1
|
Zheng T, Lu F, Cai T, Chen H, Zhang R, Wang G, Li X. The interconnection between periodontitis and HIV-1 latency: Molecular mechanisms and therapeutic insights. Int Immunopharmacol 2024; 143:113402. [PMID: 39437490 DOI: 10.1016/j.intimp.2024.113402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Periodontitis is one of the major global public health problems associated with the occurrence and development of diverse systemic diseases, especially acquired immune deficiency syndrome (AIDS), necessitating further research and clinical attention. The persistence of HIV-1 latency poses a significant challenge to the attainment of a functional cure for AIDS, despite the introduction of highly active antiretroviral therapy (HAART). A similar mechanistic basis between periodontitis and HIV-1 latency has been revealed by many studies, suggesting possible mechanisms whereby periodontitis and HIV-1 latency may mutually influence each other. Therefore, we aimed to systematically summarize the current research on periodontitis and HIV-1 latency to investigate their potential correlations. This study revealed several common hubs for periodontitis and HIV-1 latency in the nuclear factor kappa-B (NF-κB) signaling pathway and other signaling pathways, including the Wnt/β-catenin pathway, bromodomain-containing protein 4 (BRD4), protein kinase C (PKC), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, programmed cell death protein 1 (PD-1), histone deacetylases (HDACs), and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Furthermore, we will discuss the hypothesis that periodontal pathogens may represent the unifying mechanism elucidating the intricate interconnection between periodontitis and HIV-1 latency. This article presents a detailed and comprehensive overview of the relationship underlying periodontitis and HIV-1 latency in terms of molecular mechanisms, which may provide novel theoretical insight into the pathogenesis of periodontitis and HIV-1 latency and reveal suitable therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Tengyi Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tiange Cai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaxue Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guixiang Wang
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China.
| |
Collapse
|
2
|
Chan YT, Cheong HC, Tang TF, Rajasuriar R, Cheng KK, Looi CY, Wong WF, Kamarulzaman A. Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion. Biomedicines 2022; 10:0. [PMID: 36359329 PMCID: PMC9687279 DOI: 10.3390/biomedicines10112809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2023] Open
Abstract
The progressive decline of CD8+ cytotoxic T cells in human immunodeficiency virus (HIV)-infected patients due to infection-triggered cell exhaustion and cell death is significantly correlated with disease severity and progression into the life-threatening acquired immunodeficiency syndrome (AIDS) stage. T cell exhaustion is a condition of cell dysfunction despite antigen engagement, characterized by augmented surface expression of immune checkpoint molecules such as programmed cell death protein 1 (PD-1), which suppress T cell receptor (TCR) signaling and negatively impact the proliferative and effector activities of T cells. T cell function is tightly modulated by cellular glucose metabolism, which produces adequate energy to support a robust reaction when battling pathogen infection. The transition of the T cells from an active to an exhausted state following pathogen persistence involves a drastic change in metabolic activity. This review highlights the interplay between immune checkpoint molecules and glucose metabolism that contributes to T cell exhaustion in the context of chronic HIV infection, which could deliver an insight into the rational design of a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kian-Kai Cheng
- Innovation Centre in Agritechnology (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Malaysia;
| | - Chung Yeng Looi
- School of Bioscience, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
3
|
Tsiakos K, Gavrielatou N, Vathiotis IA, Chatzis L, Chatzis S, Poulakou G, Kotteas E, Syrigos NK. Programmed Cell Death Protein 1 Axis Inhibition in Viral Infections: Clinical Data and Therapeutic Opportunities. Vaccines (Basel) 2022; 10:vaccines10101673. [PMID: 36298538 PMCID: PMC9611078 DOI: 10.3390/vaccines10101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
A vital function of the immune system is the modulation of an evolving immune response. It is responsible for guarding against a wide variety of pathogens as well as the establishment of memory responses to some future hostile encounters. Simultaneously, it maintains self-tolerance and minimizes collateral tissue damage at sites of inflammation. In recent years, the regulation of T-cell responses to foreign or self-protein antigens and maintenance of balance between T-cell subsets have been linked to a distinct class of cell surface and extracellular components, the immune checkpoint molecules. The fact that both cancer and viral infections exploit similar, if not the same, immune checkpoint molecules to escape the host immune response highlights the need to study the impact of immune checkpoint blockade on viral infections. More importantly, the process through which immune checkpoint blockade completely changed the way we approach cancer could be the key to decipher the potential role of immunotherapy in the therapeutic algorithm of viral infections. This review focuses on the effect of programmed cell death protein 1/programmed death-ligand 1 blockade on the outcome of viral infections in cancer patients as well as the potential benefit from the incorporation of immune checkpoint inhibitors (ICIs) in treatment of viral infections.
