD pathophysiology and the role of specific brain circuits. Slow oscillations (0.1-1 Hz), sleep spindles (8-15 Hz) and their coupling during non-REM sleep are consistently reduced in studies of patients and in AD mouse models although the timing and magnitude of these alterations depends on the pathophysiological changes and the animal model studied. Changes in delta (1-4 Hz) activity are more variable. Animal studies suggest that hippocampal sharp-wave ripples (100-250 Hz) are also affected. Reductions in REM sleep amount and slower oscillations during REM are seen in patients but less consistently in animal models. Thus, changes in a variety of sleep oscillations could impact sleep-dependent memory consolidation or restorative functions of sleep. Recent mechanistic studies suggest that alterations in the activity of GABAergic neurons in the cortex, hippocampus and thalamic reticular nucleus mediate sleep oscillatory changes in AD and represent a potential target for intervention. Longitudinal studies of the timing of AD-related sleep abnormalities with respect to pathology and dysfunction of specific neural networks are needed to identify translationally relevant biomarkers and guide early intervention strategies to prevent or delay AD progression.
Collapse
Affiliation(s)
- Fumi Katsuki
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA.
| | - Dmitry Gerashchenko
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| | - Ritchie E Brown
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| |
Collapse
|
37
|
Martinsson I, Quintino L, Garcia MG, Konings SC, Torres-Garcia L, Svanbergsson A, Stange O, England R, Deierborg T, Li JY, Lundberg C, Gouras GK. Aβ/Amyloid Precursor Protein-Induced Hyperexcitability and Dysregulation of Homeostatic Synaptic Plasticity in Neuron Models of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:946297. [PMID: 35928998 PMCID: PMC9344931 DOI: 10.3389/fnagi.2022.946297] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is increasingly seen as a disease of synapses and diverse evidence has implicated the amyloid-β peptide (Aβ) in synapse damage. The molecular and cellular mechanism(s) by which Aβ and/or its precursor protein, the amyloid precursor protein (APP) can affect synapses remains unclear. Interestingly, early hyperexcitability has been described in human AD and mouse models of AD, which precedes later hypoactivity. Here we show that neurons in culture with either elevated levels of Aβ or with human APP mutated to prevent Aβ generation can both induce hyperactivity as detected by elevated calcium transient frequency and amplitude. Since homeostatic synaptic plasticity (HSP) mechanisms normally maintain a setpoint of activity, we examined whether HSP was altered in AD transgenic neurons. Using methods known to induce HSP, we demonstrate that APP protein levels are regulated by chronic modulation of activity and that AD transgenic neurons have an impaired adaptation of calcium transients to global changes in activity. Further, AD transgenic compared to WT neurons failed to adjust the length of their axon initial segments (AIS), an adaptation known to alter excitability. Thus, we show that both APP and Aβ influence neuronal activity and that mechanisms of HSP are disrupted in primary neuron models of AD.
Collapse
Affiliation(s)
- Isak Martinsson
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Experimental Neuroinflammation Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Isak Martinsson,
| | - Luis Quintino
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Megg G. Garcia
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Experimental Neuroinflammation Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Neural Plasticity and Repair, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oliver Stange
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rebecca England
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jia-Yi Li
- Neural Plasticity and Repair, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cecilia Lundberg
- CNS Gene Therapy, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gunnar K. Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Gunnar K. Gouras,
| |
Collapse
|
38
|
Li D, Wu Q, Han X. Application of Medial Ganglionic Eminence Cell Transplantation in Diseases Associated With Interneuron Disorders. Front Cell Neurosci 2022; 16:939294. [PMID: 35865112 PMCID: PMC9294455 DOI: 10.3389/fncel.2022.939294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Excitatory projection neurons and inhibitory interneurons primarily accomplish the neural activity of the cerebral cortex, and an imbalance of excitatory-inhibitory neural networks may lead to neuropsychiatric diseases. Gamma-aminobutyric acid (GABA)ergic interneurons mediate inhibition, and the embryonic medial ganglionic eminence (MGE) is a source of GABAergic interneurons. After transplantation, MGE cells migrate to different brain regions, differentiate into multiple subtypes of GABAergic interneurons, integrate into host neural circuits, enhance synaptic inhibition, and have tremendous application value in diseases associated with interneuron disorders. In the current review, we describe the fate of MGE cells derived into specific interneurons and the related diseases caused by interneuron loss or dysfunction and explore the potential of MGE cell transplantation as a cell-based therapy for a variety of interneuron disorder-related diseases, such as epilepsy, schizophrenia, autism spectrum disorder, and Alzheimer’s disease.
