1
|
Bulgarella M, Reason A, Baty JW, McGruddy RA, Gordon ERL, Devisetty UK, Lester PJ. In Silico Analysis of Potential Off-Target Effects of a Next-Generation dsRNA Acaricide for Varroa Mites ( Varroa destructor) and Lack of Effect on a Bee-Associated Arthropod. INSECTS 2025; 16:317. [PMID: 40266823 PMCID: PMC11942661 DOI: 10.3390/insects16030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
Double-stranded RNA (dsRNA) biopesticides offer the potential for highly targeted pest control with minimal off-target impacts. Varroa mites (Varroa destructor) are an important pest of honey bees (Apis mellifera) that are primarily managed by synthetic pesticides. A next-generation treatment using a varroa-active dsRNA, vadescana, has been developed to target calmodulin expression in varroa. We evaluated the potential exposure of non-target species to vadescana. First, we assessed potential gene silencing effects on 39 arthropods with known genomes via bioinformatics. Three mite species, monarch butterflies (Danaus plexippus), fruit flies (Drosophila melanogaster), and European earwigs (Forficula auricularia) showed theoretical potential for off-target effects. These in silico results could be used to help inform risk assessments. Second, we conducted vadescana feeding trials on the greater wax moth (Galleria mellonella), a common beehive associate. There were no significant differences in wax moth reproduction, survival, or adult F2 wing length between vadescana-fed and control groups. Male F2 body weight was slightly but significantly lower in wax moths exposed to the highest vadescana dose, with no such effect observed in female moths. Calmodulin gene expression was unaffected in wax moths. Our hazard assessment of vadescana's lethal and sublethal effects on wax moths indicates minimal impact following continuous dietary exposure far greater than any exposure that might be expected in the field, in line with the bioinformatics findings. This biopesticide appears highly varroa-specific and likely has fewer non-target effects than many current varroa control methods.
Collapse
Affiliation(s)
- Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.R.); (J.W.B.); (R.A.M.); (P.J.L.)
| | - Aiden Reason
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.R.); (J.W.B.); (R.A.M.); (P.J.L.)
| | - James W. Baty
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.R.); (J.W.B.); (R.A.M.); (P.J.L.)
| | - Rose A. McGruddy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.R.); (J.W.B.); (R.A.M.); (P.J.L.)
| | - Eric R. L. Gordon
- GreenLight Biosciences, Research Triangle Park, 9 Laboratory Drive, Durham, NC 27709, USA; (E.R.L.G.); (U.K.D.)
| | - Upendra K. Devisetty
- GreenLight Biosciences, Research Triangle Park, 9 Laboratory Drive, Durham, NC 27709, USA; (E.R.L.G.); (U.K.D.)
| | - Philip J. Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; (A.R.); (J.W.B.); (R.A.M.); (P.J.L.)