Collapse
Affiliation(s)
- Konstantinos Tsiakos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Correspondence:
| | - Niki Gavrielatou
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Ioannis A. Vathiotis
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Loukas Chatzis
- Pathophysiology Department, Athens School of Medicine, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Stamatios Chatzis
- Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, “Hippokration” Hospital, 115 27 Athens, Greece
| | - Garyfallia Poulakou
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Elias Kotteas
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
| | - Nikolaos K. Syrigos
- 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, 157 72 Athens, Greece
- Dana-Farber Brigham Cancer Center, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
4
|
Choudhary MC, Cyktor JC, Riddler SA. Advances in HIV-1-specific chimeric antigen receptor cells to target the HIV-1 reservoir. J Virus Erad 2022; 8:100073. [PMID: 35784676 PMCID: PMC9241028 DOI: 10.1016/j.jve.2022.100073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
Antiretroviral therapy (ART) for HIV-1 has dramatically improved outcomes for people living with HIV-1 but requires life-long adherence and can be associated with short and long-term toxicity. Numerous pre-clinical and clinical investigations are underway to develop therapies for immune control of HIV-1 in the absence of ART. The success of chimeric antigen receptor (CAR) cell therapy for hematological malignancy has renewed efforts to develop and investigate CAR cells as strategies to enhance HIV-1 immunity, enable virus control or elimination, and allow ART-free HIV-1 remission. Here, we review the improvements in anti-HIV-1 CAR cell therapy in the two decades since their initial clinical trials were conducted, describe the additional engineering required to protect CAR cells from HIV-1 infection, and preview the current landscape of CAR cell therapies advancing to HIV-1 clinical trials.
Collapse
Affiliation(s)
- Madhu C. Choudhary
- Corresponding author. Division of Infectious Diseases, University of Pittsburgh, Suite 510, 3601 5Th Ave., Pittsburgh, PA, 15213, USA.
| | | | | |
Collapse
|
5
|
Expression Profile and Biological Role of Immune Checkpoints in Disease Progression of HIV/SIV Infection. Viruses 2022; 14:v14030581. [PMID: 35336991 PMCID: PMC8955100 DOI: 10.3390/v14030581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
During HIV/SIV infection, the upregulation of immune checkpoint (IC) markers, programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), T cell immunoglobulin and ITIM domain (TIGIT), lymphocyte-activation gene-3 (LAG-3), T cell immunoglobulin and mucin domain-3 (Tim-3), CD160, 2B4 (CD244), and V-domain Ig suppressor of T cell activation (VISTA), can lead to chronic T cell exhaustion. These ICs play predominant roles in regulating the progression of HIV/SIV infection by mediating T cell responses as well as enriching latent viral reservoirs. It has been demonstrated that enhanced expression of ICs on CD4+ and CD8+ T cells could inhibit cell proliferation and cytokine production. Overexpression of ICs on CD4+ T cells could also format and prolong HIV/SIV persistence. IC blockers have shown promising clinical results in HIV therapy, implying that targeting ICs may optimize antiretroviral therapy in the context of HIV suppression. Here, we systematically review the expression profile, biological regulation, and therapeutic efficacy of targeted immune checkpoints in HIV/SIV infection.