Collapse
|
39
|
Mackenzie-Gray Scott CA, Pelkey KA, Caccavano AP, Abebe D, Lai M, Black KN, Brown ND, Trevelyan AJ, McBain CJ. Resilient Hippocampal Gamma Rhythmogenesis and Parvalbumin-Expressing Interneuron Function Before and After Plaque Burden in 5xFAD Alzheimer's Disease Model. Front Synaptic Neurosci 2022; 14:857608. [PMID: 35645763 PMCID: PMC9131009 DOI: 10.3389/fnsyn.2022.857608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Recent studies have implicated impaired Parvalbumin Fast-Spiking Interneuron (PVIN) function as a precipitating factor underlying abnormalities in network synchrony, oscillatory rhythms, and cognition associated with Alzheimer's disease (AD). However, a complete developmental investigation of potential gamma deficits, induced by commonly used carbachol or kainate in ex vivo slice preparations, within AD model mice is lacking. We examined gamma oscillations using field recordings in acute hippocampal slices from 5xFAD and control mice, through the period of developing pathology, starting at 3 months of age, when there is minimal plaque presence in the hippocampus, through to 12+ months of age, when plaque burden is high. In addition, we examined PVIN participation in gamma rhythms using targeted cell-attached recordings of genetically-reported PVINs, in both wild type and mutant mice. In parallel, a developmental immunohistochemical characterisation probing the PVIN-associated expression of PV and perineuronal nets (PNNs) was compared between control and 5xFAD mice. Remarkably, this comprehensive longitudinal evaluation failed to reveal any obvious correlations between PVIN deficits (electrical and molecular), circuit rhythmogenesis (gamma frequency and power), and Aβ deposits/plaque formation. By 6-12 months, 5xFAD animals have extensive plaque formation throughout the hippocampus. However, a deficit in gamma oscillatory power was only evident in the oldest 5xFAD animals (12+ months), and only when using kainate, and not carbachol, to induce the oscillations. We found no difference in PV firing or phase preference during kainate-induced oscillations in younger or older 5xFAD mice compared to control, and a reduction of PV and PNNs only in the oldest 5xFAD mice. The lack of a clear relationship between PVIN function, network rhythmicity, and plaque formation in our study highlights an unexpected resilience in PVIN function in the face of extensive plaque pathology associated with this model, calling into question the presumptive link between PVIN pathology and Alzheimer's progression.
