1
|
Wang NQ, Sun PX, Shen QQ, Deng MY. Cholesterol Metabolism in CNS Diseases: The Potential of SREBP2 and LXR as Therapeutic Targets. Mol Neurobiol 2025; 62:6283-6307. [PMID: 39775479 DOI: 10.1007/s12035-024-04672-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The brain is the organ with the highest cholesterol content in the body. Cholesterol in the brain plays a crucial role in maintaining the integrity of synapses and myelin sheaths to ensure normal brain function. Disruptions in cholesterol metabolism are closely associated with various central nervous system (CNS) diseases, including Alzheimer's disease (AD), Huntington's disease (HD), and multiple sclerosis (MS). In this review, we explore the synthesis, regulation, transport, and functional roles of cholesterol in the CNS. We discuss in detail the associations between cholesterol homeostasis imbalance and CNS diseases including AD, HD, and MS, highlighting the significant role of cholesterol metabolism abnormalities in the development of these diseases. Sterol regulatory element binding protein-2 (SREBP2) and liver X receptor (LXR) are two critical transcription factors that play central roles in cholesterol synthesis and reverse transport, respectively. Their cooperative interaction finely tunes the balance of brain cholesterol metabolism, presenting potential therapeutic value for preventing and treating CNS diseases. We particularly emphasize the alterations in SREBP2 and LXR under pathological conditions and their impacts on disease progression. This review summarizes current therapeutic agents targeting these two pathways, with the hope of broadening the perspectives of CNS drug developers and encouraging further study into SREBP2 and LXR-related therapies for CNS diseases.
Collapse
Affiliation(s)
- Ning-Qi Wang
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Pei-Xiang Sun
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi-Qi Shen
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Institute of Clinical Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450001, China
| | - Meng-Yan Deng
- Institute of Clinical Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Lee SI, Lim H, Kim NY, Yu J, Cho J, Lee H, Moon DW, Seo J. Imaging lipid rafts reveals the principle of ApoE4-induced Aβ upregulation in human neurons. iScience 2025; 28:111893. [PMID: 39995873 PMCID: PMC11848483 DOI: 10.1016/j.isci.2025.111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/01/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Lipid rafts in plasma membranes are thought to provide a platform for regulating signaling pathways by increasing the expression or proximity of proteins in the same pathway. Despite this understanding, the absence of direct, simultaneous observations of lipid rafts and their affiliated proteins has hindered a comprehensive assessment of their roles across various biological contexts. Amyloid-β (Aβ), a hallmark of Alzheimer's disease (AD), is generated from the sequential cleavage of amyloid precursor proteins (APPs) by β- and γ-secretases, primarily within endosomes after APP endocytosis by canonical clathrin-mediated endocytosis in neurons. In this study, we developed a protocol for imaging APP on lipid rafts using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and found that astrocyte ApoE4 contributes to an increase in APP localization on lipid rafts, subsequently elevating Aβ42 synthesis in a clathrin-independent manner in neurons.
Collapse
Affiliation(s)
- Se-In Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988 South Korea
| | - Heejin Lim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988 South Korea
- Center for Scientific Instrumentation, Korea Basic Science Institute, Cheongju 28199 South Korea
| | - Na Yeon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988 South Korea
| | - Jichang Yu
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988 South Korea
| | - Joonho Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988 South Korea
| | - Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988 South Korea
| | - Dae Won Moon
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988 South Korea
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988 South Korea
- Center for Synapse Diversity and Specificity, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988 South Korea
| |
Collapse
|
3
|
Savulescu-Fiedler I, Dorobantu-Lungu LR, Dragosloveanu S, Benea SN, Dragosloveanu CDM, Caruntu A, Scheau AE, Caruntu C, Scheau C. The Cross-Talk Between the Peripheral and Brain Cholesterol Metabolisms. Curr Issues Mol Biol 2025; 47:115. [PMID: 39996836 PMCID: PMC11853762 DOI: 10.3390/cimb47020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Cholesterol is an essential element for the development and normal function of the central nervous system. While peripheral cholesterol is influenced by liver metabolism and diet, brain cholesterol metabolism takes place in an isolated system due to the impermeability of the blood-brain barrier (BBB). However, cross-talk occurs between the brain and periphery, specifically through metabolites such as oxysterols that play key roles in regulating cholesterol balance. Several neurodegenerative conditions such as Alzheimer's disease or Parkinson's disease are considered to be affected by the loss of this balance. Also, the treatment of hypercholesterolemia needs to consider these discrete interferences between brain and peripheral cholesterol and the possible implications of each therapeutic approach. This is particularly important because of 27-hydroxycholesterol and 24-hydroxycholesterol, which can cross the BBB and are involved in cholesterol metabolism. This paper examines the metabolic pathways of cholesterol metabolism in the brain and periphery and focuses on the complex cross-talk between these metabolisms. Also, we emphasize the regulatory role of the BBB and the need for an integrated approach to cholesterol management.
Collapse
Affiliation(s)
- Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Luiza-Roxana Dorobantu-Lungu
- Department of Cardiology, Emergency Institute for Cardiovascular Diseases “C.C. Iliescu”, 022328 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
- Department of Orthopaedics and Traumatology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Nicolae Benea
- Department of Infectious Diseases, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Departament of Infectious Diseases, National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, 021105 Bucharest, Romania
| | - Christiana Diana Maria Dragosloveanu
- Department of Ophthalmology, Faculty of Dentistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Ophthalmology, Clinical Hospital for Ophthalmological Emergencies, 010464 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, “Prof. N.C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| |
Collapse
|
4
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Fabiano M, Oikawa N, Kerksiek A, Furukawa JI, Yagi H, Kato K, Schweizer U, Annaert W, Kang J, Shen J, Lütjohann D, Walter J. Presenilin Deficiency Results in Cellular Cholesterol Accumulation by Impairment of Protein Glycosylation and NPC1 Function. Int J Mol Sci 2024; 25:5417. [PMID: 38791456 PMCID: PMC11121565 DOI: 10.3390/ijms25105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Presenilin proteins (PS1 and PS2) represent the catalytic subunit of γ-secretase and play a critical role in the generation of the amyloid β (Aβ) peptide and the pathogenesis of Alzheimer disease (AD). However, PS proteins also exert multiple functions beyond Aβ generation. In this study, we examine the individual roles of PS1 and PS2 in cellular cholesterol metabolism. Deletion of PS1 or PS2 in mouse models led to cholesterol accumulation in cerebral neurons. Cholesterol accumulation was also observed in the lysosomes of embryonic fibroblasts from Psen1-knockout (PS1-KO) and Psen2-KO (PS2-KO) mice and was associated with decreased expression of the Niemann-Pick type C1 (NPC1) protein involved in intracellular cholesterol transport in late endosomal/lysosomal compartments. Mass spectrometry and complementary biochemical analyses also revealed abnormal N-glycosylation of NPC1 and several other membrane proteins in PS1-KO and PS2-KO cells. Interestingly, pharmacological inhibition of N-glycosylation resulted in intracellular cholesterol accumulation prominently in lysosomes and decreased NPC1, thereby resembling the changes in PS1-KO and PS2-KO cells. In turn, treatment of PS1-KO and PS2-KO mouse embryonic fibroblasts (MEFs) with the chaperone inducer arimoclomol partially normalized NPC1 expression and rescued lysosomal cholesterol accumulation. Additionally, the intracellular cholesterol accumulation in PS1-KO and PS2-KO MEFs was prevented by overexpression of NPC1. Collectively, these data indicate that a loss of PS function results in impaired protein N-glycosylation, which eventually causes decreased expression of NPC1 and intracellular cholesterol accumulation. This mechanism could contribute to the neurodegeneration observed in PS KO mice and potentially to the pathogenesis of AD.