Collapse
|
6
|
Gubser C, Chiu C, Lewin SR, Rasmussen TA. Immune checkpoint blockade in HIV. EBioMedicine 2022; 76:103840. [PMID: 35123267 PMCID: PMC8882999 DOI: 10.1016/j.ebiom.2022.103840] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) has dramatically improved life expectancy for people with HIV (PWH) and helps to restore immune function but is not curative and must be taken lifelong. Achieving long term control of HIV in the absence of ART will likely require potent T cell function, but chronic HIV infection is associated with immune exhaustion that persists even on ART. This is driven by elevated expression of immune checkpoints that provide negative signalling to T cells. In individuals with cancer, immune checkpoint blockade augments tumour-directed T-cell responses resulting in significant clinical cures. There is therefore high interest if ICB can contribute to HIV cure or remission by reversing HIV-latency and/or drive recovery of HIV-specific T-cells. We here review recent evidence on the role of immune checkpoints in persistent HIV infection and discuss the potential for employing immune checkpoint blockade as a therapeutic approach to target HIV persistence on ART.
Collapse
Affiliation(s)
- Celine Gubser
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Chris Chiu
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Kula-Pacurar A, Rodari A, Darcis G, Van Lint C. Shocking HIV-1 with immunomodulatory latency reversing agents. Semin Immunol 2021; 51:101478. [PMID: 33972164 DOI: 10.1016/j.smim.2021.101478] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
The "shock-and-kill" strategy is one of the most explored HIV-1 cure approaches to eliminate latent virus. This strategy is based on HIV-1 reactivation using latency reversing agents (LRAs) to reactivate latent proviruses (the "shock" phase) and to induce subsequent elimination of the reactivated cells by immune responses or virus-induced cytopathic effects (the "kill" phase). Studies using immunomodulatory LRAs such as blockers of immune checkpoint molecules, toll-like receptor agonists, cytokines and CD8+ T cell depleting antibodies showed promising potential as LRAs inducing directly or indirectly cellular pathways known to control HIV transcription. However, the precise molecular mechanisms by which these immunomodulatory LRAs reverse latency remain incompletely understood. Together with the heterogenous nature of HIV-1 latency, this lack of understanding complicates efforts to develop more efficient and safer cure strategies. Hence, deciphering those mechanisms is pivotal in designing approaches to eliminate latent HIV infection.
Collapse
Affiliation(s)
- Anna Kula-Pacurar
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Anthony Rodari
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium.
| |
Collapse
|
8
|
Bănică L, Vlaicu O, Jipa R, Abagiu A, Nicolae I, Neaga E, Oţelea D, Paraschiv S. Exhaustion and senescence of CD4 and CD8 T cells that express co-stimulatory molecules CD27 and CD28 in subjects that acquired HIV by drug use or by sexual route. Germs 2021; 11:66-77. [PMID: 33898343 DOI: 10.18683/germs.2021.1242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Introduction The human immunodeficiency virus (HIV) infection leads to immune activation, senescence and exhaustion of T cells. Co-stimulatory molecules play important roles in controlling these processes. The CD28 signaling triggers efficient T cell activation, while CD27 provides survival signals to CD28- T cells. Loss of these molecules was associated with senescent phenotype and resistance to checkpoint inhibitors.Romania has faced an HIV outbreak among people who inject drugs (PWID), most of them chronically infected with hepatitis C virus (HCV). HIV/HCV co-infection was associated with increased immune activation and rapid disease progression. Methods We evaluated by flow cytometry the expression of CD27, CD28, CD38, HLA-DR, CD57 and PD-1 on CD4 and CD8 T cells from 34 subjected infected with HIV (22 PWID and 12 people who acquired HIV by sexual route - PWHS) and 18 HIV-negative individuals (controls). Results We found that as compared to controls, HIV patients, regardless of infection route, have high percentages of intermediately differentiated (CD27+CD28-) and low percentages of less differentiated (CD27+CD28+) CD8 T cells. Significantly higher levels of CD8+CD27+CD28- T cells were found in PWHS than in PWID. A lower percentage of intermediately and highly differentiated (CD27-CD28-) CD8 T cells express CD57 in people living with HIV (PLWH) than in controls. Increased levels of less and intermediately differentiated CD4 and CD8 T cells expressing PD-1 were identified in PLWH, especially in PWID; these directly correlated with HIV viral load and T cell activation and negatively correlated with CD4 counts. Conclusions Our data show that induction of PD-1 on T cells expressing co-stimulatory molecules CD27 and/or CD28 might contribute to poor control of HIV infection and to immune activation.