Collapse
Affiliation(s)
- Connie A. Mackenzie-Gray Scott
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kenneth A. Pelkey
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Adam P. Caccavano
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel Abebe
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mandy Lai
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Khayla N. Black
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nicolette D. Brown
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Andrew J. Trevelyan
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Chris J. McBain
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
40
|
Tok S, Maurin H, Delay C, Crauwels D, Manyakov NV, Van Der Elst W, Moechars D, Drinkenburg WHIM. Neurophysiological effects of human-derived pathological tau conformers in the APPKM670/671NL.PS1/L166P amyloid mouse model of Alzheimer's disease. Sci Rep 2022; 12:7784. [PMID: 35546164 PMCID: PMC9094605 DOI: 10.1038/s41598-022-11582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer’s Disease (AD) is a neurodegenerative disease characterized by two main pathological hallmarks: amyloid plaques and intracellular tau neurofibrillary tangles. However, a majority of studies focus on the individual pathologies and seldom on the interaction between the two pathologies. Herein, we present the longitudinal neuropathological and neurophysiological effects of a combined amyloid-tau model by hippocampal seeding of human-derived tau pathology in the APP.PS1/L166P amyloid animal model. We statistically assessed both neurophysiological and pathological changes using linear mixed modelling to determine if factors such as the age at which animals were seeded, genotype, seeding or buffer, brain region where pathology was quantified, and time-post injection differentially affect these outcomes. We report that AT8-positive tau pathology progressively develops and is facilitated by the amount of amyloid pathology present at the time of injection. The amount of AT8-positive tau pathology was influenced by the interaction of age at which the animal was injected, genotype, and time after injection. Baseline pathology-related power spectra and Higuchi Fractal Dimension (HFD) score alterations were noted in APP.PS1/L166P before any manipulations were performed, indicating a baseline difference associated with genotype. We also report immediate localized hippocampal dysfunction in the electroencephalography (EEG) power spectra associated with tau seeding which returned to comparable levels at 1 month-post-injection. Longitudinal effects of seeding indicated that tau-seeded wild-type mice showed an increase in gamma power earlier than buffer control comparisons which was influenced by the age at which the animal was injected. A reduction of hippocampal broadband power spectra was noted in tau-seeded wild-type mice, but absent in APP.PS1 animals. HFD scores appeared to detect subtle effects associated with tau seeding in APP.PS1 animals, which was differentially influenced by genotype. Notably, while tau histopathological changes were present, a lack of overt longitudinal electrophysiological alterations was noted, particularly in APP.PS1 animals that feature both pathologies after seeding, reiterating and underscoring the difficulty and complexity associated with elucidating physiologically relevant and translatable biomarkers of Alzheimer’s Disease at the early stages of the disease.
Collapse
Affiliation(s)
- S Tok
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium. .,Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - H Maurin
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - C Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Crauwels
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - N V Manyakov
- Data Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W Van Der Elst
- Quantitative Sciences Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W H I M Drinkenburg
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.,Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Morrone CD, Lai AY, Bishay J, Hill ME, McLaurin J. Parvalbumin neuroplasticity compensates for somatostatin impairment, maintaining cognitive function in Alzheimer's disease. Transl Neurodegener 2022; 11:26. [PMID: 35501886 PMCID: PMC9063209 DOI: 10.1186/s40035-022-00300-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patient-to-patient variability in the degree to which β-amyloid, tau and neurodegeneration impact cognitive decline in Alzheimer's disease (AD) complicates disease modeling and treatment. However, the underlying mechanisms leading to cognitive resilience are not resolved. We hypothesize that the variability in cognitive function and loss relates to neuronal resilience of the hippocampal GABAergic network. METHODS We compared TgF344-AD and non-transgenic littermate rats at 9, 12, and 15 months of age. Neurons, β-amyloid plaques and tau inclusions were quantified in hippocampus and entorhinal cortex. Somatostatin (SST) and parvalbumin (PVB) interneurons were traced to examine hippocampal neuroplasticity and cognition was tested in the Barnes maze. RESULTS The 9-month-old TgF344-AD rats exhibited loss of neurons in the entorhinal cortex and hippocampus. Hippocampal neuronal compensation was observed in 12-month TgF344-AD rats, with upregulation of GABAergic interneuronal marker. By 15 months, the TgF344-AD rats had robust loss of excitatory and inhibitory neurons. β-Amyloid and tau pathology accumulated continuously across age. SST interneurons exhibited tau inclusions and atrophy from 9 months, whereas PVB interneurons were resilient until 15 months. The hippocampal PVB circuit underwent neuroplastic reorganization with increased dendritic length and complexity in 9- and 12-month-old TgF344-AD rats, before atrophy at 15 months. Strikingly, 12-month-old TgF344-AD rats were resilient in executive function and cognitive flexibility. Cognitive resilience in TgF344-AD rats occurred as maintenance of function between 9 and 12 months of age despite progressive spatial memory deficits, and was sustained by PVB neuroplasticity. CONCLUSIONS Our results demonstrate the inherent neuronal processes leading to cognitive maintenance, and describe a novel finding of endogenous cognitive resilience in an AD model.