Collapse
Affiliation(s)
- Marietta Fabiano
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jun-ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya 466-8550, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Universitätsklinikum Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, 3000 Leuven, Belgium
- Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Jongkyun Kang
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| | - Jochen Walter
- Department of Neurology, Universitätsklinikum Bonn, 53127 Bonn, Germany
| |
Collapse
|
6
|
Yazdi MK, Alavi MS, Roohbakhsh A. The role of ATP-binding cassette transporter G1 (ABCG1) in Alzheimer's disease: A review of the mechanisms. Basic Clin Pharmacol Toxicol 2024; 134:423-438. [PMID: 38275217 DOI: 10.1111/bcpt.13981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
The maintenance of cholesterol homeostasis is essential for central nervous system function. Consequently, factors that affect cholesterol homeostasis are linked to neurological disorders and pathologies. Among them, ATP-binding cassette transporter G1 (ABCG1) plays a significant role in atherosclerosis. However, its role in Alzheimer's disease (AD) is unclear. There is inconsistent information regarding ABCG1's role in AD. It can increase or decrease amyloid β (Aβ) levels in animals' brains. Clinical studies show that ABCG1 is involved in AD patients' impairment of cholesterol efflux capacity (CEC) in the cerebrospinal fluid (CSF). Lower Aβ levels in the CSF are correlated with ABCG1-mediated CEC dysfunction. ABCG1 modulates α-, β-, and γ-secretase activities in the plasma membrane and may affect Aβ production in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) cell compartment. Despite contradictory findings regarding ABCG1's role in AD, this review shows that ABCG1 has a role in Aβ generation via modulation of membrane secretases. It is, however, necessary to investigate the underlying mechanism(s). ABCG1 may also contribute to AD pathology through its role in apoptosis and oxidative stress. As a result, ABCG1 plays a role in AD and is a candidate for drug development.
Collapse
Affiliation(s)
- Mohsen Karbasi Yazdi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Kang J, Zhang C, Wang Y, Peng J, Berger B, Perrimon N, Shen J. Lipophorin receptors genetically modulate neurodegeneration caused by reduction of Psn expression in the aging Drosophila brain. Genetics 2024; 226:iyad202. [PMID: 37996068 PMCID: PMC10763532 DOI: 10.1093/genetics/iyad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/01/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
Mutations in the Presenilin (PSEN) genes are the most common cause of early-onset familial Alzheimer's disease (FAD). Studies in cell culture, in vitro biochemical systems, and knockin mice showed that PSEN mutations are loss-of-function mutations, impairing γ-secretase activity. Mouse genetic analysis highlighted the importance of Presenilin (PS) in learning and memory, synaptic plasticity and neurotransmitter release, and neuronal survival, and Drosophila studies further demonstrated an evolutionarily conserved role of PS in neuronal survival during aging. However, molecular pathways that interact with PS in neuronal survival remain unclear. To identify genetic modifiers that modulate PS-dependent neuronal survival, we developed a new DrosophilaPsn model that exhibits age-dependent neurodegeneration and increases of apoptosis. Following a bioinformatic analysis, we tested top ranked candidate genes by selective knockdown (KD) of each gene in neurons using two independent RNAi lines in Psn KD models. Interestingly, 4 of the 9 genes enhancing neurodegeneration in Psn KD flies are involved in lipid transport and metabolism. Specifically, neuron-specific KD of lipophorin receptors, lpr1 and lpr2, dramatically worsens neurodegeneration in Psn KD flies, and overexpression of lpr1 or lpr2 does not alleviate Psn KD-induced neurodegeneration. Furthermore, lpr1 or lpr2 KD alone also leads to neurodegeneration, increased apoptosis, climbing defects, and shortened lifespan. Lastly, heterozygotic deletions of lpr1 and lpr2 or homozygotic deletions of lpr1 or lpr2 similarly lead to age-dependent neurodegeneration and further exacerbate neurodegeneration in Psn KD flies. These findings show that LpRs modulate Psn-dependent neuronal survival and are critically important for neuronal integrity in the aging brain.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Chen Zhang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yuhao Wang
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Jie Shen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Hu ZL, Yuan YQ, Tong Z, Liao MQ, Yuan SL, Jian Y, Yang JL, Liu WF. Reexamining the Causes and Effects of Cholesterol Deposition in the Brains of Patients with Alzheimer's Disease. Mol Neurobiol 2023; 60:6852-6868. [PMID: 37507575 DOI: 10.1007/s12035-023-03529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. Numerous studies have shown that imbalances in cholesterol homeostasis in the brains of AD patients precede the onset of clinical symptoms. In addition, cholesterol deposition has been observed in the brains of AD patients even though peripheral cholesterol does not enter the brain through the blood‒brain barrier (BBB). Studies have demonstrated that cholesterol metabolism in the brain is associated with many pathological conditions, such as amyloid beta (Aβ) production, Tau protein phosphorylation, oxidative stress, and inflammation. In 2022, some scholars put forward a new hypothesis of AD: the disease involves lipid invasion and its exacerbation of the abnormal metabolism of cholesterol in the brain. In this review, by discussing the latest research progress, the causes and effects of cholesterol retention in the brains of AD patients are analyzed and discussed. Additionally, the possible mechanism through which AD may be improved by targeting cholesterol is described. Finally, we propose that improving the impairments in cholesterol removal observed in the brains of AD patients, instead of further reducing the already impaired cholesterol synthesis in the brain, may be the key to preventing cholesterol deposition and improving the corresponding pathological symptoms.
Collapse
Affiliation(s)
- Ze-Lin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yang-Qi Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zhen Tong
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei-Qing Liao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shun-Ling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jia-Lun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wen-Feng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
9
|
Rudajev V, Novotny J. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Cell Biosci 2023; 13:171. [PMID: 37705117 PMCID: PMC10500844 DOI: 10.1186/s13578-023-01127-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Amyloid β is considered a key player in the development and progression of Alzheimer's disease (AD). Many studies investigating the effect of statins on lowering cholesterol suggest that there may be a link between cholesterol levels and AD pathology. Since cholesterol is one of the most abundant lipid molecules, especially in brain tissue, it affects most membrane-related processes, including the formation of the most dangerous form of amyloid β, Aβ42. The entire Aβ production system, which includes the amyloid precursor protein (APP), β-secretase, and the complex of γ-secretase, is highly dependent on membrane cholesterol content. Moreover, cholesterol can affect amyloidogenesis in many ways. Cholesterol influences the stability and activity of secretases, but also dictates their partitioning into specific cellular compartments and cholesterol-enriched lipid rafts, where the amyloidogenic machinery is predominantly localized. The most complicated relationships have been found in the interaction between cholesterol and APP, where cholesterol affects not only APP localization but also the precise character of APP dimerization and APP processing by γ-secretase, which is important for the production of Aβ of different lengths. In this review, we describe the intricate web of interdependence between cellular cholesterol levels, cholesterol membrane distribution, and cholesterol-dependent production of Aβ, the major player in AD.
