1
|
Zou X, Wu T, Lin J, Su T, Xiao H, Ni C, Hu L, Lin W, Chen W, Ye RD, Xiang L. SAA3 deficiency exacerbates intestinal fibrosis in DSS-induced IBD mouse model. Cell Death Discov 2025; 11:25. [PMID: 39863585 PMCID: PMC11763003 DOI: 10.1038/s41420-025-02299-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Intestinal fibrosis, as a late-stage complication of inflammatory bowel disease (IBD), leads to bowel obstruction and requires surgical intervention, significantly lowering the quality of life of affected patients. SAA3, a highly conserved member of the serum amyloid A (SAA) apolipoprotein family in mice, is synthesized primarily as an acute phase reactant in response to infection, inflammation and trauma. An increasing number of evidence suggests that SAA3 exerts a vital role in the fibrotic process, even though the underlying mechanisms are not yet fully comprehended. This study utilized dextran sulfate sodium (DSS) to establish an IBD mouse model and observed that the SAA3-deficient mice exhibited more severe intestinal fibrosis. Our results further indicated that SAA3 genetic disruption in fibroblasts enhanced cell activation to myofibroblasts through HSPB1/NF-κB/TGF-β1/Smads signaling cascade, exacerbating the pathological phenotype of intestinal fibrosis. Collectively, our results shed novel lights on regulating SAA3 in intestinal fibrosis and indicate the potential to develop therapeutic strategies for IBD patients.
Collapse
Affiliation(s)
- Xiaodong Zou
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Tong Wu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Jianjiao Lin
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Tao Su
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Hui Xiao
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Chuyan Ni
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Lijuan Hu
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Wenchu Lin
- Institute of Digestive Disease, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Weilin Chen
- Marshall Laboratory of Biomedical Engineering, Institute of Biological Therapy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen, China.
| | - Li Xiang
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
2
|
Chen C, Lin LY, Wu YW, Chen JW, Chang TT. CXCL5 inhibition improves kidney function by protecting renal tubular epithelial cells in diabetic kidney disease. Clin Immunol 2024; 268:110369. [PMID: 39326648 DOI: 10.1016/j.clim.2024.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Inflammation is one of exacerbating factors of diabetic kidney disease (DKD). Upregulated CXCL5 is found in clinical and experimental diabetes studies. This study aimed to investigate the impact and mechanism of CXCL5 on DKD. DKD patients with different levels of urine albumin-to-creatinine ratio were enrolled. Leprdb/db mice and CXCL5-knockout diabetic mice were used as mouse models for DKD. Human renal tubular epithelial cells were used for in vitro experiments. Circulating CXCL5 were increased in DKD patients compared to the non-DKD subjects. CXCL5 inhibition through CXCL5-neutralizing antibodies or genetic knockout improved kidney function and ameliorated tubular injury and renal fibrosis. In high-glucose-stimulated tubular epithelial cells, administration of CXCL5-neutralizing antibodies or siRNA resulted in reduced phospho-JNK/c-JUN/p65 and the downstream inflammatory, fibrotic, and apoptotic protein expressions. Administration of CXCR2 and JNK inhibitors impeded the CXCL5-induced tubular epithelial cell damages. In conclusion, these findings indicated that anti-CXCL5 strategies may be potential treatments for DKD.