Collapse
Affiliation(s)
| | - Aaron Yenhsin Lai
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Jossana Bishay
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
42
|
Theta and gamma oscillatory dynamics in mouse models of Alzheimer's disease: A path to prospective therapeutic intervention. Neurosci Biobehav Rev 2022; 136:104628. [PMID: 35331816 DOI: 10.1016/j.neubiorev.2022.104628] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022]
Abstract
Understanding the neural basis of cognitive deficits, a key feature of Alzheimer's disease (AD), is imperative for achieving the therapy of the disease. Rhythmic oscillatory activities in neural systems are a fundamental mechanism for diverse brain functions, including cognition. In several neurological conditions like AD, aberrant neural oscillations have been shown to play a central role. Furthermore, manipulation of brain oscillations in animals has confirmed their impact on cognition and disease. In this article, we review the evidence from mouse models that shows how synchronized oscillatory activity is intricately linked to AD machinery. We primarily focus on recent reports showing abnormal oscillatory activities at theta and gamma frequencies in AD condition and their influence on cellular disturbances and cognitive impairments. A thorough comprehension of the role that neuronal oscillations play in AD pathology should pave the way to therapeutic interventions that can curb the disease.
Collapse
|
43
|
Lizarazo S, Yook Y, Tsai N. Amyloid beta induces
Fmr1
‐dependent translational suppression and hyposynchrony of neural activity via phosphorylation of eIF2α and eEF2. J Cell Physiol 2022; 237:2929-2942. [PMID: 35434801 PMCID: PMC9283232 DOI: 10.1002/jcp.30754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 01/02/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, with the accumulation of amyloid beta peptide (Aβ) being one of the main causes of the disease. Fragile X mental retardation protein (FMRP), encoded by fragile X mental retardation 1 (Fmr1), is an RNA‐binding protein that represses translation of its bound mRNAs or exerts other indirect mechanisms that result in translational suppression. Because the accumulation of Aβ has been shown to cause translational suppression resulting from the elevated cellular stress response, in this study we asked whether and how Fmr1 is involved in Aβ‐induced translational regulation. Our data first showed that the application of synthetic Aβ peptide induces the expression of Fmr1 in cultured primary neurons. We followed by showing that Fmr1 is required for Aβ‐induced translational suppression, hyposynchrony of neuronal firing activity, and loss of excitatory synapses. Mechanistically, we revealed that Fmr1 functions to repress the expression of phosphatases including protein phosphatase 2A (PP2A) and protein phosphatase 1 (PP1), leading to elevated phosphorylation of eukaryotic initiation factor 2‐α (eIF2α) and eukaryotic elongation factor 2 (eEF2), and subsequent translational suppression. Finally, our data suggest that such translational suppression is critical to Aβ‐induced hyposynchrony of firing activity, but not the loss of synapses. Altogether, our study uncovers a novel mechanism by which Aβ triggers translational suppression and we reveal the participation of Fmr1 in altered neural plasticity associated with Aβ pathology. Our study may also provide information for a better understanding of Aβ‐induced cellular stress responses in AD.