Collapse
Affiliation(s)
- Leontina Bănică
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Ovidiu Vlaicu
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Raluca Jipa
- MD, Clinical Department, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Adrian Abagiu
- MD, Clinical Department, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Ionelia Nicolae
- MSc, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Emil Neaga
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Dan Oţelea
- MD, PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Simona Paraschiv
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania, Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
9
|
Rasmussen TA, Rajdev L, Rhodes A, Dantanarayana A, Tennakoon S, Chea S, Spelman T, Lensing S, Rutishauser R, Bakkour S, Busch M, Siliciano JD, Siliciano RF, Einstein MH, Dittmer DP, Chiao E, Deeks S, Durand C, Lewin SR. Impact of anti-PD-1 and anti-CTLA-4 on the HIV reservoir in people living with HIV with cancer on antiretroviral therapy: The AIDS Malignancy Consortium-095 study. Clin Infect Dis 2021; 73:e1973-e1981. [PMID: 33677480 DOI: 10.1093/cid/ciaa1530] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Antibodies to PD-1 and CTLA-4 may perturb HIV persistence during antiretroviral therapy (ART) by reversing HIV-latency and/or boosting HIV-specific immunity leading to clearance of infected cells. We tested this hypothesis in a clinical trial of anti-PD-1 alone or in combination with anti-CTLA-4 in people living with HIV (PLWH) and cancer. METHODS This was a substudy of the AIDS Malignancy Consortium-095 Study. ART-suppressed PLWH with advanced malignancies were assigned to nivolumab (anti-PD-1) with or without ipilimumab (anti-CTLA-4). In samples obtained pre-infusion and one and seven days after the first and fourth dose of immune checkpoint blockade (ICB), we quantified cell-associated unspliced (CA-US) HIV-RNA and HIV-DNA. Plasma HIV-RNA was quantified during the first treatment cycle. Quantitative viral outgrowth assay (QVOA) to estimate the frequency of replication-competent HIV was performed before and after ICB for participants with samples available. RESULTS Of forty participants, 33 received nivolumab and seven nivolumab plus ipilimumab. Whereas CA-US HIV RNA did not change with nivolumab monotherapy, we detected a median 1.44 fold-increase (IQR 1.16-1.89) after the first dose of nivolumab and ipilimumab combination therapy (P=0.031). There was no decrease in the frequency of cells containing replication-competent HIV, but in the two individuals on combination ICB for whom we had longitudinal QVOA, we detected decreases of 97% and 64% compared to baseline. CONCLUSION Anti-PD-1 alone showed no effect on HIV-latency or the latent HIV-reservoir, but the combination of anti-PD-1 and anti-CTL-4 induced a modest increase in CA-US HIV RNA and may potentially eliminate cells containing replication-competent HIV.