Collapse
Affiliation(s)
- Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
10
|
Quan M, Cao S, Wang Q, Wang S, Jia J. Genetic Phenotypes of Alzheimer's Disease: Mechanisms and Potential Therapy. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:333-349. [PMID: 37589021 PMCID: PMC10425323 DOI: 10.1007/s43657-023-00098-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023]
Abstract
Years of intensive research has brought us extensive knowledge on the genetic and molecular factors involved in Alzheimer's disease (AD). In addition to the mutations in the three main causative genes of familial AD (FAD) including presenilins and amyloid precursor protein genes, studies have identified several genes as the most plausible genes for the onset and progression of FAD, such as triggering receptor expressed on myeloid cells 2, sortilin-related receptor 1, and adenosine triphosphate-binding cassette transporter subfamily A member 7. The apolipoprotein E ε4 allele is reported to be the strongest genetic risk factor for sporadic AD (SAD), and it also plays an important role in FAD. Here, we reviewed recent developments in genetic and molecular studies that contributed to the understanding of the genetic phenotypes of FAD and compared them with SAD. We further reviewed the advancements in AD gene therapy and discussed the future perspectives based on the genetic phenotypes.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shuman Cao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shiyuan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053 China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053 China
- Center of Alzheimer’s Disease, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100053 China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053 China
| |
Collapse
|
11
|
Chen J, Li Y, Chen M, Liu X, Chen J, Li X, Wang C, Wan G, Tian J. Pantethine Ameliorates Recognition Impairment in a Mouse Model of Alzheimer's Disease by Modulating Cholesterol Content and Intestinal Flora Species. Mol Nutr Food Res 2023; 67:e2200799. [PMID: 37194410 DOI: 10.1002/mnfr.202200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/02/2023] [Indexed: 05/18/2023]
Abstract
SCOPE As a natural dietary low-molecular-weight thiol, pantethine helps maintain brain homeostasis and function in Alzheimer's disease (AD) mice. The current study aims to investigate the protective effects and underlying mechanisms of pantethine on the mitigation of cognitive deficits and pathology in a triple transgenic AD mouse model. METHODS AND RESULTS Compared to control mice, oral administration of pantethine improve spatial learning and memory ability, relieve anxiety, and reduce the production of amyloid-β (Aβ), neuronal damage, and inflammation in 3×Tg-AD mice. Pantethine reduces body weight, body fat, and the production of cholesterol in 3×Tg-AD mice by inhibiting sterol regulatory element-binding protein (SREBP2) signal pathway and apolipoprotein E (APOE) expression; lipid rafts in the brain, which are necessary for the processing of the Aβ precursor protein (APP), are also decreased. In addition, pantethine regulates the composition, distribution, and abundance of characteristic flora in the intestine; these floras are considered protective and anti-inflammatory in the gastrointestinal tract, suggesting a possible improvement in the gut flora of 3×Tg-AD mice. CONCLUSION This study highlights the potential therapeutic effect of pantethine in AD by reducing cholesterol and lipid raft formation and regulating intestinal flora, suggesting a new option for the development of clinical drugs for AD.
Collapse
Affiliation(s)
- Jianfeng Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yongsui Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Minyu Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xinwei Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jinghong Chen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518055, China
| | - Xinlu Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510000, China
| | - Jing Tian
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
12
|
Vuu YM, Kadar Shahib A, Rastegar M. The Potential Therapeutic Application of Simvastatin for Brain Complications and Mechanisms of Action. Pharmaceuticals (Basel) 2023; 16:914. [PMID: 37513826 PMCID: PMC10385015 DOI: 10.3390/ph16070914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Statins are common drugs that are clinically used to reduce elevated plasma cholesterol levels. Based on their solubility, statins are considered to be either hydrophilic or lipophilic. Amongst them, simvastatin has the highest lipophilicity to facilitate its ability to cross the blood-brain barrier. Recent studies have suggested that simvastatin could be a promising therapeutic option for different brain complications and diseases ranging from brain tumors (i.e., medulloblastoma and glioblastoma) to neurological disorders (i.e., Alzheimer's disease, Parkinson's disease, and Huntington's disease). Specific mechanisms of disease amelioration, however, are still unclear. Independent studies suggest that simvastatin may reduce the risk of developing certain neurodegenerative disorders. Meanwhile, other studies point towards inducing cell death in brain tumor cell lines. In this review, we outline the potential therapeutic effects of simvastatin on brain complications and review the clinically relevant molecular mechanisms in different cases.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
13
|
Pergolizzi J, Varrassi G, Coleman M, Breve F, Christo DK, Christo PJ, Moussa C. The Sigma Enigma: A Narrative Review of Sigma Receptors. Cureus 2023; 15:e35756. [PMID: 37020478 PMCID: PMC10069457 DOI: 10.7759/cureus.35756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/04/2023] [Indexed: 03/07/2023] Open
Abstract
The sigma-1 and sigma-2 receptors were first discovered in the 1960s and were thought to be a form of opioid receptors initially. Over time, more was gradually learned about these receptors, which are actually protein chaperones, and many of their unique or unusual properties can contribute to a range of important new therapeutic applications. These sigma receptors translocate in the body and regulate calcium homeostasis and mitochondrial bioenergetics and they also have neuroprotective effects. The ligands to which these sigma receptors respond are several and dissimilar, including neurosteroids, neuroleptics, and cocaine. There is controversy as to their endogenous ligands. Sigma receptors are also involved in the complex processes of cholesterol homeostasis and protein folding. While previous work on this topic has been limited, research has been conducted in multiple disease states, such as addiction, aging. Alzheimer's disease, cancer, psychiatric disorders, pain and neuropathic pain, Parkinson's disease, and others. There is currently increasing interest in sigma-1 and sigma-2 receptors as they provide potential therapeutic targets for many disease indications.
Collapse
|
14
|
Gu L, Ju Y, Hu M, Zheng M, Li Q, Zhang X. Research progress of PPARγ regulation of cholesterol and inflammation in Alzheimer's disease. Metab Brain Dis 2023; 38:839-854. [PMID: 36723831 DOI: 10.1007/s11011-022-01139-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/29/2022] [Indexed: 02/02/2023]
Abstract
Peroxidase proliferator receptors (PPARs) are defined as key sensors and regulators of cell metabolism, transcription factors activated by ligands, involved in lipid, glucose and amino acid metabolism, participating in the processes of cell differentiation, apoptosis, inflammation regulation, and acute and chronic nerve damage. Among them, PPARγ is expressed in different brain regions and can regulate lipid metabolism, mitochondrial disorders, oxidative stress, and cell apoptosis. It has anti-inflammatory activity and shows neuroprotection. The regulation of Aβ levels in Alzheimer's disease involves cholesterol metabolism and inflammation, so this article first analyzes the biological functions of PPARγ, then mainly focuses on the relationship between cholesterol and inflammation and Aβ, and elaborates on the regulation of PPARγ on key proteins and the corresponding molecules, which provides new ideas for the treatment of AD.
Collapse
Affiliation(s)
- Lili Gu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Yue Ju
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Min Hu
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Miao Zheng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Qin Li
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xinyue Zhang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
15
|
Structural Analyses of the Glycolipids in Lipid Rafts. Methods Mol Biol 2023; 2613:145-152. [PMID: 36587077 DOI: 10.1007/978-1-0716-2910-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lipid rafts are usually isolated from cells or tissues using sucrose gradient ultracentrifugation in the presence of detergents such as Triton X-100 at 4 °C. Although detergents should be removed for further structural characterization following fractionation, these compounds are often difficult to completely remove, especially from the glycolipids. In this chapter, we describe a novel method for the fast and convenient removal of detergents from lipid raft glycolipids following fraction and describe the application of this method.