Collapse
Affiliation(s)
- Simon Lizarazo
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Yeeun Yook
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
| | - Nien‐Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology University of Illinois at Urbana‐Champaign Urbana Illinois USA
- Neuroscience Program University of Illinois at Urbana‐Champaign Urbana Illinois USA
| |
Collapse
|
44
|
Lu H, Liu L, Han S, Wang B, Qin J, Bu K, Zhang Y, Li Z, Ma L, Tian J, Zhang K, Li T, Cui H, Liu X. Expression of tiRNA and tRF in APP/PS1 transgenic mice and the change of related proteins expression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1457. [PMID: 34734009 PMCID: PMC8506760 DOI: 10.21037/atm-21-4318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Background Transcriptomics, such as that of non-coding RNA (ncRNA), which include microRNA (miRNA), circular RNA, and the transfer RNA (tRNA)-derived fragments (tiRNA and tRF) in Alzheimer's disease (AD) have attracted much attention recently. The tiRNA and tRFs are produced when the tRNA splits at specific sites. The expression change and related function of tiRNA and tRFs in AD has not been fully investigated. Methods In our study, APP/PS1 transgenic mice (AD mice model) and healthy control mice were used to discover the differentially expressed tiRNA and tRFs with high-throughput sequencing. Among the differentially expressed tiRNA and tRFs, we chose two tRFs (tRF-Thr-CGT-003 and tRF-Leu-CAA-004) and predicted the target messenger RNAs (mRNAs) with miRanda and Target Scan. The target mRNAs of tRF-related function and pathways were analyzed, then we performed quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot to validate the related target mRNAs and pathways. Results A total of 27 significantly different tiRNA and tRFs were detected between wild type (WT) and APP/PS1 groups, including 14 up-regulated and 13 down-regulated. Through analyzing the target mRNAs of all differentially expressed tiRNA and tRFs with GO enrichment, we found the target mRNAs could take part in the learning and memory biological process, synapse organization, cognition biological process, synaptic transmission, amyloid-β (Aβ) metabolic process, and so on. We then chose three differentially expressed tRFs for further qPCR validation and passed two tRFs: tRF-Thr-CGT-003 and tRF-Leu-CAA-004, that were found to regulate the calcium regulation-related proteins (the voltage-gated calcium channel γ2 subunit and the RYR1 endoplasmic reticulum calcium released protein) and the retinol metabolism-related proteins (retinoic acid metabolic enzymes CYP2S1, CYP2C68, CYP2S1). Conclusions The APP expression and presenilin mutation in APP/PS1 mice could cause tiRNA and tRFs expression change. Among the differentially expressed tiRNA and tRFs, we found some tRFs took part in the voltage-gated calcium channel γ2 subunit expression and regulation, influencing the neuron calcium homeostasis. Moreover, we also found the tRFs may participate in the regulation of retinol metabolism. Our findings suggest that the dysregulated tiRNA and tRFs may be beneficially exploited as potential diagnostic biomarkers and/or therapeutic targets of AD.
Collapse
Affiliation(s)
- Honglin Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shu Han
- Department of Electrocardiogram, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Binbin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
45
|
Raven F, Aton SJ. The Engram's Dark Horse: How Interneurons Regulate State-Dependent Memory Processing and Plasticity. Front Neural Circuits 2021; 15:750541. [PMID: 34588960 PMCID: PMC8473837 DOI: 10.3389/fncir.2021.750541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Brain states such as arousal and sleep play critical roles in memory encoding, storage, and recall. Recent studies have highlighted the role of engram neurons-populations of neurons activated during learning-in subsequent memory consolidation and recall. These engram populations are generally assumed to be glutamatergic, and the vast majority of data regarding the function of engram neurons have focused on glutamatergic pyramidal or granule cell populations in either the hippocampus, amygdala, or neocortex. Recent data suggest that sleep and wake states differentially regulate the activity and temporal dynamics of engram neurons. Two potential mechanisms for this regulation are either via direct regulation of glutamatergic engram neuron excitability and firing, or via state-dependent effects on interneuron populations-which in turn modulate the activity of glutamatergic engram neurons. Here, we will discuss recent findings related to the roles of interneurons in state-regulated memory processes and synaptic plasticity, and the potential therapeutic implications of understanding these mechanisms.
Collapse
Affiliation(s)
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
46
|
Tok S, Ahnaou A, Drinkenburg W. Functional Neurophysiological Biomarkers of Early-Stage Alzheimer's Disease: A Perspective of Network Hyperexcitability in Disease Progression. J Alzheimers Dis 2021; 88:809-836. [PMID: 34420957 PMCID: PMC9484128 DOI: 10.3233/jad-210397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological indicator of Alzheimer’s disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential indicator of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this readout. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD.