| |
Collapse
|
2
|
Desclos le Peley V, Grateau S, Moreau-Vauzelle C, Raboteau D, Chevallereau C, Requier F, Aupinel P, Richard FJ. Experimental Ecotoxicology Procedures Interfere with Honey Bee Life History. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1320-1331. [PMID: 38661473 DOI: 10.1002/etc.5872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/30/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
Apis mellifera was used as a model species for ecotoxicological testing. In the present study, we tested the effects of acetone (0.1% in feed), a solvent commonly used to dissolve pesticides, on bees exposed at different developmental stages (larval and/or adult). Moreover, we explored the potential effect of in vitro larval rearing, a commonly used technique for accurately monitoring worker exposure at the larval stage, by combining acetone exposure and treatment conditions (in vitro larval rearing vs. in vivo larval rearing). We then analyzed the life-history traits of the experimental bees using radio frequency identification technology over three sessions (May, June, and August) to assess the potential seasonal dependence of the solvent effects. Our results highlight the substantial influence of in vitro larval rearing on the life cycle of bees, with a 47.7% decrease in life span, a decrease of 0.9 days in the age at first exit, an increase of 57.3% in the loss rate at first exit, and a decrease of 40.6% in foraging tenure. We did not observe any effect of exposure to acetone at the larval stage on the capacities of bees reared in vitro. Conversely, acetone exposure at the adult stage reduced the bee life span by 21.8% to 60%, decreased the age at first exit by 1.12 to 4.34 days, and reduced the foraging tenure by 30% to 37.7%. Interestingly, we found a significant effect of season on acetone exposure, suggesting that interference with the life-history traits of honey bees is dependent on season. These findings suggest improved integration of long-term monitoring for assessing sublethal responses in bees following exposure to chemicals during both the larval and adult stages. Environ Toxicol Chem 2024;43:1320-1331. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Victor Desclos le Peley
- Laboratoire Écologie et Biologie des Interactions-UMR CNRS 7267, Laboratoire EBI-Équipe Écologie Évolution Symbiose, Université de Poitiers, Poitiers, France
| | - Stéphane Grateau
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Carole Moreau-Vauzelle
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Daniel Raboteau
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Colombe Chevallereau
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France
| | - Pierrick Aupinel
- UE 1255 Abeilles, Paysages, Interactions et Systèmes de culture,Station du Magneraud, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement, Surgères, France
| | - Freddie-Jeanne Richard
- Laboratoire Écologie et Biologie des Interactions-UMR CNRS 7267, Laboratoire EBI-Équipe Écologie Évolution Symbiose, Université de Poitiers, Poitiers, France
| |
Collapse
|
3
|
Bulgarella M, Baty JW, McGruddy R, Lester PJ. Gene silencing for invasive paper wasp management: Synthesized dsRNA can modify gene expression but did not affect mortality. PLoS One 2023; 18:e0279983. [PMID: 36595511 PMCID: PMC9810182 DOI: 10.1371/journal.pone.0279983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Invasive paper wasps such as Polistes dominula are a major pest and problem for biodiversity around the globe. Safe and highly targeted methods for the control of these and other social wasp populations are needed. We attempted to identify potentially-lethal gene targets that could be used on adult paper wasps in a gene silencing or RNA interference (RNAi) approach. Double-stranded RNA (dsRNA) was designed to target genes for which silencing has proven lethal in other insects. dsRNA was provided either orally to foragers or directly injected into the wasps. We also provided the dsRNA unprotected or protected from degradation by gut nucleases in two different forms (lipofectamine and carbon quantum dots). The effects of oral delivery of 22 different gene targets to forager wasps was evaluated. The expression of five different genes was successfully reduced following dsRNA ingestion or injection. These gene targets included the FACT complex subunit spt16 (DRE4) and RNA-binding protein fusilli (FUSILLI), both of which have been previously shown to have potential as lethal targets for pest control in other insects. However, we found no evidence of significant increases in adult wasp mortality following ingestion or injection of dsRNA for these genes when compared with control treatments in our experiments. The methods we used to protect the dsRNA from digestive degradation altered gene expression but similarly did not influence wasp mortality. Our results indicate that while many of the same gene targets can be silenced and induce mortality in other insects, dsRNA and RNAi approaches may not be useful for paper wasp control.