Collapse
|
16
|
Maharjan Y, Dutta RK, Son J, Wei X, Park C, Kwon HM, Park R. Intracellular cholesterol transport inhibition Impairs autophagy flux by decreasing autophagosome-lysosome fusion. Cell Commun Signal 2022; 20:189. [PMID: 36434621 PMCID: PMC9701069 DOI: 10.1186/s12964-022-00942-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Autophagy is an intracellular degradation process crucial for homeostasis. During autophagy, a double-membrane autophagosome fuses with lysosome through SNARE machinery STX17 to form autolysosome for degradation of damaged organelle. Whereas defective autophagy enhances cholesterol accumulation in the lysosome and impaired autophagic flux that results Niemann-Pick type C1 (NPC1) disease. However, exact interconnection between NPC1 and autophagic flux remain obscure due to the existence of controversial reports. RESULTS This study aimed at a comparison of the effects of three autophagic inhibitor drugs, including chloroquine, U18666A, and bafilomycin A1, on the intracellular cholesterol transport and autophagy flux. Chloroquine, an autophagic flux inhibitor; U1866A, a NPC1 inhibitor, and bafilomycin A, a lysosomotropic agent are well known to inhibit autophagy by different mechanism. Here we showed that treatment with U1866A and bafilomycin A induces lysosomal cholesterol accumulation that prevented autophagic flux by decreasing autophagosome-lysosome fusion. We also demonstrated that accumulation of cholesterol within the lysosome did not affect lysosomal pH. Although the clearance of accumulated cholesterol by cyclodextrin restored the defective autophagosome-lysosome fusion, the autophagy flux restoration was possible only when lysosomal acidification was not altered. In addition, a failure of STX17 trafficking to autophagosomes plays a key role in prevention of autophagy flux caused by intracellular cholesterol transport inhibitors. CONCLUSIONS Our data provide a new insight that the impaired autophagy flux does not necessarily result in lysosomal cholesterol accumulation even though it prevents autophagosome-lysosome fusion. Video abstract.
Collapse
Affiliation(s)
- Yunash Maharjan
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea ,grid.224260.00000 0004 0458 8737School of Dentistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Present Address: Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Richmond, VA USA
| | - Raghbendra Kumar Dutta
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Jinbae Son
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Xiaofan Wei
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Channy Park
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| | - Hyug Moo Kwon
- grid.42687.3f0000 0004 0381 814XSchool of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Raekil Park
- grid.61221.360000 0001 1033 9831Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005 Republic of Korea
| |
Collapse
|
17
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
18
|
Zubillaga M, Rosa D, Astiz M, Tricerri MA, Arnal N. Effect of Sublethal Copper Overload on Cholesterol De Novo Synthesis in Undifferentiated Neuronal Cells. ACS OMEGA 2022; 7:25022-25030. [PMID: 35910134 PMCID: PMC9330139 DOI: 10.1021/acsomega.2c00703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although copper (Cu) is an essential trace metal for cells, it can induce harmful effects as it participates in the Fenton reaction. Involuntary exposure to Cu overload is much more common than expected and has been linked with neurodegeneration, particularly with Alzheimer's disease (AD) evidenced by a positive correlation between free Cu in plasma and the severity of the disease. It has been suggested that Cu imbalance alters cholesterol (Chol) homeostasis and that high membrane Chol promotes the amyloidogenic processing of the amyloid precursor protein (APP) secreting the β-amyloid (Aβ) peptide. Despite the wide knowledge on the effects of Cu in mature brain metabolism, the consequence of its overload on immature neurons remains unknown. Therefore, we used an undifferentiated human neuroblastoma cell line (SH-SY5Y) to analyze the effect of sublethal concentrations of Cu on 1- de novo Chol synthesis and membrane distribution; 2-APP levels in cells and its distribution in membrane rafts; 3-the levels of Aβ in the culture medium. Our results demonstrated that Cu increases reactive oxygen species (ROS) and favors Chol de novo synthesis in both ROS-dependent and independent manners. Also, at least part of these effects was due to the activation of 3-hydroxy-3-methyl glutaryl CoA reductase (HMGCR). In addition, Cu increases the Chol/PL ratio in the cellular membranes, specifically Chol content in membrane rafts. We found no changes in total APP cell levels; however, its presence in membrane rafts increases with the consequent increase of Aβ in the culture medium. We conclude that Cu overload favors Chol de novo synthesis in both ROS-dependent and independent manners, being at least in part, responsible for the high Chol levels found in the cell membrane and membrane rafts. These may promote the redistribution of APP into the rafts, favoring the amyloidogenic processing of this protein and increasing the levels of Aβ.
Collapse
Affiliation(s)
- Marlene Zubillaga
- Laboratorio
de Neurociencia, Instituto de Investigaciones Bioquímicas de
La Plata (INIBIOLP), CONICET (Consejo Nacional
de Investigaciones Científicas y Técnicas)—UNLP
(Universidad Nacional de La Plata), Calle 60 y 120, CP 1900 La Plata, Argentina
| | - Diana Rosa
- Laboratorio
de Nutrición Mineral, Fac. Cs Veterinarias, UNLP (Universidad Nacional de La Plata). Calle 60 CP 1900 La Plata, Argentina
| | - Mariana Astiz
- Institute
of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Marie-Curie-Strasse, 23562 Lübeck, Germany
| | - M. Alejandra Tricerri
- Laboratorio
de Neurociencia, Instituto de Investigaciones Bioquímicas de
La Plata (INIBIOLP), CONICET (Consejo Nacional
de Investigaciones Científicas y Técnicas)—UNLP
(Universidad Nacional de La Plata), Calle 60 y 120, CP 1900 La Plata, Argentina
| | - Nathalie Arnal
- Laboratorio
de Neurociencia, Instituto de Investigaciones Bioquímicas de
La Plata (INIBIOLP), CONICET (Consejo Nacional
de Investigaciones Científicas y Técnicas)—UNLP
(Universidad Nacional de La Plata), Calle 60 y 120, CP 1900 La Plata, Argentina
| |
Collapse
|
19
|
Mass Spectrometry-Based Analysis of Lipid Involvement in Alzheimer’s Disease Pathology—A Review. Metabolites 2022; 12:metabo12060510. [PMID: 35736443 PMCID: PMC9228715 DOI: 10.3390/metabo12060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Irregularities in lipid metabolism have been linked to numerous neurodegenerative diseases. The roles of abnormal brain, plasma, and cerebrospinal fluid (CSF) lipid levels in Alzheimer’s disease (AD) onset and progression specifically have been described to a great extent in the literature. Apparent hallmarks of AD include, but are not limited to, genetic predisposition involving the APOE Ɛ4 allele, oxidative stress, and inflammation. A common culprit tied to many of these hallmarks is disruption in brain lipid homeostasis. Therefore, it is important to understand the roles of lipids, under normal and abnormal conditions, in each process. Lipid influences in processes such as inflammation and blood–brain barrier (BBB) disturbance have been primarily studied via biochemical-based methods. There is a need, however, for studies focused on uncovering the relationship between lipid irregularities and AD by molecular-based quantitative analysis in transgenic animal models and human samples alike. In this review, mass spectrometry as it has been used as an analytical tool to address the convoluted relationships mentioned above is discussed. Additionally, molecular-based mass spectrometry strategies that should be used going forward to further relate structure and function relationships of lipid irregularities and hallmark AD pathology are outlined.