Collapse
Affiliation(s)
- Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Liang-Yu Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yen-Wen Wu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Faucalty of Medicine, Colleague of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiology, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin Positive Cell-derived Extracellular Vesicles Contribute to Cardiac Amyloidosis After Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601297. [PMID: 39005419 PMCID: PMC11244852 DOI: 10.1101/2024.06.28.601297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Amyloidosis is a major long-term complication of chronic disease; however, whether it represents one of the complications of post-myocardial infarction (MI) is yet to be fully understood. Methods Using wild-type and knocked-out MI mouse models and characterizing in vitro the exosomal communication between bone marrow-derived macrophages and activated mesenchymal stromal cells (MSC) isolated after MI, we investigated the mechanism behind Serum Amyloid A 3 (SAA3) protein overproduction in injured hearts. Results Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived SAA3 monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from a subset of activated MSC, which, in response to MI, acquire the expression of a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin (PDPN). Cardiac MSC PDPN+ communicate with and activate macrophages through their extracellular vesicles or exosomes. Specifically, MSC PDPN+ derived exosomes (MSC PDPN+ Exosomes) are enriched in SAA3 and exosomal SAA3 protein engages with Toll-like receptor 2 (TRL2) on macrophages, triggering an overproduction and impaired clearance of SAA3 proteins, resulting in aggregation of SAA3 monomers as rigid amyloid deposits in the extracellular space. The onset of amyloid fibers deposition alongside extra-cellular-matrix (ECM) proteins in the ischemic heart exacerbates the rigidity and stiffness of the scar, hindering the contractility of viable myocardium and overall impairing organ function. Using SAA3 and TLR2 deficient mouse models, we show that SAA3 delivered by MSC PDPN+ exosomes promotes post-MI amyloidosis. Inhibition of SAA3 aggregation via administration of a retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils, positively modulates the scar formation, and improves heart function post-MI. Conclusion Overall, our findings provide mechanistic insights into post-MI amyloidosis and suggest that SAA3 may be an attractive target for effective scar reversal after ischemic injury and a potential target in multiple diseases characterized by a similar pattern of inflammation and amyloid deposition. NOVELTY AND SIGNIFICANCE What is known? Accumulation of rigid amyloid structures in the left ventricular wall impairs ventricle contractility.After myocardial infarction cardiac Mesenchymal Stromal Cells (MSC) acquire Podoplanin (PDPN) to better interact with immune cells.Amyloid structures can accumulate in the heart after chronic inflammatory conditions. What information does this article contribute? Whether accumulation of cumbersome amyloid structures in the ischemic scar impairs left ventricle contractility, and scar reversal after myocardial infarction (MI) has never been investigated.The pathophysiological relevance of PDPN acquirement by MSC and the functional role of their secreted exosomes in the context of post-MI cardiac remodeling has not been investigated.Amyloid structures are present in the scar after ischemia and are composed of macrophage-derived Serum Amyloid A (SAA) 3 monomers, although mechanisms of SAA3 overproduction is not established. SUMMARY OF NOVELTY AND SIGNIFICANCE Here, we report that amyloidosis, a secondary phenomenon of an already preexisting and prolonged chronic inflammatory condition, occurs after MI and that amyloid structures are composed of macrophage-derived SAA3 monomers. Frequently studied cardiac amyloidosis are caused by aggregation of immunoglobulin light chains, transthyretin, fibrinogen, and apolipoprotein in a healthy heart as a consequence of systemic chronic inflammation leading to congestive heart failure with various types of arrhythmias and tissue stiffness. Although chronic MI is considered a systemic inflammatory condition, studies regarding the possible accumulation of amyloidogenic proteins after MI and the mechanisms involved in that process are yet to be reported. Here, we show that SAA3 overproduction in macrophages is triggered in a Toll-like Receptor 2 (TLR2)-p38MAP Kinase-dependent manner by exosomal communication from a subset of activated MSC, which, in response to MI, express a platelet aggregation-inducing type I transmembrane glycoprotein named Podoplanin. We provide the full mechanism of this phenomenon in murine models and confirm SAA3 amyloidosis in failing human heart samples. Moreover, we developed a retro-inverso D-peptide therapeutic approach, "DRI-R5S," specifically designed to bind SAA3 monomers and prevent post-MI aggregation and deposition of SAA3 amyloid fibrils without interfering with the innate immune response.
Collapse
|
4
|
Lang Y, Wang Q, Sheng Q, Lu S, Yang M, Kong Z, Gao Y, Fan X, Shen N, Wang R, Lv Z. FTO-mediated m6A modification of serum amyloid A2 mRNA promotes podocyte injury and inflammation by activating the NF-κB signaling pathway. FASEB J 2024; 38:e23409. [PMID: 38193628 DOI: 10.1096/fj.202301419rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus, yet there is no effective treatment. Exploring the development of DKD is essential to treatment. Podocyte injury and inflammation are closely related to the development of DKD. However, the mechanism of podocyte injury and progression in DKD remains largely unclear. Here, we observed that FTO expression was significantly upregulated in high glucose-induced podocytes and that overexpression of FTO promoted podocyte injury and inflammation. By performing RNA-seq and MeRIP-seq with control podocytes and high glucose-induced podocytes with or without FTO knockdown, we revealed that serum amyloid A2 (SAA2) is a target of FTO-mediated m6A modification. Knockdown of FTO markedly increased SAA2 mRNA m6A modification and decreased SAA2 mRNA expression. Mechanistically, we demonstrated that SAA2 might participate in podocyte injury and inflammation through activation of the NF-κB signaling pathway. Furthermore, by generating podocyte-specific adeno-associated virus 9 (AAV9) to knockdown SAA2 in mice, we discovered that the depletion of SAA2 significantly restored podocyte injury and inflammation. Together, our results suggested that upregulation of SAA2 promoted podocyte injury through m6A-dependent regulation, thus suggesting that SAA2 may be a therapeutic target for diabetic kidney disease.