Collapse
Affiliation(s)
- Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail:
| | - James W. Baty
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Rose McGruddy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Philip J. Lester
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
4
|
Rodríguez-Flores MS, Mazzei M, Felicioli A, Diéguez-Antón A, Seijo MC. Emerging Risk of Cross-Species Transmission of Honey Bee Viruses in the Presence of Invasive Vespid Species. INSECTS 2022; 14:6. [PMID: 36661935 PMCID: PMC9866884 DOI: 10.3390/insects14010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The increase in invasive alien species is a concern for the environment. The establishment of some of these species may be changing the balance between pathogenicity and host factors, which could alter the defense strategies of native host species. Vespid species are among the most successful invasive animals, such as the genera Vespa, Vespula and Polistes. Bee viruses have been extensively studied as an important cause of honey bee population losses. However, knowledge about the transmission of honey bee viruses in Vespids is a relevant and under-researched aspect. The role of some mites such as Varroa in the transmission of honey bee viruses is clearer than in the case of Vespidae. This type of transmission by vectors has not yet been clarified in Vespidae, with interspecific relationships being the main hypotheses accepted for the transmission of bee viruses. A majority of studies describe the presence of viruses or their replicability, but aspects such as the symptomatology in Vespids or the ability to infect other hosts from Vespids are scarcely discussed. Highlighting the case of Vespa velutina as an invader, which is causing huge losses in European beekeeping, is of special interest. The pressure caused by V. velutina leads to weakened hives that become susceptible to pathogens. Gathering this information is necessary to promote further research on the spread of bee viruses in ecosystems invaded by invasive species of Vespids, as well as to prevent the decline of bee populations due to bee viruses.
Collapse
Affiliation(s)
| | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Antonio Felicioli
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy
| | - Ana Diéguez-Antón
- Department of Plant Biology and Soil Sciences, University of Vigo, Campus As Lagoas, 32004 Ourense, Spain
| | - María Carmen Seijo
- Department of Plant Biology and Soil Sciences, University of Vigo, Campus As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
5
|
Becchimanzi A, Nicoletti R. Aspergillus-bees: A dynamic symbiotic association. Front Microbiol 2022; 13:968963. [PMID: 36160228 PMCID: PMC9489833 DOI: 10.3389/fmicb.2022.968963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Besides representing one of the most relevant threats of fungal origin to human and animal health, the genus Aspergillus includes opportunistic pathogens which may infect bees (Hymenoptera, Apoidea) in all developmental stages. At least 30 different species of Aspergillus have been isolated from managed and wild bees. Some efficient behavioral responses (e.g., diseased brood removal) exerted by bees negatively affect the chance to diagnose the pathology, and may contribute to the underestimation of aspergillosis importance in beekeeping. On the other hand, bee immune responses may be affected by biotic and abiotic stresses and suffer from the loose co-evolutionary relationships with Aspergillus pathogenic strains. However, if not pathogenic, these hive mycobiota components can prove to be beneficial to bees, by affecting the interaction with other pathogens and parasites and by detoxifying xenobiotics. The pathogenic aptitude of Aspergillus spp. likely derives from the combined action of toxins and hydrolytic enzymes, whose effects on bees have been largely overlooked until recently. Variation in the production of these virulence factors has been observed among strains, even belonging to the same species. Toxigenic and non-toxigenic strains/species may co-exist in a homeostatic equilibrium which is susceptible to be perturbed by several external factors, leading to mutualistic/antagonistic switch in the relationships between Aspergillus and bees.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| |
Collapse
|
6
|
Brettell LE, Martin SJ, Riegler M, Cook JM. Vulnerability of island insect pollinator communities to pathogens. J Invertebr Pathol 2021; 186:107670. [PMID: 34560107 DOI: 10.1016/j.jip.2021.107670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/26/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Island ecosystems, which often contain undescribed insects and small populations of single island endemics, are at risk from diverse threats. The spread of pathogens is a major factor affecting not just pollinator species themselves, but also posing significant knock-on effects to often fragile island ecosystems through disruption of pollination networks. Insects are vulnerable to diverse pathogens and these can be introduced to islands in a number of ways, e.g. via the introduction of infected managed pollinator hosts (e.g. honey bees and their viruses, in particular Deformed wing virus), long-range migrants (e.g. monarch butterflies and their protozoan parasite, Ophryocystit elektroscirrha) and invasive species (e.g. social wasps are common invaders and are frequently infected with multi-host viruses such as Kashmir bee virus and Moku virus). Furthermore, these introductions can negatively affect island ecosystems through outcompeting native taxa for resources. As such, the greatest threat to island pollinator communities is not one particular pathogen, but the combination of pathogens and introduced and invasive insects that will likely carry them.