Collapse
Affiliation(s)
- Thomas A Rasmussen
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Lakshmi Rajdev
- Department of Haematology and Oncology, Lennox Hill Hospital, New York, USA
| | - Ajantha Rhodes
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Ashanti Dantanarayana
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Surekha Tennakoon
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Socheata Chea
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Tim Spelman
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Shelly Lensing
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rachel Rutishauser
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sonia Bakkour
- Vitalant Research Institute and Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Michael Busch
- Vitalant Research Institute and Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark H Einstein
- Department of Obstetrics, Gynecology, & Reproductive Health, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Dirk P Dittmer
- Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Steven Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Christine Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sharon R Lewin
- The Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| |
Collapse
|
10
|
Maina EK, Adan AA, Mureithi H, Muriuki J, Lwembe RM. A Review of Current Strategies Towards the Elimination of Latent HIV-1 and Subsequent HIV-1 Cure. Curr HIV Res 2021; 19:14-26. [PMID: 32819259 PMCID: PMC8573729 DOI: 10.2174/1570162x18999200819172009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Background During the past 35 years, highly effective ART has saved the lives of millions of people worldwide by suppressing viruses to undetectable levels. However, this does not translate to the absence of viruses in the body as HIV persists in latent reservoirs. Indeed, rebounded HIV has been recently observed in the Mississippi and California infants previously thought to have been cured. Hence, much remains to be learned about HIV latency, and the search for the best strategy to eliminate the reservoir is the direction current research is taking. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and is applicable in human therapy is prudent for HIV eradication to be more feasible. Objectives The main barriers preventing the cure of HIV with antiretroviral therapy have been identified, progress has been made in the understanding of the therapeutic targets to which potentially eradicating drugs could be directed, integrative strategies have been proposed, and clinical trials with various alternatives are underway. The aim of this review is to provide an update on the main advances in HIV eradication, with particular emphasis on the obstacles and the different strategies proposed. The core challenges of each strategy are highlighted and the most promising strategy and new research avenues in HIV eradication strategies are proposed. Methods A systematic literature search of all English-language articles published between 2015 and 2019, was conducted using MEDLINE (PubMed) and Google scholar. Where available, medical subject headings (MeSH) were used as search terms and included: HIV, HIV latency, HIV reservoir, latency reactivation, and HIV cure. Additional search terms consisted of suppression, persistence, establishment, generation, and formation. A total of 250 articles were found using the above search terms. Out of these, 89 relevant articles related to HIV-1 latency establishment and eradication strategies were collected and reviewed, with no limitation of study design. Additional studies (commonly referenced and/or older and more recent articles of significance) were selected from bibliographies and references listed in the primary resources. Results In general, when exploring the literature, there are four main strategies heavily researched that provide promising strategies to the elimination of latent HIV: Haematopoietic Stem-Cell Transplantation, Shock and Kill Strategy, Gene-specific transcriptional activation using RNA-guided CRISPR-Cas9 system, and Block and Lock strategy. Most of the studies of these strategies are applicable in vitro, leaving many questions about the extent to which, or if any, these strategies are applicable to complex picture In vivo. However, the success of these strategies at least shows, in part, that HIV-1 can be cured, though some strategies are too invasive and expensive to become a standard of care for all HIV-infected patients. Conclusion Recent advances hold promise for the ultimate cure of HIV infection. A systems-level approach that fully recapitulates the dynamics and complexity of HIV-1 latency In vivo and applicable in human therapy is prudent for HIV eradication to be more feasible. Future studies aimed at achieving a prolonged HIV remission state are more likely to be successful if they focus on a combination strategy, including the block and kill, and stem cell approaches. These strategies propose a functional cure with minimal toxicity for patients. It is believed that the cure of HIV infection will be attained in the short term if a strategy based on purging the reservoirs is complemented with an aggressive HAART strategy.
Collapse
Affiliation(s)
- Edward K Maina
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Asma A Adan
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Haddison Mureithi
- Centre for Microbiology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Joseph Muriuki
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| | - Raphael M Lwembe
- Centre for Virology Research-Kenya medical Research Institute, P.O Box 54840-00200, Nairobi, Kenya
| |
Collapse
|
11
|
Chen H, Moussa M, Catalfamo M. The Role of Immunomodulatory Receptors in the Pathogenesis of HIV Infection: A Therapeutic Opportunity for HIV Cure? Front Immunol 2020; 11:1223. [PMID: 32714317 PMCID: PMC7343933 DOI: 10.3389/fimmu.2020.01223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immune activation is the hallmark of HIV infection and plays a role in the pathogenesis of the disease. In the context of suppressed HIV RNA replication by combination antiretroviral therapy (cART), there remains immune activation which is associated to the HIV reservoirs. Persistent virus contributes to a sustained inflammatory environment promoting accumulation of "activated/exhausted" T cells with diminished effector function. These T cells show increased expression of immunomodulatory receptors including Programmed cell death protein (PD1), Cytotoxic T Lymphocyte Associated Protein 4 (CTLA4), Lymphocyte activation gene 3 (LAG3), T cell immunoglobulin and ITIM domain (TIGIT), T cell immunoglobulin and mucin domain containing 3 (TIM3) among others. More importantly, recent reports had demonstrated that, HIV infected T cells express checkpoint receptors, contributing to their survival and promoting maintenance of the viral reservoir. Therapeutic strategies are focused on viral reservoir elimination and/or those to achieve sustained cART-free virologic remission. In this review, we will discuss the immunological basis and the latest advances of the use of checkpoint inhibitors to treat HIV infection.