Collapse
Affiliation(s)
- Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
5
|
Chen C, Chang TT, Chen JW. Mechanistic role of CXCL5 in cardiovascular disease, diabetes mellitus, and kidney disease. Life Sci 2023; 330:122018. [PMID: 37567498 DOI: 10.1016/j.lfs.2023.122018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Chemokines, by modulating inflammation process, could contribute to the development of cardiovascular disease, diabetes mellitus (DM), and kidney disease. Chemokine CXC motif ligand 5 (CXCL5) is one of the inducible chemokines that may be involved in various inflammatory diseases. Given the bidirectional promiscuity characteristics of the chemokine system, the mechanistic roles of CXCL5 should be further explored in each specific disease. In this article, we sought to review the recent evidence on the differential effects of CXCL5 and their potential mechanisms in cardiovascular disease, DM, and renal disease individually. Future study is still required to verify if CXCL5 could be a novel therapeutic target in these diseases.
Collapse
Affiliation(s)
- Ching Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Ting Chang
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Cardiology, Department of Medicine and Department of Research, Taipei Medical University Hospital, Taipei, Taiwan; Cardiovascular Research Center, Taipei Medical University Hospital and Taipei Medical University, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Du B, Yin Y, Wang Y, Fu H, Sun H, Yue Z, Yu S, Zhang Z. Calcium dobesilate efficiency in the treatment of diabetic kidney disease through suppressing MAPK and chemokine signaling pathways based on clinical evaluation and network pharmacology. Front Pharmacol 2022; 13:850167. [PMID: 36160448 PMCID: PMC9493050 DOI: 10.3389/fphar.2022.850167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Aims: To evaluate the effectiveness and potential mechanism of calcium dobesilate (CaD) in diabetic kidney disease (DKD) patients. Methods: We searched for available randomized controlled studies on DKD patients’ treatment with CaD through open databases. Continuous variables were expressed as standardized mean difference (SMD) with a 95% confidence interval (CI). The putative targets and possible pathways of CaD on DKD were analyzed by network pharmacology. Molecular docking was employed to verify the match between CaD and the target genes. Results: In the meta-analysis, 42 trials were included, involving 3,671 DKD patients, of which 1,839 received CaD treatment in addition to conventional treatment, while 1,832 received conventional treatment. Compared with routine therapy, the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) significantly decreased in the CaD treatment (early stage of DKD, Scr: p < 0.00001; BUN: p < 0.0001; clinical stage of DKD, Scr: p < 0.00001; BUN: p < 0.00001; kidney failure stage, Scr: p = 0.001; BUN: p = 0.004). The levels of serum cystatin C (Cys-C), urine levels of molecules reflecting kidney function (urinary albumin excretion rate (UAER) and micro glycoprotein), and inflammatory factors [hypersensitive c-reactive protein (hs-CRP)] were reduced compared with control groups, while glomerular filtration rate (GFR) was increased in patients treated with CaD for 12 weeks. CaD also showed a better effect on improving endothelial function. Network pharmacology results showed that the interaction pathway between CaD and DKD was mainly enriched in MAPK and chemokine signaling pathways. AKT1, CASP3, IGF1, MAPK8, and CCL5 might be the key targets for CaD in treating DKD. Conclusion: Combination with CaD is effective and safe in patients with DKD. Inhibition of MAPK and chemokine signaling pathways might be vital in treating CaD in DKD patients.