Collapse
Affiliation(s)
- Laura E Brettell
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place L3 5QA, UK.
| | - Stephen J Martin
- School of Environment and life Sciences, University of Salford, Manchester M5 4WT, UK
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - James M Cook
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| |
Collapse
|
7
|
Nanetti A, Bortolotti L, Cilia G. Pathogens Spillover from Honey Bees to Other Arthropods. Pathogens 2021; 10:1044. [PMID: 34451508 PMCID: PMC8400633 DOI: 10.3390/pathogens10081044] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Honey bees, and pollinators in general, play a major role in the health of ecosystems. There is a consensus about the steady decrease in pollinator populations, which raises global ecological concern. Several drivers are implicated in this threat. Among them, honey bee pathogens are transmitted to other arthropods populations, including wild and managed pollinators. The western honey bee, Apis mellifera, is quasi-globally spread. This successful species acted as and, in some cases, became a maintenance host for pathogens. This systematic review collects and summarizes spillover cases having in common Apis mellifera as the mainteinance host and some of its pathogens. The reports are grouped by final host species and condition, year, and geographic area of detection and the co-occurrence in the same host. A total of eighty-one articles in the time frame 1960-2021 were included. The reported spillover cases cover a wide range of hymenopteran host species, generally living in close contact with or sharing the same environmental resources as the honey bees. They also involve non-hymenopteran arthropods, like spiders and roaches, which are either likely or unlikely to live in close proximity to honey bees. Specific studies should consider host-dependent pathogen modifications and effects on involved host species. Both the plasticity of bee pathogens and the ecological consequences of spillover suggest a holistic approach to bee health and the implementation of a One Health approach.
Collapse
Affiliation(s)
| | - Laura Bortolotti
- Council for Agricultural Research and Agricultural Economics Analysis, Centre for Agriculture and Environment Research (CREA-AA), Via di Saliceto 80, 40128 Bologna, Italy; (A.N.); (G.C.)
| | | |
Collapse
|
8
|
Wilson Rankin EE. Emerging patterns in social wasp invasions. CURRENT OPINION IN INSECT SCIENCE 2021; 46:72-77. [PMID: 33667693 DOI: 10.1016/j.cois.2021.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 05/06/2023]
Abstract
Invasive species are a main driver of biodiversity loss and ecological change globally. Consequently, there is a need to understand how invaders damage ecosystems and to develop effective management strategies. Social wasps (Hymenoptera: Vespidae) include some of the world's most ecologically damaging invasive insects. In recent decades, the invasive social wasp literature has grown rapidly. This may be due in part to increased rate of introduction as well as greater public awareness of invasive wasps and their potential negative impacts on bees. Here, we investigate trends in invasive social wasp research, identifying the emergence of Vespa invasions, the mechanism-based inquiry into Vespula invasions, and the increased application of molecular methods to track invasive species through the invasion process.
Collapse
Affiliation(s)
- Erin E Wilson Rankin
- Department of Entomology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA.