Collapse
|
20
|
Lin Y, Peng X, Lin X, Deng X, Liu F, Tao H, Dong R, Wang B, Bi Y. Potential Value of Serum Lipid in the Identication of Postoperative Delirium Undergoing Knee/Hip Arthroplasty: The Perioperative Neurocognitive Disorder and Biomarker Lifestyle Study. Front Psychiatry 2022; 13:870317. [PMID: 35492710 PMCID: PMC9039337 DOI: 10.3389/fpsyt.2022.870317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE We aimed to investigate the relationship between preoperative lipid level and postoperative delirium (POD) and explore whether lipid's effect on POD is mediated by POD core protein. METHODS A total of 635 patients who were planned to undergo knee/hip arthroplasty under combined spinal-epidural anesthesia, regardless of gender, were selected. The patients were aged 40-90 years with American Society of Anesthesiologists physical status I II. The Mini-Mental State Examination (MMSE) was completed 1 day before the operation. Five milliliter elbow venous blood was taken from the patients before anesthesia, and serum levels of total cholesterol (TG), triglyceride (TC), low-density lipoprotein (LDL-C), and high-density lipoprotein (HDL-C) were detected. Cerebrospinal fluid (CSF) was extracted after successful spinal-epidural combined puncture, and amyloid beta40 (Aβ40), amyloid beta42 (Aβ42), total Tau (t-Tau), and phosphorylated Tau (p-Tau) in the CSF were measured by enzyme-linked immunosorbent assays (ELISA). After the operation, the occurrence and severity of POD were assessed using the Confusion Assessment Method and the Memorial Delirium Assessment Scale (MDAS), respectively. Patients were categorized into POD group and NPOD group. Logistic regression was used to analyze the relationship between POD and TC, TG, LDL-C, and HDL-C, and the mediating effect was used to analyze the role of POD core proteins in the relationship between lipid and MDAS. We used the receiver operating characteristic (ROC) and the precision-recall curve (PRC) analysis to assess the ability of TC, TG, LDL-C, and HDL-C ability to predict POD. Finally, we performed a sensitivity analysis to assess the stability of the results. RESULTS A total of 562 patients were finally enrolled in this study, and 66 patients developed POD, with an incidence of 11.7%. Logistic regression analysis showed that high concentration of TC (OR = 3.148, 95%CI 1.858∼5.333, P < 0.001), TG (OR = 2.483, 95%CI 1.573∼3.918, P < 0.001), and LDL-C (OR = 2.469, 95%CI 1.310∼4.656, P = 0.005) in serum were risk factors for POD. A high concentration of HDL-C (OR = 0.258, 95%CI 0.112∼0.594, P = 0.001) was a protective factor for POD after adjusted for age, sex, education, and MMSE score. ROC curves showed that HDL-C have the highest sensitivity and specificity in predicting POD. For these four lipid markers, the PRC range from 0.602 to 0.731, respectively. The mediating analysis showed that POD core proteins could partially mediate the relationship between lipid and POD (effect value: 16.19∼91.04%). The results were barely changed in the sensitivity analysis, and the sensitivity analysis has shown that the results were stable. CONCLUSION The increase of serum TG, TC, and LDL-C concentration is a risk factor for POD development, while high HDL-C concentration is a protective factor for POD, and the occurrence of POD is caused by hyperlipidemia may be caused by POD core proteins. CLINICAL TRIAL REGISTRATION [www.ClinicalTrials.gov], identifier [Chictr200033439].
Collapse
Affiliation(s)
- Yanan Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiaoyan Peng
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiyuan Deng
- Department of Anesthesiology, Dalian Medical University, Dalian, China
| | - Fanghao Liu
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - He Tao
- Department of Anesthesiology, Dalian Medical University, Dalian, China
| | - Rui Dong
- Department of Anesthesiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Kwon OH, Cho YY, Lee JH, Chung S. O-GlcNAcylation Inhibits Endocytosis of Amyloid Precursor Protein by Decreasing Its Localization in Lipid Raft Microdomains. MEMBRANES 2021; 11:membranes11120909. [PMID: 34940409 PMCID: PMC8704492 DOI: 10.3390/membranes11120909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022]
Abstract
Like protein phosphorylation, O-GlcNAcylation is a common post-translational protein modification. We already reported that O-GlcNAcylation of amyloid precursor protein (APP) in response to insulin signaling reduces neurotoxic amyloid-β (Aβ) production via inhibition of APP endocytosis. Internalized APP is delivered to endosomes and lysosomes where Aβ is produced. However, the molecular mechanism involved in the effect of APP O-GlcNAcylation on APP trafficking remains unknown. To investigate the relationship between APP O-GlcNAcylation and APP endocytosis, we tested the effects of insulin on neuroblastoma SH-SY5Y cells overexpressing APP and BACE1, and cultured rat hippocampal neurons. The present study showed that APP O-GlcNAcylation translocated APP from lipid raft to non-raft microdomains in the plasma membrane by using immunocytochemistry and discontinuous sucrose gradients method. By using the biotinylation method, we also found that APP preferentially underwent endocytosis from lipid rafts and that the amount of internalized APP from lipid rafts was specifically reduced by O-GlcNAcylation. These results indicate that O-GlcNAcylation can regulate lipid raft-dependent APP endocytosis via translocation of APP into non-raft microdomains. Our findings showed a new functional role of O-GlcNAcylation for the regulation of APP trafficking, offering new mechanistic insight for Aβ production.
Collapse
Affiliation(s)
- Oh-Hoon Kwon
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (O.-H.K.); (Y.Y.C.)
| | - Yoon Young Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (O.-H.K.); (Y.Y.C.)
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (O.-H.K.); (Y.Y.C.)
- Correspondence:
| |
Collapse
|
22
|
Barone E, Di Domenico F, Perluigi M, Butterfield DA. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic Biol Med 2021; 176:16-33. [PMID: 34530075 PMCID: PMC8595768 DOI: 10.1016/j.freeradbiomed.2021.09.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly followed by vascular dementia. In addition to clinically diagnosed dementia, cognitive dysfunction has been reported in diabetic patients. Recent studies are now beginning to recognize type 2 diabetes mellitus (T2DM), characterized by chronic hyperglycemia and insulin resistance, as a risk factor for AD and other cognitive disorders. While studies on insulin action have remained traditionally in the domain of peripheral tissues, the detrimental effects of insulin resistance in the central nervous system on cognitive dysfunction are increasingly being reported in recent clinical and preclinical studies. Brain functions require continuous supply of glucose and oxygen and a tight regulation of metabolic processes. Loss of this metabolic regulation has been proposed to be a contributor to memory dysfunction associated with neurodegeneration. Within the above scenario, this review will focus on the interplay among oxidative stress (OS), insulin resistance and AMPK dysfunctions in the brain by highlighting how these neurotoxic events contribute to neurodegeneration. We provide an overview on the detrimental effects of OS on proteins regulating insulin signaling and how these alterations impact cell metabolic dysfunctions through AMPK dysregulation. Such processes, we assert, are critically involved in the molecular pathways that underlie AD.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|
23
|
Lee SI, Jeong W, Lim H, Cho S, Lee H, Jang Y, Cho J, Bae S, Lin YT, Tsai LH, Moon DW, Seo J. APOE4-carrying human astrocytes oversupply cholesterol to promote neuronal lipid raft expansion and Aβ generation. Stem Cell Reports 2021; 16:2128-2137. [PMID: 34450034 PMCID: PMC8452535 DOI: 10.1016/j.stemcr.2021.07.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/22/2023] Open
Abstract
The ε4 allele of APOE-encoding apolipoprotein (ApoE) is one of the strongest genetic risk factors for Alzheimer's disease (AD). One of the overarching questions is whether and how this astrocyte-enriched risk factor initiates AD-associated pathology in neurons such as amyloid-β (Aβ) accumulation. Here, we generate neurons and astrocytes from isogenic human induced pluripotent stem cells (hiPSCs) carrying either APOE ε3 or APOE ε4 allele and investigate the effect of astrocytic ApoE4 on neuronal Aβ production. Secretory factors in conditioned media from ApoE4 astrocytes significantly increased amyloid precursor protein (APP) levels and Aβ secretion in neurons. We further found that increased cholesterol secretion from ApoE4 astrocytes was necessary and sufficient to induce the formation of lipid rafts that potentially provide a physical platform for APP localization and facilitate its processing. Our study reveals the contribution of ApoE4 astrocytes to amyloidosis in neurons by expanding lipid rafts and facilitating Aβ production through an oversupply of cholesterol.