Collapse
Affiliation(s)
- Bingyu Du
- Department of Endocrinology and Metabology, Shandong University of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Rehabilitation Medicine, The Second Clinical Medical College and Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanyan Yin
- Department of Endocrinology and Metabology, Shandong University of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Rehabilitation Medicine, The Second Clinical Medical College and Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuqing Wang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, Shandong Institute of Nephrology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Hui Fu
- The Clinical Medical College, Cheeloo Medical College of Shandong University, Jinan, China
| | - Helin Sun
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, Shandong Institute of Nephrology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhaodi Yue
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shaohong Yu
- Department of Endocrinology and Metabology, Shandong University of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Rehabilitation Medicine, The Second Clinical Medical College and Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Shaohong Yu, ; Zhongwen Zhang,
| | - Zhongwen Zhang
- Department of Endocrinology and Metabology, Shandong University of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Rehabilitation Medicine, The Second Clinical Medical College and Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, Shandong Institute of Nephrology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
- *Correspondence: Shaohong Yu, ; Zhongwen Zhang,
| |
Collapse
|
7
|
Liu Q, Sun J, Xu T, Bian G, Yang F. Associations of serum amyloid A and 25-hydroxyvitamin D with diabetic nephropathy: A cross-sectional study. J Clin Lab Anal 2022; 36:e24283. [PMID: 35133014 PMCID: PMC8906018 DOI: 10.1002/jcla.24283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The present study investigated the relationships between serum amyloid A (SAA), 25-hydroxyvitamin D (25(OH)VD) and diabetic nephropathy (DN) to provide evidence for the prevention and management of DN. METHODS A total of 182 patients with type 2 diabetes mellitus (T2DM) were enrolled in this study. The levels of SAA, 25(OH)VD, and other conventional indicators were measured and analyzed. Receiver operating characteristic curve analysis was applied for the combined measurement of SAA and 25(OH)VD, and risk factors for DN were evaluated using binary logistic regression analysis. RESULTS The levels of SAA in T2DM patients were significantly higher than those in healthy subjects, and the level significantly increased with the progression of DN (p < 0.05). In contrast, the level of 25(OH)VD in T2DM patients was significantly lower than that in healthy subjects, and the level significantly decreased with the progression of DN (p < 0.05). The combined measurement of SAA and 25(OH)VD distinguished DN patients from T2DM patients better than the measurement of SAA or 25(OH)VD alone. SAA was an independent risk factor for DN, and 25(OH)VD was an independent protective factor for DN. CONCLUSION SAA and 25(OH)VD might be used as potential markers to identify patients at increased risk of developing DN.
Collapse
Affiliation(s)
- Qian Liu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Jin Sun
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Tongdao Xu
- Department of Endocrinology, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Guangrong Bian
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Fumeng Yang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
8
|
Wan F, Ma F, Wu J, Qiao X, Chen M, Li W, Ma L. Effect of Lycium barbarum Polysaccharide on Decreasing Serum Amyloid A3 Expression through Inhibiting NF- κB Activation in a Mouse Model of Diabetic Nephropathy. Anal Cell Pathol (Amst) 2022; 2022:7847135. [PMID: 35132370 PMCID: PMC8817866 DOI: 10.1155/2022/7847135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022] Open
Abstract
Lycium barbarum polysaccharide (LBP) as one of the main bioactive constituents of the fruit of Lycium barbarum L. (LBL.) has many pharmacological activities, but its antihyperglycemic activity is not fully understood yet. This study investigated the hypoglycemic and renal protective effects of LBP on high-fat diet/streptozotocin- (HFD/STZ-) induced diabetic nephropathy (DN) in mice. Blood glucose was assessed before and after 8-week administration of LBP, and the homeostasis model assessment-insulin resistance (HOMA-IR) index was calculated for evaluating the antidiabetic effect of LBP. Additionally, serum creatinine (sCr), blood urea nitrogen (BUN), and urine microalbumin were tested to evaluate the renal function. HE and PAS stainings were performed to evaluate the morphology and injury of the kidney. The results showed that LBP significantly reduces the glucose level and ameliorates the insulin resistance of diabetic mice. Importantly, LBP improves renal function by lowering the levels of sCr, BUN, and microalbumin in diabetic mice and relieves the injury in the renal glomeruli and tubules of the DN mice. Furthermore, LBP attenuates renal inflammation as evidenced by downregulating the mRNA levels of TNFα, IL1 β, IL6, and SAA3 in the renal cortex, as well as reducing the elevated circulating level and protein depositions of SAA3 in the kidney. In addition, our western blot results showed that NF-κB p65 nuclear translocation and the degradation of inhibitory κB-α (IκBα) occurred during the progress of inflammation, and such activated signaling was restrained by LBP. In conclusion, our findings suggest that LBP is a potential antidiabetic agent, which ameliorates the inflammation in DN through inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Fengqi Wan