| |
Collapse
|
9
|
Rothman JA, Loope KJ, McFrederick QS, Wilson Rankin EE. Microbiome of the wasp Vespula pensylvanica in native and invasive populations, and associations with Moku virus. PLoS One 2021; 16:e0255463. [PMID: 34324610 PMCID: PMC8321129 DOI: 10.1371/journal.pone.0255463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/16/2021] [Indexed: 11/19/2022] Open
Abstract
Invasive species present a worldwide concern as competition and pathogen reservoirs for native species. Specifically, the invasive social wasp, Vespula pensylvanica, is native to western North America and has become naturalized in Hawaii, where it exerts pressures on native arthropod communities as a competitor and predator. As invasive species may alter the microbial and disease ecology of their introduced ranges, there is a need to understand the microbiomes and virology of social wasps. We used 16S rRNA gene sequencing to characterize the microbiome of V. pensylvanica samples pooled by colony across two geographically distinct ranges and found that wasps generally associate with taxa within the bacterial genera Fructobacillus, Fructilactobacillus, Lactococcus, Leuconostoc, and Zymobacter, and likely associate with environmentally-acquired bacteria. Furthermore, V. pensylvanica harbors-and in some cases were dominated by-many endosymbionts including Wolbachia, Sodalis, Arsenophonus, and Rickettsia, and were found to contain bee-associated taxa, likely due to scavenging on or predation upon honey bees. Next, we used reverse-transcriptase quantitative PCR to assay colony-level infection intensity for Moku virus (family: Iflaviridae), a recently-described disease that is known to infect multiple Hymenopteran species. While Moku virus was prevalent and in high titer, it did not associate with microbial diversity, indicating that the microbiome may not directly interact with Moku virus in V. pensylvanica in meaningful ways. Collectively, our results suggest that the invasive social wasp V. pensylvanica associates with a simple microbiome, may be infected with putative endosymbionts, likely acquires bacterial taxa from the environment and diet, and is often infected with Moku virus. Our results suggest that V. pensylvanica, like other invasive social insects, has the potential to act as a reservoir for bacteria pathogenic to other pollinators, though this requires experimental demonstration.
Collapse
Affiliation(s)
- Jason A. Rothman
- Department of Molecular Biology and Biochemistry, University of California: Irvine, Irvine, CA, United States of America
| | - Kevin J. Loope
- Department of Biology, Georgia Southern University, Statesboro, GA, United States of America
| | - Quinn S. McFrederick
- Department of Entomology, University of California: Riverside, Riverside, CA, United States of America
| | - Erin E. Wilson Rankin
- Department of Entomology, University of California: Riverside, Riverside, CA, United States of America
| |
Collapse
|
10
|
Remnant EJ, Baty JW, Bulgarella M, Dobelmann J, Quinn O, Gruber MAM, Lester PJ. A Diverse Viral Community from Predatory Wasps in Their Native and Invaded Range, with a New Virus Infectious to Honey Bees. Viruses 2021; 13:1431. [PMID: 34452301 PMCID: PMC8402789 DOI: 10.3390/v13081431] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Wasps of the genus Vespula are social insects that have become major pests and predators in their introduced range. Viruses present in these wasps have been studied in the context of spillover from honey bees, yet we lack an understanding of the endogenous virome of wasps as potential reservoirs of novel emerging infectious diseases. We describe the characterization of 68 novel and nine previously identified virus sequences found in transcriptomes of Vespula vulgaris in colonies sampled from their native range (Belgium) and an invasive range (New Zealand). Many viruses present in the samples were from the Picorna-like virus family (38%). We identified one Luteo-like virus, Vespula vulgaris Luteo-like virus 1, present in the three life stages examined in all colonies from both locations, suggesting this virus is a highly prevalent and persistent infection in wasp colonies. Additionally, we identified a novel Iflavirus with similarity to a recently identified Moku virus, a known wasp and honey bee pathogen. Experimental infection of honey bees with this novel Vespula vulgaris Moku-like virus resulted in an active infection. The high viral diversity present in these invasive wasps is a likely indication that their polyphagous diet is a rich source of viral infections.