Collapse
Affiliation(s)
- Sean Tok
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| | - Abdallah Ahnaou
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Wilhelmus Drinkenburg
- Department of Neuroscience, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, The Netherlands
| |
Collapse
|
47
|
Hippocampal and Reticulo-Thalamic Parvalbumin Interneurons and Synaptic Re-Organization during Sleep Disorders in the Rat Models of Parkinson's Disease Neuropathology. Int J Mol Sci 2021; 22:ijms22168922. [PMID: 34445628 PMCID: PMC8396216 DOI: 10.3390/ijms22168922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated the alterations of hippocampal and reticulo-thalamic (RT) GABAergic parvalbumin (PV) interneurons and their synaptic re-organizations underlying the prodromal local sleep disorders in the distinct rat models of Parkinson’s disease (PD). We demonstrated for the first time that REM sleep is a predisposing state for the high-voltage sleep spindles (HVS) induction in all experimental models of PD, particularly during hippocampal REM sleep in the hemiparkinsonian models. There were the opposite underlying alterations of the hippocampal and RT GABAergic PV+ interneurons along with the distinct MAP2 and PSD-95 expressions. Whereas the PD cholinopathy enhanced the number of PV+ interneurons and suppressed the MAP2/PSD-95 expression, the hemiparkinsonism with PD cholinopathy reduced the number of PV+ interneurons and enhanced the MAP2/PSD-95 expression in the hippocampus. Whereas the PD cholinopathy did not alter PV+ interneurons but partially enhanced MAP2 and suppressed PSD-95 expression remotely in the RT, the hemiparkinsonism with PD cholinopathy reduced the PV+ interneurons, enhanced MAP2, and did not change PSD-95 expression remotely in the RT. Our study demonstrates for the first time an important regulatory role of the hippocampal and RT GABAergic PV+ interneurons and the synaptic protein dynamic alterations in the distinct rat models of PD neuropathology.
Collapse
|
48
|
Kurucu H, Colom-Cadena M, Davies C, Wilkins L, King D, Rose J, Tzioras M, Tulloch JH, Smith C, Spires-Jones TL. Inhibitory synapse loss and accumulation of amyloid beta in inhibitory presynaptic terminals in Alzheimer's disease. Eur J Neurol 2021; 29:1311-1323. [PMID: 34331352 DOI: 10.1111/ene.15043] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Synapse degeneration in Alzheimer's disease (AD) correlates strongly with cognitive decline. There is well-established excitatory synapse loss in AD with known contributions of pathological amyloid beta (Aβ) to excitatory synapse dysfunction and loss. Despite clear changes in circuit excitability in AD and model systems, relatively little is known about pathology in inhibitory synapses. METHODS Here human postmortem brain samples (n = 5 control, 10 AD cases) from temporal and occipital cortices were examined to investigate whether inhibitory synapses and neurons are lost in AD and whether Aβ may contribute to inhibitory synapse degeneration. Inhibitory neurons were counted in all six cortical layers using stereology software, and array tomography was used to examine synapse density and the accumulation of Aβ in synaptic terminals. RESULTS Differing inhibitory neuron densities were observed in the different cortical layers. The highest inhibitory neuron density was observed in layer 4 in both brain regions and the visual cortex had a higher inhibitory neuron density than the temporal cortex. There was significantly lower inhibitory neuron density in AD than in control cases in all six cortical layers. High-resolution array tomography imaging revealed plaque-associated loss of inhibitory synapses and accumulation of Aβ in a small subset of inhibitory presynaptic terminals with the most accumulation near amyloid plaques. CONCLUSIONS Inhibitory neuron and synapse loss in AD may contribute to disrupted excitatory/inhibitory balance and cognitive decline. Future work is warranted to determine whether targeting inhibitory synapse loss could be a useful therapeutic strategy.