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Fulin Ma
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Jiaxin Wu
- School of Pharmacy, Lanzhou University, No. 99 Donggang West Road, Lanzhou 730000, China
| | - Xinyu Qiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Minxue Chen
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, No. 82 Cuiyingmen, Lanzhou 730030, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Liang Ma
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
9
|
Saliu TP, Yazawa N, Hashimoto K, Miyata K, Kudo A, Horii M, Kamesawa M, Kumrungsee T, Yanaka N. Serum Amyloid A3 Promoter-Driven Luciferase Activity Enables Visualization of Diabetic Kidney Disease. Int J Mol Sci 2022; 23:ijms23020899. [PMID: 35055081 PMCID: PMC8779903 DOI: 10.3390/ijms23020899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
The early detection of diabetic nephropathy (DN) in mice is necessary for the development of drugs and functional foods. The purpose of this study was to identify genes that are significantly upregulated in the early stage of DN progression and develop a novel model to non-invasively monitor disease progression within living animals using in vivo imaging technology. Streptozotocin (STZ) treatment has been widely used as a DN model; however, it also exhibits direct cytotoxicity to the kidneys. As it is important to distinguish between DN-related and STZ-induced nephropathy, in this study, we compared renal responses induced by the diabetic milieu with two types of STZ models: multiple low-dose STZ injections with a high-fat diet and two moderate-dose STZ injections to induce DN. We found 221 genes whose expression was significantly altered during DN development in both models and identified serum amyloid A3 (Saa3) as a candidate gene. Next, we applied the Saa3 promoter-driven luciferase reporter (Saa3-promoter luc mice) to these two STZ models and performed in vivo bioluminescent imaging to monitor the progression of renal pathology. In this study, to further exclude the possibility that the in vivo bioluminescence signal is related to renal cytotoxicity by STZ treatment, we injected insulin into Saa3-promoter luc mice and showed that insulin treatment could downregulate renal inflammatory responses with a decreased signal intensity of in vivo bioluminescence imaging. These results strongly suggest that Saa3 promoter activity is a potent non-invasive indicator that can be used to monitor DN progression and explore therapeutic agents and functional foods.
Collapse
|
10
|
He Y, Lin J, Tang J, Yu Z, Ou Q, Lin J. iTRAQ-based proteomic analysis of differentially expressed proteins in sera of seronegative and seropositive rheumatoid arthritis patients. J Clin Lab Anal 2021; 36:e24133. [PMID: 34812532 PMCID: PMC8761432 DOI: 10.1002/jcla.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The diagnosis of seronegative rheumatoid arthritis (SNRA) is often difficult due to the unavailability of reliable laboratory markers. The aim of this study was to identify differentially expressed proteins in sera of SNRA, seropositive RA (SPRA), and healthy donors (HD). Methods A total of 32 seropositive RA patients, 32 SNRA patients, and 35 HD were enrolled in our study. Differentially expressed proteins between 3 groups were identified via isobaric tags for relative and absolute quantitation (iTRAQ)‐based proteomic analysis, and an ELISA test was used for the validation test. Correlation analysis was conducted by GraphPad Prism. Results Using iTRAQ quantitative proteomics, we identified 14 proteins were significantly different between SPRA and SNRA, including 4 upregulated proteins and 10 downregulated proteins. Four differentially expressed proteins were validated by ELISA test, and the results showed that SAA1 protein was significantly higher in SPRA and SNRA patients compared with HD, and PSME1 was elevated in SPRA patients. What's more, SAA1 was increased in the anti‐CCP or RF high‐level group in RA patients, and PSME1 was increased in the RF high‐level group. Alternatively, SAA1 was positively correlated with inflammation indicators in RA patients, while PSME1 showed no correlation with inflammation indicators. Conclusions iTRAQ proteomic approaches revealed variations in serum protein composition among SPRA patients, SNRA patients, and HD and provided new idea for advanced diagnostic methods and precision treatment of RA.