Collapse
Affiliation(s)
- Hui Chen
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
- CMRS/Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maha Moussa
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| | - Marta Catalfamo
- Department of Microbiology and Immunology, Georgetown University School of Medicine, Washington, DC, United States
| |
Collapse
|
12
|
Pham HT, Yoo S, Mesplède T. Combination therapies currently under investigation in phase I and phase II clinical trials for HIV-1. Expert Opin Investig Drugs 2020; 29:273-283. [PMID: 31994943 DOI: 10.1080/13543784.2020.1724281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: HIV infection is manageable through the use of antiretroviral drugs. However, HIV reservoirs that are constituted early during infection are resistant to treatment. HIV persistence under treatment necessitates life-long treatment and is associated with various co-morbidities. Two significant research avenues are explored through the development of either new antiretroviral drugs or interventions aimed at stimulating the immune system to eradicate HIV reservoirs.Areas covered: This report provides a review of investigational drugs and cell-based interventions against HIV infection that are currently under Phase I or Phase II clinical trials. We report on new antiretroviral drugs, antibodies directed against viral or host targets, reactivating agents, immune modulators and immune checkpoint inhibitors, and cell-based interventions. These new therapies are often tested in combination, including with current antiretroviral drugs.Expert opinion: Islatravir and GS-6207 are promising antiretroviral drugs that are expected to perform well in phase III trials. Whether the host immune system can be activated sufficiently to reduce HIV reservoirs remains unknown. Additional research is needed to identify surrogate markers of success for curative interventions. Given the current safety and efficacy of antiretroviral treatment, risk-benefits should be carefully evaluated before interventions that risk triggering high levels of immune stimulation.
Collapse
Affiliation(s)
- Hanh Thi Pham
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Subin Yoo
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Thibault Mesplède
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
13
|
HIV-1 Latency and Latency Reversal: Does Subtype Matter? Viruses 2019; 11:v11121104. [PMID: 31795223 PMCID: PMC6950696 DOI: 10.3390/v11121104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cells that are latently infected with HIV-1 preclude an HIV-1 cure, as antiretroviral therapy does not target this latent population. HIV-1 is highly genetically diverse, with over 10 subtypes and numerous recombinant forms circulating worldwide. In spite of this vast diversity, much of our understanding of latency and latency reversal is largely based on subtype B viruses. As such, most of the development of cure strategies targeting HIV-1 are solely based on subtype B. It is currently assumed that subtype does not influence the establishment or reactivation of latent viruses. However, this has not been conclusively proven one way or the other. A better understanding of the factors that influence HIV-1 latency in all viral subtypes will help develop therapeutic strategies that can be applied worldwide. Here, we review the latest literature on subtype-specific factors that affect viral replication, pathogenesis, and, most importantly, latency and its reversal.