Collapse
Affiliation(s)
- Se-In Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea
| | - Woojin Jeong
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea
| | - Heejin Lim
- Department of New Biology, DGIST, Daegu 42988, South Korea
| | - Sukhee Cho
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea
| | - Hyein Lee
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea
| | - Yonghee Jang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea
| | - Joonho Cho
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea
| | - Simsung Bae
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea
| | - Yuan-Ta Lin
- Picower Institute for Learning and Memory, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dae Won Moon
- Department of New Biology, DGIST, Daegu 42988, South Korea
| | - Jinsoo Seo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, South Korea.
| |
Collapse
|
24
|
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer's disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41:2689-2745. [PMID: 32783388 PMCID: PMC7876169 DOI: 10.1002/med.21719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Deepak Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175005, India
| |
Collapse
|
25
|
Ressurreição M, van Ooij C. Lipid transport proteins in malaria, from Plasmodium parasites to their hosts. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159047. [PMID: 34461309 DOI: 10.1016/j.bbalip.2021.159047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
Eukaryotic unicellular pathogens from the genus Plasmodium are the etiological agents of malaria, a disease that persists over a wide range of vertebrate species, including humans. During its dynamic lifecycle, survival in the different hosts depends on the parasite's ability to establish a suitable environmental milieu. To achieve this, specific host processes are exploited to support optimal growth, including extensive modifications to the infected host cell. These modifications include the formation of novel membranous structures, which are induced by the parasite. Consequently, to maintain a finely tuned and dynamic lipid environment, the organisation and distribution of lipids to different cell sites likely requires specialised lipid transfer proteins (LTPs). Indeed, several parasite and host-derived LTPs have been identified and shown to be essential at specific stages. Here we describe the roles of LTPs in parasite development and adaptation to its host including how the latest studies are profiting from the improved genetic, lipidomic and imaging toolkits available to study Plasmodium parasites. Lastly, a list of predicted Plasmodium LTPs is provided to encourage research in this field.
Collapse
Affiliation(s)
- Margarida Ressurreição
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| |
Collapse
|
26
|
Structural insights into GIRK2 channel modulation by cholesterol and PIP 2. Cell Rep 2021; 36:109619. [PMID: 34433062 PMCID: PMC8436891 DOI: 10.1016/j.celrep.2021.109619] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channels are important for determining neuronal excitability. In addition to G proteins, GIRK channels are potentiated by membrane cholesterol, which is elevated in the brains of people with neurodegenerative diseases such as Alzheimer’s dementia and Parkinson’s disease. The structural mechanism of cholesterol modulation of GIRK channels is not well understood. In this study, we present cryo-electron microscopy (cryoEM) structures of GIRK2 in the presence and absence of the cholesterol analog cholesteryl hemisuccinate (CHS) and phosphatidylinositol 4,5-bisphosphate (PIP2). The structures reveal that CHS binds near PIP2 in lipid-facing hydrophobic pockets of the transmembrane domain. Our structural analysis suggests that CHS stabilizes PIP2 interaction with the channel and promotes engagement of the cytoplasmic domain onto the transmembrane region. Mutagenesis of one of the CHS binding pockets eliminates cholesterol-dependent potentiation of GIRK2. Elucidating the structural mechanisms underlying cholesterol modulation of GIRK2 channels could facilitate the development of therapeutics for treating neurological diseases. Ion channels are important in determining neuronal excitability. Elevated cholesterol levels found in some neurodegenerative diseases can affect the function of ion channels. Mathiharan et al. take a structural and functional approach to identifying physical sites for cholesterol, and they provide details on how cholesterol potentiates ion channel activity.
Collapse
|
27
|
Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci U S A 2021; 118:e2102191118. [PMID: 34385305 PMCID: PMC8379952 DOI: 10.1073/pnas.2102191118] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid β (Aβ) plaques, tau tangles, inflammation, and loss of cognitive function. Genetic variation in a cholesterol transport protein, apolipoprotein E (apoE), is the most common genetic risk factor for sporadic AD. In vitro evidence suggests that apoE links to Aβ production through nanoscale lipid compartments (lipid clusters), but its regulation in vivo is unclear. Here, we use superresolution imaging in the mouse brain to show that apoE utilizes astrocyte-derived cholesterol to specifically traffic neuronal amyloid precursor protein (APP) in and out of lipid clusters, where it interacts with β- and γ-secretases to generate Aβ-peptide. We find that the targeted deletion of astrocyte cholesterol synthesis robustly reduces amyloid and tau burden in a mouse model of AD. Treatment with cholesterol-free apoE or knockdown of cholesterol synthesis in astrocytes decreases cholesterol levels in cultured neurons and causes APP to traffic out of lipid clusters, where it interacts with α-secretase and gives rise to soluble APP-α (sAPP-α), a neuronal protective product of APP. Changes in cellular cholesterol have no effect on α-, β-, and γ-secretase trafficking, suggesting that the ratio of Aβ to sAPP-α is regulated by the trafficking of the substrate, not the enzymes. We conclude that cholesterol is kept low in neurons, which inhibits Aβ accumulation and enables the astrocyte regulation of Aβ accumulation by cholesterol signaling.