Collapse
Affiliation(s)
- Yujue He
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junyu Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ziqing Yu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
11
|
Structural Basis for Vital Function and Malfunction of Serum Amyloid A: an Acute-Phase Protein that Wears Hydrophobicity on Its Sleeve. Curr Atheroscler Rep 2020; 22:69. [PMID: 32968930 PMCID: PMC7511256 DOI: 10.1007/s11883-020-00888-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This review addresses normal and pathologic functions of serum amyloid A (SAA), an enigmatic biomarker of inflammation and protein precursor of AA amyloidosis, a life-threatening complication of chronic inflammation. SAA is a small, highly evolutionarily conserved acute-phase protein whose plasma levels increase up to one thousand-fold in inflammation, infection, or after trauma. The advantage of this dramatic but transient increase is unclear, and the complex role of SAA in immune response is intensely investigated. This review summarizes recent advances in our understanding of the structure-function relationship of this intrinsically disordered protein, outlines its newly emerging beneficial roles in lipid transport and inflammation control, and discusses factors that critically influence its misfolding in AA amyloidosis. RECENT FINDINGS High-resolution structures of lipid-free SAA in crystals and fibrils have been determined by x-ray crystallography and electron cryo-microscopy. Low-resolution structural studies of SAA-lipid complexes, together with biochemical, cell-based, animal model, genetic, and clinical studies, have provided surprising new insights into a wide range of SAA functions. An emerging vital role of SAA is lipid encapsulation to remove cell membrane debris from sites of injury. The structural basis for this role has been proposed. The lysosomal origin of AA amyloidosis has solidified, and its molecular and cellular mechanisms have emerged. Recent studies have revealed molecular underpinnings for understanding complex functions of this Cambrian protein in lipid transport, immune response, and amyloid formation. These findings help guide the search for much-needed targeted therapies to block the protein deposition in AA amyloidosis.
Collapse
|
12
|
Opazo-Ríos L, Sanchez Matus Y, Rodrigues-Díez RR, Carpio D, Droguett A, Egido J, Gomez-Guerrero C, Mezzano S. Anti-inflammatory, antioxidant and renoprotective effects of SOCS1 mimetic peptide in the BTBR ob/ob mouse model of type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001242. [PMID: 32900697 PMCID: PMC7478022 DOI: 10.1136/bmjdrc-2020-001242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/13/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Diabetic nephropathy (DN) is the leading cause of chronic kidney disease worldwide. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway participates in the development and progression of DN. Among the different mechanisms involved in JAK/STAT negative regulation, the family of suppressor of cytokine signaling (SOCS) proteins has been proposed as a new target for DN. Our aim was to evaluate the effect of SOCS1 mimetic peptide in a mouse model of obesity and type 2 diabetes (T2D) with progressive DN. RESEARCH DESIGN AND METHODS Six-week-old BTBR (black and tan brachyuric) mice with the ob/ob (obese/obese) leptin-deficiency mutation were treated for 7 weeks with two different doses of active SOCS1 peptide (MiS1 2 and 4 µg/g body weight), using inactive mutant peptide (Mut 4 µg) and vehicle as control groups. At the end of the study, the animals were sacrificed to obtain blood, urine and kidney tissue for further analysis. RESULTS Treatment of diabetic mice with active peptide significantly decreased urine albumin to creatinine ratio by up to 50%, reduced renal weight, glomerular and tubulointerstitial damage, and restored podocyte numbers. Kidneys from treated mice exhibited lower inflammatory infiltrate, proinflammatory gene expression and STAT activation. Concomitantly, active peptide administration modulated redox balance markers and reduced lipid peroxidation and cholesterol transporter gene expression in diabetic kidneys. CONCLUSION Targeting SOCS proteins by mimetic peptides to control JAK/STAT signaling pathway ameliorates albuminuria, morphological renal lesions, inflammation, oxidative stress and lipotoxicity, and could be a therapeutic approach to T2D kidney disease.