Collapse
|
14
|
Darcis G, Berkhout B, Pasternak AO. The Quest for Cellular Markers of HIV Reservoirs: Any Color You Like. Front Immunol 2019; 10:2251. [PMID: 31616425 PMCID: PMC6763966 DOI: 10.3389/fimmu.2019.02251] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) replication and improves immune function, but is unable to eradicate the virus. Therefore, development of an HIV cure has become one of the main priorities of the HIV research field. The main obstacle for an HIV cure is the formation of latent viral reservoirs, where the virus is able to “hide” despite decades of therapy, just to reignite active replication once therapy is stopped. Revealing HIV hiding places is thus central to HIV cure research, but the absence of markers of these reservoir cells greatly complicates the search for a cure. Identification of one or several marker(s) of latently infected cells would represent a significant step forward toward a better description of the cell types involved and improved understanding of HIV latency. Moreover, it could provide a “handle” for selective therapeutic targeting of the reservoirs. A number of cellular markers of HIV reservoir have recently been proposed, including immune checkpoint molecules, CD2, and CD30. CD32a is perhaps the most promising of HIV reservoir markers as it is reported to be associated with a very prominent enrichment in HIV DNA, although this finding has been challenged. In this review, we provide an update on the current knowledge about HIV reservoir markers. We specifically highlight studies that characterized markers of persistently infected cells in the lymphoid tissues.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Mylvaganam G, Yanez AG, Maus M, Walker BD. Toward T Cell-Mediated Control or Elimination of HIV Reservoirs: Lessons From Cancer Immunology. Front Immunol 2019; 10:2109. [PMID: 31552045 PMCID: PMC6746828 DOI: 10.3389/fimmu.2019.02109] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022] Open
Abstract
As the AIDS epidemic unfolded, the appearance of opportunistic infections in at-risk persons provided clues to the underlying problem: a dramatic defect in cell-mediated immunity associated with infection and depletion of CD4+ T lymphocytes. Moreover, the emergence of HIV-associated malignancies in these same individuals was a clear indication of the significant role effective cellular immunity plays in combating cancers. As research in the HIV field progressed, advances included the first demonstration of the role of PD-1 in human T cell exhaustion, and the development of gene-modified T cell therapies, including chimeric antigen receptor (CAR) T cells. In the intervening years, the oncology field has capitalized on these advances, effectively mobilizing the cellular immune response to achieve immune-mediated remission or cure of previously intractable cancers. Although similar therapeutic advances have not yet been achieved in the HIV field, spontaneous CD8+ T cell mediated remission or functional cure of HIV infection does occur in very small subset of individuals in the absence of anti-retroviral therapy (ART). This has many similarities to the CD8+ T cell mediated functional control or elimination of cancers, and indicates that immunotherapy for HIV is a rational goal. In HIV infection, one major barrier to successful immunotherapy is the small, persistent population of infected CD4+ T cells, the viral reservoir, which evades pharmacological and immune-mediated clearance, and is largely maintained in secondary lymphoid tissues at sites where CD8+ T cells have limited access and/or function. The reservoir-enriched lymphoid microenvironment bears a striking resemblance to the tumor microenvironment of many solid tumors–namely high levels of anti-inflammatory cytokines, expression of co-inhibitory receptors, and physical exclusion of immune effector cells. Here, we review the parallels between CD8+ T cell-mediated immune control of HIV and cancer, and how advances in cancer immunotherapy may provide insights to direct the development of effective HIV cure strategies. Specifically, understanding the impact of the tissue microenvironment on T cell function and development of CAR T cells and therapeutic vaccines deserve robust attention on the path toward a CD8+ T cell mediated cure of HIV infection.