Collapse
Affiliation(s)
- Hao Wang
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458
| | - Joshua A Kulas
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22908
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Heather A Ferris
- Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA 22908;
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22908
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458;
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458
| |
Collapse
|
28
|
Ding D, Jiang H, Manohar S, Liu X, Li L, Chen GD, Salvi R. Spatiotemporal Developmental Upregulation of Prestin Correlates With the Severity and Location of Cyclodextrin-Induced Outer Hair Cell Loss and Hearing Loss. Front Cell Dev Biol 2021; 9:643709. [PMID: 34109172 PMCID: PMC8181405 DOI: 10.3389/fcell.2021.643709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
2-Hyroxypropyl-beta-cyclodextrin (HPβCD) is being used to treat Niemann-Pick C1, a fatal neurodegenerative disease caused by abnormal cholesterol metabolism. HPβCD slows disease progression, but unfortunately causes severe, rapid onset hearing loss by destroying the outer hair cells (OHC). HPβCD-induced damage is believed to be related to the expression of prestin in OHCs. Because prestin is postnatally upregulated from the cochlear base toward the apex, we hypothesized that HPβCD ototoxicity would spread from the high-frequency base toward the low-frequency apex of the cochlea. Consistent with this hypothesis, cochlear hearing impairments and OHC loss rapidly spread from the high-frequency base toward the low-frequency apex of the cochlea when HPβCD administration shifted from postnatal day 3 (P3) to P28. HPβCD-induced histopathologies were initially confined to the OHCs, but between 4- and 6-weeks post-treatment, there was an unexpected, rapid and massive expansion of the lesion to include most inner hair cells (IHC), pillar cells (PC), peripheral auditory nerve fibers, and spiral ganglion neurons at location where OHCs were missing. The magnitude and spatial extent of HPβCD-induced OHC death was tightly correlated with the postnatal day when HPβCD was administered which coincided with the spatiotemporal upregulation of prestin in OHCs. A second, massive wave of degeneration involving IHCs, PC, auditory nerve fibers and spiral ganglion neurons abruptly emerged 4–6 weeks post-HPβCD treatment. This secondary wave of degeneration combined with the initial OHC loss results in a profound, irreversible hearing loss.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Xiaopeng Liu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
29
|
Langness VF, van der Kant R, Das U, Wang L, Chaves RDS, Goldstein LSB. Cholesterol-lowering drugs reduce APP processing to Aβ by inducing APP dimerization. Mol Biol Cell 2020; 32:247-259. [PMID: 33296223 PMCID: PMC8098827 DOI: 10.1091/mbc.e20-05-0345] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amyloid beta (Aβ) is a major component of amyloid plaques, which are a key pathological hallmark found in the brains of Alzheimer’s disease (AD) patients. We show that statins are effective at reducing Aβ in human neurons from nondemented control subjects, as well as subjects with familial AD and sporadic AD. Aβ is derived from amyloid precursor protein (APP) through sequential proteolytic cleavage by BACE1 and γ-secretase. While previous studies have shown that cholesterol metabolism regulates APP processing to Aβ, the mechanism is not well understood. We used iPSC-derived neurons and bimolecular fluorescence complementation assays in transfected cells to elucidate how altering cholesterol metabolism influences APP processing. Altering cholesterol metabolism using statins decreased the generation of sAPPβ and increased levels of full-length APP (flAPP), indicative of reduced processing of APP by BACE1. We further show that statins decrease flAPP interaction with BACE1 and enhance APP dimerization. Additionally, statin-induced changes in APP dimerization and APP-BACE1 are dependent on cholesterol binding to APP. Our data indicate that statins reduce Aβ production by decreasing BACE1 interaction with flAPP and suggest that this process may be regulated through competition between APP dimerization and APP cholesterol binding.
Collapse
Affiliation(s)
- Vanessa F Langness
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, De Boelelaan 1118, 1081 HZ Amsterdam, The Netherlands
| | - Utpal Das
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Louie Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Rodrigo Dos Santos Chaves
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093.,Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037
| |
Collapse
|
30
|
Cho YY, Kwon OH, Chung S. Preferred Endocytosis of Amyloid Precursor Protein from Cholesterol-Enriched Lipid Raft Microdomains. Molecules 2020; 25:molecules25235490. [PMID: 33255194 PMCID: PMC7727664 DOI: 10.3390/molecules25235490] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Amyloid precursor protein (APP) at the plasma membrane is internalized via endocytosis and delivered to endo/lysosomes, where neurotoxic amyloid-β (Aβ) is produced via β-, γ-secretases. Hence, endocytosis plays a key role in the processing of APP and subsequent Aβ generation. β-, γ-secretases as well as APP are localized in cholesterol-enriched lipid raft microdomains. However, it is still unclear whether lipid rafts are the site where APP undergoes endocytosis and whether cholesterol levels affect this process. In this study, we found that localization of APP in lipid rafts was increased by elevated cholesterol level. We also showed that increasing or decreasing cholesterol levels increased or decreased APP endocytosis, respectively. When we labeled cell surface APP, APP localized in lipid rafts preferentially underwent endocytosis compared to nonraft-localized APP. In addition, APP endocytosis from lipid rafts was regulated by cholesterol levels. Our results demonstrate for the first time that cholesterol levels regulate the localization of APP in lipid rafts affecting raft-dependent APP endocytosis. Thus, regulating the microdomain localization of APP could offer a new therapeutic strategy for Alzheimer’s disease.
Collapse
|
31
|
Sigma-2 Receptor-A Potential Target for Cancer/Alzheimer's Disease Treatment via Its Regulation of Cholesterol Homeostasis. Molecules 2020; 25:molecules25225439. [PMID: 33233619 PMCID: PMC7699687 DOI: 10.3390/molecules25225439] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
The sigma receptors were classified into sigma-1 and sigma-2 receptor based on their different pharmacological profiles. In the past two decades, our understanding of the biological and pharmacological properties of the sigma-1 receptor is increasing; however, little is known about the sigma-2 receptor. Recently, the molecular identity of the sigma-2 receptor has been identified as TMEM97. Although more and more evidence has showed that sigma-2 ligands have the ability to treat cancer and Alzheimer’s disease (AD), the mechanisms connecting these two diseases are unknown. Data obtained over the past few years from human and animal models indicate that cholesterol homeostasis is altered in AD and cancer, underscoring the importance of cholesterol homeostasis in AD and cancer. In this review, based on accumulated evidence, we proposed that the beneficial roles of sigma-2 ligands in cancer and AD might be mediated by their regulation of cholesterol homeostasis.
Collapse
|
32
|
Kwon OH, Cho YY, Kim TW, Chung S. O-GlcNAcylation of Amyloid-β Protein Precursor by Insulin Signaling Reduces Amyloid-β Production. J Alzheimers Dis 2020; 69:1195-1211. [PMID: 31156159 DOI: 10.3233/jad-190060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is caused by the accumulation of neurotoxic amyloid-β (Aβ) peptides. Aβ is derived from amyloid-β protein precursor (AβPP). In the non-amyloidogenic pathway, AβPP is cleaved by α-secretase and γ-secretase at the plasma membrane, excluding Aβ production. Alternatively, AβPP in the plasma membrane is internalized via endocytosis, and delivered to early endosomes and lysosomes, where it is cleaved by β-secretase and γ-secretase. Recent studies have shown that insulin in the periphery crosses the blood-brain barrier, and plays important roles in the brain. Furthermore, impaired insulin signaling has been linked to the progression of AD, and intranasal insulin administration improves memory impairments and cognition. However, the underlying molecular mechanisms of insulin treatment remain largely unknown. To investigate the effects of insulin on AβPP processing, we tested the effects of insulin on neuroblastoma SH-SY5Y cells overexpressing AβPP, and cultured rat cortical neurons. We found that insulin increased the level of cell surface AβPP, decreasing the endocytosis rate of AβPP. Insulin reduced Aβ generation through upregulation of AβPP O-GlcNAcylation via Akt insulin signaling. Our present data suggest that insulin affects Aβ production by regulating AβPP processing through AβPP O-GlcNAcylation. These results provide mechanistic insight into the beneficial effects of insulin, and a possible link between insulin deficient diabetes and cerebral amyloidosis in the pathogenesis of AD.
Collapse
Affiliation(s)
- Oh Hoon Kwon
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yoon Young Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Tae-Wan Kim
- Department of Pathology and Cell Biology, and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Sungkwon Chung
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| |
Collapse
|
33
|
Park J, Kim H, Kim J, Cheon M. A practical application of generative adversarial networks for RNA-seq analysis to predict the molecular progress of Alzheimer's disease. PLoS Comput Biol 2020; 16:e1008099. [PMID: 32706788 PMCID: PMC7406107 DOI: 10.1371/journal.pcbi.1008099] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/05/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022] Open
Abstract
Next-generation sequencing (NGS) technology has become a powerful tool for dissecting the molecular and pathological signatures of a variety of human diseases. However, the limited availability of biological samples from different disease stages is a major hurdle in studying disease progressions and identifying early pathological changes. Deep learning techniques have recently begun to be applied to analyze NGS data and thereby predict the progression of biological processes. In this study, we applied a deep learning technique called generative adversarial networks (GANs) to predict the molecular progress of Alzheimer's disease (AD). We successfully applied GANs to analyze RNA-seq data from a 5xFAD mouse model of AD, which recapitulates major AD features of massive amyloid-β (Aβ) accumulation in the brain. We examined how the generator is featured to have specific-sample generation and biological gene association. Based on the above observations, we suggested virtual disease progress by latent space interpolation to yield the transition curves of various genes with pathological changes from normal to AD state. By performing pathway analysis based on the transition curve patterns, we identified several pathological processes with progressive changes, such as inflammatory systems and synapse functions, which have previously been demonstrated to be involved in the pathogenesis of AD. Interestingly, our analysis indicates that alteration of cholesterol biosynthesis begins at a very early stage of AD, suggesting that it is the first effect to mediate the cholesterol metabolism of AD downstream of Aβ accumulation. Here, we suggest that GANs are a useful tool to study disease progression, leading to the identification of early pathological signatures.