Collapse
Affiliation(s)
- Lucas Opazo-Ríos
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma (UAM), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Madrid, Spain
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | | | - Raúl R Rodrigues-Díez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain
| | - Daniel Carpio
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandra Droguett
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma (UAM), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autonoma (UAM), Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
13
|
Biological Characterization of Commercial Recombinantly Expressed Immunomodulating Proteins Contaminated with Bacterial Products in the Year 2020: The SAA3 Case. Mediators Inflamm 2020; 2020:6087109. [PMID: 32694927 PMCID: PMC7362292 DOI: 10.1155/2020/6087109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 01/20/2023] Open
Abstract
The serum amyloid A (SAA) gene family is highly conserved and encodes acute phase proteins that are upregulated in response to inflammatory triggers. Over the years, a considerable amount of literature has been published attributing a wide range of biological effects to SAAs such as leukocyte recruitment, cytokine and chemokine expression and induction of matrix metalloproteinases. Furthermore, SAAs have also been linked to protumorigenic, proatherogenic and anti-inflammatory effects. Here, we investigated the biological effects conveyed by murine SAA3 (mu rSAA3) recombinantly expressed in Escherichia coli. We observed the upregulation of a number of chemokines including CCL2, CCL3, CXCL1, CXCL2, CXCL6 or CXCL8 following stimulation of monocytic, fibroblastoid and peritoneal cells with mu rSAA3. Furthermore, this SAA variant displayed potent in vivo recruitment of neutrophils through the activation of TLR4. However, a major problem associated with proteins derived from recombinant expression in bacteria is potential contamination with various bacterial products, such as lipopolysaccharide, lipoproteins and formylated peptides. This is of particular relevance in the case of SAA as there currently exists a discrepancy in biological activity between SAA derived from recombinant expression and that of an endogenous source, i.e. inflammatory plasma. Therefore, we subjected commercial recombinant mu rSAA3 to purification to homogeneity via reversed-phase high-performance liquid chromatography (RP-HPLC) and re-assessed its biological potential. RP-HPLC-purified mu rSAA3 did not induce chemokines and lacked in vivo neutrophil chemotactic activity, but retained the capacity to synergize with CXCL8 in the activation of neutrophils. In conclusion, experimental results obtained when using proteins recombinantly expressed in bacteria should always be interpreted with care.
Collapse
|
14
|
Pathogenic Pathways and Therapeutic Approaches Targeting Inflammation in Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21113798. [PMID: 32471207 PMCID: PMC7312633 DOI: 10.3390/ijms21113798] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic nephropathy (DN) is associated with an increased morbidity and mortality, resulting in elevated cost for public health systems. DN is the main cause of chronic kidney disease (CKD) and its incidence increases the number of patients that develop the end-stage renal disease (ESRD). There are growing epidemiological and preclinical evidence about the close relationship between inflammatory response and the occurrence and progression of DN. Several anti-inflammatory strategies targeting specific inflammatory mediators (cell adhesion molecules, chemokines and cytokines) and intracellular signaling pathways have shown beneficial effects in experimental models of DN, decreasing proteinuria and renal lesions. A number of inflammatory molecules have been shown useful to identify diabetic patients at high risk of developing renal complications. In this review, we focus on the key role of inflammation in the genesis and progression of DN, with a special interest in effector molecules and activated intracellular pathways leading to renal damage, as well as a comprehensive update of new therapeutic strategies targeting inflammation to prevent and/or retard renal injury.
Collapse
|
15
|
Liu Q, Li Y, Yang F, Xu T, Yao L, Sun J, Liang W. Distribution of serum amyloid A and establishment of reference intervals in healthy adults. J Clin Lab Anal 2019; 34:e23120. [PMID: 31724213 PMCID: PMC7171307 DOI: 10.1002/jcla.23120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/22/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Serum amyloid A (SAA) plays a critical role in acute or chronic and is used in clinical laboratories as an indicator of inflammation. The elevated SAA is closely related to inflammation‐mediated diseases, such as liver diseases, autoimmune diseases, metabolism‐related diseases, amyloidosis, and tumors. However, there is no unified population reference interval for SAA. This study aimed to investigate the distribution of SAA in healthy Chinese adults 20‐79 years of age and to establish its population reference interval. Methods A total of 2365 healthy subjects met the requirements of this study. The levels of SAA were detected using an AU5821 automatic biochemical analyzer and its original reagents. According to the recommended methods of CLSI C28‐A3 and WS/T 402‐2012, the population reference interval of SAA was established using the unilateral 95th percentile (P95), and the 90% confidence interval of upper limits was calculated. Results The distributions of SAA levels were not significantly different between sexes (P> .05) and also did not differ by age (P> .05). Therefore, the population reference interval for SAA was established as an upper limit of 11.0 mg/L (90% confidence interval: 9.3‐12.3 mg/L) by using the method of latex immunoturbidimetry. Conclusions Serum amyloid A is closely related to the occurrence and progression of various diseases. The preliminary establishment of a population reference interval for SAA can fully exert its potential clinical value.