Collapse
Affiliation(s)
- Hatice Kurucu
- University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Martí Colom-Cadena
- University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Caitlin Davies
- University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Lewis Wilkins
- University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Declan King
- University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Jamie Rose
- University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Makis Tzioras
- University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Jane H Tulloch
- University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- University of Edinburgh Centre for Discovery Brain Sciences and UK Dementia Research Institute, Edinburgh, UK
| |
Collapse
|
49
|
Zhen ZH, Guo MR, Li HM, Guo OY, Zhen JL, Fu J, Tan GJ. Normal and Abnormal Sharp Wave Ripples in the Hippocampal-Entorhinal Cortex System: Implications for Memory Consolidation, Alzheimer's Disease, and Temporal Lobe Epilepsy. Front Aging Neurosci 2021; 13:683483. [PMID: 34262446 PMCID: PMC8273653 DOI: 10.3389/fnagi.2021.683483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of hippocampal sharp wave ripples (SWRs) is an electrophysiological biomarker for episodic memory encoding and behavioral planning. Disturbed SWRs are considered a sign of neural network dysfunction that may provide insights into the structural connectivity changes associated with cognitive impairment in early-stage Alzheimer's disease (AD) and temporal lobe epilepsy (TLE). SWRs originating from hippocampus have been extensively studied during spatial navigation in rodents, and more recent studies have investigated SWRs in the hippocampal-entorhinal cortex (HPC-EC) system during a variety of other memory-guided behaviors. Understanding how SWR disruption impairs memory function, especially episodic memory, could aid in the development of more efficacious therapeutics for AD and TLE. In this review, we first provide an overview of the reciprocal association between AD and TLE, and then focus on the functions of HPC-EC system SWRs in episodic memory consolidation. It is posited that these waveforms reflect rapid network interactions among excitatory projection neurons and local interneurons and that these waves may contribute to synaptic plasticity underlying memory consolidation. Further, SWRs appear altered or ectopic in AD and TLE. These waveforms may thus provide clues to understanding disease pathogenesis and may even serve as biomarkers for early-stage disease progression and treatment response.
Collapse
Affiliation(s)
- Zhi-Hang Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mo-Ran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - He-Ming Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ou-Yang Guo
- Department of Biology, Boston University, Boston, MA, United States
| | - Jun-Li Zhen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guo-Jun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
50
|
Lu MH, Zhao XY, Xu DE, Chen JB, Ji WL, Huang ZP, Pan TT, Xue LL, Wang F, Li QF, Zhang Y, Wang TH, Yanagawa Y, Liu CF, Xu RX, Xia YY, Li S, Ma QH. Transplantation of GABAergic Interneuron Progenitor Attenuates Cognitive Deficits of Alzheimer's Disease Model Mice. J Alzheimers Dis 2021; 75:245-260. [PMID: 32280096 DOI: 10.3233/jad-200010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Excitatory (E) and inhibitory (I) balance of neural network activity is essential for normal brain function and of particular importance to memory. Disturbance of E/I balance contributes to various neurological disorders. The appearance of neural hyperexcitability in Alzheimer's disease (AD) is even suggested as one of predictors of accelerated cognitive decline. In this study, we found that GAD67+, Parvalbumin+, Calretinin+, and Neuropeptide Y+ interneurons were progressively lost in the brain of APP/PS1 mice. Transplanted embryonic medial ganglionic eminence derived interneuron progenitors (IPs) survived, migrated, and differentiated into GABAergic interneuron subtypes successfully at 2 months after transplantation. Transplantation of IPs hippocampally rescued impaired synaptic plasticity and cognitive deficits of APP/PS1 transgenic mice, concomitant with a suppression of neural hyperexcitability, whereas transplantation of IPs failed to attenuate amyloid-β accumulation, neuroinflammation, and synaptic loss of APP/PS1 transgenic mice. These observations indicate that transplantation of IPs improves learning and memory of APP/PS1 transgenic mice via suppressing neural hyperexcitability. This study highlights a causal contribution of GABAergic dysfunction to AD pathogenesis and the potentiality of IP transplantation in AD therapy.
Collapse
Affiliation(s)
- Mei-Hong Lu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu-Yun Zhao
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - De-En Xu
- Department of Neurology, the Second People's Hospital of Wuxi, Wuxi, Jiangsu Province, China
| | - Ji-Bo Chen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen-Li Ji
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ze-Ping Huang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting-Ting Pan
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu-Lu Xue
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Fen Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi-Fa Li
- Department of Physiology, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Yue Zhang
- Department of Physiology, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi-Yuan Xia
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shao Li
- Department of Physiology, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, Liaoning, China
| | - Quan-Hong Ma
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, China.,Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|