Collapse
Affiliation(s)
- Geetha Mylvaganam
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Adrienne G Yanez
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | - Marcela Maus
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States.,MGH Cancer Center, Boston, MA, United States
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States.,Institute for Medical Engineering and Sciences, MIT, Cambridge, MA, United States
| |
Collapse
|
16
|
Banga R, Rebecchini C, Procopio FA, Noto A, Munoz O, Ioannidou K, Fenwick C, Ohmiti K, Cavassini M, Corpataux JM, de Leval L, Pantaleo G, Perreau M. Lymph node migratory dendritic cells modulate HIV-1 transcription through PD-1 engagement. PLoS Pathog 2019; 15:e1007918. [PMID: 31329640 PMCID: PMC6675123 DOI: 10.1371/journal.ppat.1007918] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/01/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022] Open
Abstract
T-follicular helper (Tfh) cells, co-expressing PD-1 and TIGIT, serve as a major cell reservoir for HIV-1 and are responsible for active and persistent HIV-1 transcription after prolonged antiretroviral therapy (ART). However, the precise mechanisms regulating HIV-1 transcription in lymph nodes (LNs) remain unclear. In the present study, we investigated the potential role of immune checkpoint (IC)/IC-Ligand (IC-L) interactions on HIV-1 transcription in LN-microenvironment. We show that PD-L1 (PD-1-ligand) and CD155 (TIGIT-ligand) are predominantly co-expressed on LN migratory (CD1chighCCR7+CD127+) dendritic cells (DCs), that locate predominantly in extra-follicular areas in ART treated individuals. We demonstrate that TCR-mediated HIV production is suppressed in vitro in the presence of recombinant PD-L1 or CD155 and, more importantly, when LN migratory DCs are co-cultured with PD-1+/Tfh cells. These results indicate that LN migratory DCs expressing IC-Ls may more efficiently restrict HIV-1 transcription in the extra-follicular areas and explain the persistence of HIV transcription in PD-1+/Tfh cells after prolonged ART within germinal centers. Increasing number of evidences indicate that B-cell follicles might be anatomical sanctuaries for active transcription in both HIV/SIV viremic controllers and in ART treated aviremic HIV-infected individuals. While multiple mechanisms may be involved in the regulation of HIV transcription, recent studies suggested that immune checkpoint molecule (IC) signaling may contribute to maintain HIV-1 latency in infected CD4 T cells. These observations prompted us to investigate the involvement of IC/IC-L interactions in the regulation of HIV-1 transcription in lymph node (LN) tissues. In the present study, we show that T follicular helper (Tfh) cells predominantly co-expressed PD-1 and TIGIT, which were functionally active. An in-depth mass cytometry analysis revealed that PD-L1, PD-L2 (PD-1 ligands) and CD155 (TIGIT-ligand) were predominantly co-expressed on a specific LN dendritic cell (DC) subpopulation expressing markers of migratory DCs. We subsequently demonstrated that LN migratory DCs, locating predominantly in LN extra-follicular areas, could modulate HIV-1 transcription by a mechanism involving PD-L1/PD-1 interactions. Interestingly, the frequency of LN migratory DCs inversely correlated with HIV-1 transcription from LN memory CD4 T cells, suggesting that IC-L expressing migratory DCs might contribute to control HIV-1 transcription and maintain HIV-1 latency in extra-follicular areas. These findings represent a step forward in our understanding of potential mechanisms contributing to the regulation of HIV persistence in lymphoid tissues.
Collapse
Affiliation(s)
- Riddhima Banga
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Caterina Rebecchini
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Francesco Andrea Procopio
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Olivia Munoz
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Khalid Ohmiti
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Corpataux
- Service of Vascular Surgery, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
17
|
Zerbato JM, Purves HV, Lewin SR, Rasmussen TA. Between a shock and a hard place: challenges and developments in HIV latency reversal. Curr Opin Virol 2019; 38:1-9. [PMID: 31048093 DOI: 10.1016/j.coviro.2019.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
Latently infected cells that persist in HIV-infected individuals on antiretroviral therapy (ART) are a major barrier to cure. One strategy to eliminate latency is by activating viral transcription, commonly called latency reversal. Several small non-randomised clinical trials of latency reversing agents (LRAs) in HIV-infected individuals on ART increased viral production, but disappointingly did not reduce the number of latently infected cells or delay time to viral rebound following cessation of ART. More recent approaches aimed at reversing latency include compounds that both activate virus and also modulate immunity to enhance clearance of infected cells. These immunomodulatory LRAs include toll-like receptor agonists, immune checkpoint inhibitors and some cytokines. Here, we provide a brief review of the rationale for transcription-activating and immunomodulatory LRAs, discuss recent clinical trials and some suggestions for combination approaches and research priorities for the future.
Collapse
Affiliation(s)
- Jennifer M Zerbato
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| | - Harrison V Purves
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
| | - Thomas A Rasmussen
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and the Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|