Collapse
Affiliation(s)
- Qian Liu
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Yan Li
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Fumeng Yang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Tongdao Xu
- Department of Endocrinology, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Li Yao
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Jin Sun
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Wei Liang
- Department of Laboratory Medicine, The Second People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
16
|
Serum Amyloid A-Mediated Inflammasome Activation of Microglial Cells in Cerebral Ischemia. J Neurosci 2019; 39:9465-9476. [PMID: 31611307 DOI: 10.1523/jneurosci.0801-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/09/2019] [Accepted: 09/03/2019] [Indexed: 11/21/2022] Open
Abstract
Serum amyloid A (SAA) proteins are acute-phase reactant associated with high-density lipoprotein (HDL) particles and increase in the plasma 1000-fold during inflammation. Recent studies have implicated SAAs in innate immunity and various disorders; however, the precise mechanism eludes us. Previous studies have shown SAAs are elevated following stroke and cerebral ischemia, and our studies demonstrated that SAA-deficient mice reduce inflammation and infarct volumes in a mouse stroke model. Our studies demonstrate that SAA increases the cytokine interleukin-1β (IL-1β), which is mediated by Nod-like receptor protein 3 (NLRP3) inflammasome, cathepsin B, and caspase-1 and may play a role in the pathogenesis of neurological disorders. SAA induced the expression of NLRP3, which mediated IL-1β induction in murine BV-2 cells and both sex primary mouse microglial cells, in a dose- and time-dependent fashion. Inhibition or KO of the NLRP3 in microglia prevented the increase in IL-1β. N-acetyl-l-cysteine and mito-TEMPO blocked the induction of IL-1β by inhibiting ROS with SAA treatment. In addition, inhibition of cathepsin B with different drugs or microglia from CatB-deficient mice attenuated inflammasome activation. Our studies suggest that the impact of SAA on inflammasome stimulation is mediated in part by the receptor for advanced glycation endproducts and Toll-like receptor proteins 2 and 4. SAA induced inflammatory cytokines and an M1 phenotype in the microglial cells while downregulating anti-inflammation M2 phenotype. These studies suggest that brain injury to can elicit a systemic inflammatory response mediated through SAA that contributes to the pathological outcomes.SIGNIFICANCE STATEMENT In the present study, serum amyloid A can induce that activation of the inflammasome in microglial cells and give rise to IL-1β release, which can further inflammation in the brain following neurological diseases. The also presents a novel target for therapeutic approaches in stroke.
Collapse
|
17
|
Kumrungsee T, Kariya T, Hashimoto K, Koyano T, Yazawa N, Hashimoto T, Sanada Y, Matsuyama M, Sotomaru Y, Sakurai H, van de Loo FAJ, Yanaka N. The serum amyloid A3 promoter-driven luciferase reporter mice is a valuable tool to image early renal fibrosis development and shows the therapeutic effect of glucosyl-hesperidin treatment. Sci Rep 2019; 9:14101. [PMID: 31575974 PMCID: PMC6773767 DOI: 10.1038/s41598-019-50685-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/17/2019] [Indexed: 11/08/2022] Open
Abstract
Tubulointerstitial fibrosis is a progressive process affecting the kidneys, causing renal failure that can be life-threatening. Thus, renal fibrosis has become a serious concern in the ageing population; however, fibrotic development cannot be diagnosed early and assessed noninvasively in both patients and experimental animal models. Here, we found that serum amyloid A3 (Saa3) expression is a potent indicator of early renal fibrosis; we also established in vivo Saa3/C/EBPβ-promoter bioluminescence imaging as a sensitive and specific tool for early detection and visualization of tubulointerstitial fibrosis. Saa3 promoter activity is specifically upregulated in parallel with tumor necrosis factor α (TNF-α) and fibrotic marker collagen I in injured kidneys. C/EBPβ, upregulated in injured kidneys and expressed in tubular epithelial cells, is essential for the increased Saa3 promoter activity in response to TNF-α, suggesting that C/EBPβ plays a crucial role in renal fibrosis development. Our model successfully enabled visualization of the suppressive effects of a citrus flavonoid derivative, glucosyl-hesperidin, on inflammation and fibrosis in kidney disease, indicating that this model could be widely used in exploring therapeutic agents for fibrotic diseases.
Collapse
Affiliation(s)
| | - Taishi Kariya
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Kotaro Hashimoto
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, Japan
| | - Nao Yazawa
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takao Hashimoto
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yohei Sanada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, Japan
| | - Yusuke Sotomaru
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Fons A J van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Noriyuki Yanaka
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|