Collapse
Affiliation(s)
- Emily J. Remnant
- Behaviour, Ecology and Evolution Laboratory, School of Life and Environmental Sciences, Science Road, University of Sydney, Sydney, NSW 2006, Australia
| | - James W. Baty
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| | - Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| | - Jana Dobelmann
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
- Institute of Evolutionary Ecology and Conservation Genomics, Department of Biology, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Oliver Quinn
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
- Bacteriology and Aquatic Animal Diseases, Ministry for Primary Industries, P.O. Box 2526, Wellington 6140, New Zealand
| | - Monica A. M. Gruber
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| | - Philip J. Lester
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand; (J.W.B.); (M.B.); (J.D.); (O.Q.); (M.A.M.G.); (P.J.L.)
| |
Collapse
|
11
|
Nanetti A, Ellis JD, Cardaio I, Cilia G. Detection of Lotmaria passim, Crithidia mellificae and Replicative Forms of Deformed Wing Virus and Kashmir Bee Virus in the Small Hive Beetle ( Aethina tumida). Pathogens 2021; 10:372. [PMID: 33808848 PMCID: PMC8003614 DOI: 10.3390/pathogens10030372] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022] Open
Abstract
Knowledge regarding the honey bee pathogens borne by invasive bee pests remains scarce. This investigation aimed to assess the presence in Aethina tumida (small hive beetle, SHB) adults of honey bee pathogens belonging to the following groups: (i) bacteria (Paenibacillus larvae and Melissococcus plutonius), (ii) trypanosomatids (Lotmaria passim and Crithidia mellificae), and (iii) viruses (black queen cell virus, Kashmir bee virus, deformed wing virus, slow paralysis virus, sacbrood virus, Israeli acute paralysis virus, acute bee paralysis virus, chronic bee paralysis virus). Specimens were collected from free-flying colonies in Gainesville (Florida, USA) in summer 2017. The results of the molecular analysis show the presence of L. passim, C. mellificae, and replicative forms of deformed wing virus (DWV) and Kashmir bee virus (KBV). Replicative forms of KBV have not previously been reported. These results support the hypothesis of pathogen spillover between managed honey bees and the SHB, and these dynamics require further investigation.
Collapse
Affiliation(s)
- Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy; (A.N.); (I.C.)
| | - James D. Ellis
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr., P.O. Box 110620, Gainesville, FL 32607-0620, USA;
| | - Ilaria Cardaio
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy; (A.N.); (I.C.)
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy; (A.N.); (I.C.)
| |
Collapse
|
12
|
Mazzei M, Cilia G, Forzan M, Lavazza A, Mutinelli F, Felicioli A. Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy. Sci Rep 2019; 9:10091. [PMID: 31300700 PMCID: PMC6626046 DOI: 10.1038/s41598-019-46565-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/02/2019] [Indexed: 01/07/2023] Open
Abstract
Information concerning the pathogenic role of honey bee viruses in invasive species are still scarce. The aim of this investigation was to assess the presence of several honey bee viruses, such as Black Queen Cell Virus (BQCV), Kashmir Bee Virus (KBV), Slow Paralysis Virus (SPV), Sac Brood Virus (SBV), Israeli Acute Paralysis Virus (IAPV), Acute Bee Paralysis Virus (ABPV), Chronic Bee Paralysis Virus (CBPV), in Vespa velutina specimens collected in Italy during 2017. Results of this investigation indicate that among pathogens, replicative form of KBV and BQCV were detected, assessing the spillover effect of both these viruses from managed honey bees to hornets.
Collapse
Affiliation(s)
- Maurizio Mazzei
- Department of Veterinary Science, Viale delle Piagge 2, University of Pisa, 56124, Pisa, Italy
| | - Giovanni Cilia
- Department of Veterinary Science, Viale delle Piagge 2, University of Pisa, 56124, Pisa, Italy
| | - Mario Forzan
- Department of Veterinary Science, Viale delle Piagge 2, University of Pisa, 56124, Pisa, Italy
| | - Antonio Lavazza
- Virology Unit, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Via Antonio Bianchi 7/9, 25124, Brescia, Italy
| | - Franco Mutinelli
- National Reference Laboratory for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020, Legnaro, (PD), Italy
| | - Antonio Felicioli
- Department of Veterinary Science, Viale delle Piagge 2, University of Pisa, 56124, Pisa, Italy.
| |
Collapse
|