Collapse
Affiliation(s)
- Jinhee Park
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
- School of Electronics Engineering, Kyungpook National University, Daegu, Korea
| | - Hyerin Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
| | - Jaekwang Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
| | - Mookyung Cheon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, Korea
| |
Collapse
|
34
|
Gutierrez E, Lütjohann D, Kerksiek A, Fabiano M, Oikawa N, Kuerschner L, Thiele C, Walter J. Importance of γ-secretase in the regulation of liver X receptor and cellular lipid metabolism. Life Sci Alliance 2020; 3:3/6/e201900521. [PMID: 32354700 PMCID: PMC7195048 DOI: 10.26508/lsa.201900521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Inhibition of the Alzheimer associated γ-secretase impairs the regulation of cellular lipid droplet homeostasis. Presenilins (PS) are the catalytic components of γ-secretase complexes that mediate intramembrane proteolysis. Mutations in the PS genes are a major cause of familial early-onset Alzheimer disease and affect the cleavage of the amyloid precursor protein, thereby altering the production of the amyloid β-peptide. However, multiple additional protein substrates have been identified, suggesting pleiotropic functions of γ-secretase. Here, we demonstrate that inhibition of γ-secretase causes dysregulation of cellular lipid homeostasis, including up-regulation of liver X receptors, and complex changes in the cellular lipid composition. Genetic and pharmacological inhibition of γsecretase leads to strong accumulation of cytoplasmic lipid droplets, associated with increased levels of acylglycerols, but lowered cholesteryl esters. Furthermore, accumulation of lipid droplets was augmented by increasing levels of amyloid precursor protein C-terminal fragments, indicating a critical involvement of this γ-secretase substrate. Together, these data provide a mechanism that functionally connects γ-secretase activity to cellular lipid metabolism. These effects were also observed in human astrocytic cells, indicating an important function of γ-secretase in cells critical for lipid homeostasis in the brain.
Collapse
Affiliation(s)
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Marietta Fabiano
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Naoto Oikawa
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Lars Kuerschner
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Thiele
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Jochen Walter
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
35
|
Mapstone M, Gross TJ, Macciardi F, Cheema AK, Petersen M, Head E, Handen BL, Klunk WE, Christian BT, Silverman W, Lott IT, Schupf N, for the Alzheimer's Biomarkers Consortium–Down Syndrome (ABC‐DS) Investigators. Metabolic correlates of prevalent mild cognitive impairment and Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12028. [PMID: 32258359 PMCID: PMC7131985 DOI: 10.1002/dad2.12028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Disruption of metabolic function is a recognized feature of late onset Alzheimer's disease (LOAD). We sought to determine whether similar metabolic pathways are implicated in adults with Down syndrome (DS) who have increased risk for Alzheimer's disease (AD). METHODS We examined peripheral blood from 292 participants with DS who completed baseline assessments in the Alzheimer's Biomarkers Consortium-Down Syndrome (ABC-DS) using untargeted mass spectrometry (MS). Our sample included 38 individuals who met consensus criteria for AD (DS-AD), 43 who met criteria for mild cognitive impairment (DS-MCI), and 211 who were cognitively unaffected and stable (CS). RESULTS We measured relative abundance of 8,805 features using MS and 180 putative metabolites were differentially expressed (DE) among the groups at false discovery rate-corrected q< 0.05. From the DE features, a nine-feature classifier model classified the CS and DS-AD groups with receiver operating characteristic area under the curve (ROC AUC) of 0.86 and a two-feature model classified the DS-MCI and DS-AD groups with ROC AUC of 0.88. Metabolite set enrichment analysis across the three groups suggested alterations in fatty acid and carbohydrate metabolism. DISCUSSION Our results reveal metabolic alterations in DS-AD that are similar to those seen in LOAD. The pattern of results in this cross-sectional DS cohort suggests a dynamic time course of metabolic dysregulation which evolves with clinical progression from non-demented, to MCI, to AD. Metabolomic markers may be useful for staging progression of DS-AD.
Collapse
Affiliation(s)
- Mark Mapstone
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Thomas J Gross
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Fabio Macciardi
- Department of Psychiatry and Human BehaviorUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Amrita K Cheema
- Departments of Biochemistry and Molecular & Cellular BiologyGeorgetown University Medical CenterWashingtonDCUSA
| | - Melissa Petersen
- Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Elizabeth Head
- Department of Pathology and Laboratory MedicineUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Benjamin L Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - William E Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Bradley T Christian
- Departments of Medical Physics and PsychiatryWaisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Wayne Silverman
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Ira T Lott
- Department of PediatricsUniversity of California‐ IrvineIrvineCaliforniaUSA
| | - Nicole Schupf
- Taub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyColumbia University and the New York Presbyterian HospitalNew YorkNew YorkUSA
- Department of EpidemiologyJoseph P. Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Gertrude H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
| | | |
Collapse
|
36
|
The Bewildering Effect of AMPK Activators in Alzheimer's Disease: Review of the Current Evidence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9895121. [PMID: 32149150 PMCID: PMC7049408 DOI: 10.1155/2020/9895121] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disease characterized by progressive cognitive dysfunction. It is the most common form of dementia. The pathologic hallmarks of the disease include extracellular amyloid plaque, intracellular neurofibrillary tangles, and oxidative stress, to mention some of them. Despite remarkable progress in the understanding of the pathogenesis of the disease, drugs for cure or disease-modifying therapy remain somewhere in the distance. From recent time, the signaling molecule AMPK is gaining enormous attention in the AD drug research. AMPK is a master regulator of cellular energy metabolism, and recent pieces of evidence show that perturbation of its function is highly ascribed in the pathology of AD. Several drugs are known to activate AMPK, but their effect in AD remains to be controversial. In this review, the current shreds of evidence on the effect of AMPK activators in Aβ accumulation, tau aggregation, and oxidative stress are addressed. Positive and negative effects are reported with regard to Aβ and tauopathy but only positive in oxidative stress. We also tried to dissect the molecular interplays where the bewildering effects arise from.
Collapse
|
37
|
Chen Z, Tao S, Li X, Zeng X, Zhang M, Yao Q. Anagliptin protects neuronal cells against endogenous amyloid β (Aβ)-induced cytotoxicity and apoptosis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2213-2220. [PMID: 31159590 DOI: 10.1080/21691401.2019.1609979] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhenbo Chen
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shanwei Tao
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xiaohui Li
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xudong Zeng
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Mirong Zhang
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Qinghe Yao
- Department of Neurosurgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
38
|
Bjørklund G, Aaseth J, Dadar M, Chirumbolo S. Molecular Targets in Alzheimer’s Disease. Mol Neurobiol 2019; 56:7032-7044. [DOI: 10.1007/s12035-019-1563-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
|