1
|
Waris A, Siraj M, Khan A, Lin J, Asim M, Alhumaydh FA. A Comprehensive Overview of the Current Status and Advancements in Various Treatment Strategies against Epilepsy. ACS Pharmacol Transl Sci 2024; 7:3729-3757. [PMID: 39698272 PMCID: PMC11650742 DOI: 10.1021/acsptsci.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy affects more than 70 million individuals of all ages worldwide and remains one of the most severe chronic noncommunicable neurological diseases globally. Several neurotransmitters, membrane protein channels, receptors, enzymes, and, more recently noted, various pathways, such as inflammatory and mTORC complexes, play significant roles in the initiation and propagation of seizures. Over the past two decades, significant developments have been made in the diagnosis and treatment of epilepsy. Various pharmacological drugs with diverse mechanisms of action and other treatment options have been developed to control seizures and treat epilepsy. These options include surgical treatment, nanomedicine, gene therapy, natural products, nervous stimulation, a ketogenic diet, gut microbiota, etc., which are in various developmental stages. Despite a plethora of drugs and other treatment options, one-third of affected individuals are resistant to current medications, while the majority of approved drugs have severe side effects, and significant changes can occur, such as pharmacoresistance, effects on cognition, long-term problems, drug interactions, risks of poor adherence, specific effects for certain medications, and psychological complications. Therefore, the development of new drugs and other treatment options that have no or minimal adverse effects is needed to combat this deadly disease. In this Review, we comprehensively summarize and explain all of the treatment options that have been approved or are in developmental stages for epilepsy as well as their status in clinical trials and advancements.
Collapse
Affiliation(s)
- Abdul Waris
- Department
of Biomedical Science, City University of
Hong Kong, 999077 Hong Kong SAR
| | - Muhammad Siraj
- Department
of Biotechnology, Jeonbuk National University−Iksan
Campus, Jeonju 54896, South Korea
| | - Ayyaz Khan
- Department
of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Junyu Lin
- Department
of Neuroscience, City University of Hong
Kong, 999077 Hong Kong SAR
| | - Muhammad Asim
- Department
of Neuroscience, City University of Hong
Kong, 999077 Hong Kong SAR
| | - Fahad A. Alhumaydh
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Grotemeyer A, Petschner T, Peach R, Hoehl D, Knauer T, Thomas U, Endres H, Blum R, Sendtner M, Volkmann J, Ip CW. Standardized wireless deep brain stimulation system for mice. NPJ Parkinsons Dis 2024; 10:153. [PMID: 39143106 PMCID: PMC11324748 DOI: 10.1038/s41531-024-00767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Deep brain stimulation (DBS) has emerged as a revolutionary technique for accessing and modulating brain circuits. DBS is used to treat dysfunctional neuronal circuits in neurological and psychiatric disorders. Despite over two decades of clinical application, the fundamental mechanisms underlying DBS are still not well understood. One reason is the complexity of in vivo electrical manipulation of the central nervous system, particularly in rodent models. DBS-devices for freely moving rodents are typically custom-designed and not commercially available, thus making it difficult to perform experimental DBS according to common standards. Addressing these challenges, we have developed a novel wireless microstimulation system for deep brain stimulation (wDBS) tailored for rodents. We demonstrate the efficacy of this device for the restoration of behavioral impairments in hemiparkinsonian mice through unilateral wDBS of the subthalamic nucleus. Moreover, we introduce a standardized and innovative pipeline, integrating machine learning techniques to analyze Parkinson's disease-like and DBS-induced gait changes.
Collapse
Affiliation(s)
- Alexander Grotemeyer
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Tobias Petschner
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Robert Peach
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
- Department of Brain Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Dirk Hoehl
- Thomas RECORDING GmbH, Winchester Straße 8, 35394, Giessen, Germany
| | - Torsten Knauer
- Thomas RECORDING GmbH, Winchester Straße 8, 35394, Giessen, Germany
| | - Uwe Thomas
- Thomas RECORDING GmbH, Winchester Straße 8, 35394, Giessen, Germany
| | - Heinz Endres
- University of Applied Science Würzburg-Schweinfurt, Ignaz-Schön-Straße 11, 97421, Schweinfurt, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Versbacherstraße 5, 97078, Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany.
| |
Collapse
|
3
|
Burton A, Wang Z, Song D, Tran S, Hanna J, Ahmad D, Bakall J, Clausen D, Anderson J, Peralta R, Sandepudi K, Benedetto A, Yang E, Basrai D, Miller LE, Tresch MC, Gutruf P. Fully implanted battery-free high power platform for chronic spinal and muscular functional electrical stimulation. Nat Commun 2023; 14:7887. [PMID: 38036552 PMCID: PMC10689769 DOI: 10.1038/s41467-023-43669-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
Electrical stimulation of the neuromuscular system holds promise for both scientific and therapeutic biomedical applications. Supplying and maintaining the power necessary to drive stimulation chronically is a fundamental challenge in these applications, especially when high voltages or currents are required. Wireless systems, in which energy is supplied through near field power transfer, could eliminate complications caused by battery packs or external connections, but currently do not provide the harvested power and voltages required for applications such as muscle stimulation. Here, we introduce a passive resonator optimized power transfer design that overcomes these limitations, enabling voltage compliances of ± 20 V and power over 300 mW at device volumes of 0.2 cm2, thereby improving power transfer 500% over previous systems. We show that this improved performance enables multichannel, biphasic, current-controlled operation at clinically relevant voltage and current ranges with digital control and telemetry in freely behaving animals. Preliminary chronic results indicate that implanted devices remain operational over 6 weeks in both intact and spinal cord injured rats and are capable of producing fine control of spinal and muscle stimulation.
Collapse
Affiliation(s)
- Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Zhong Wang
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Dan Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Sam Tran
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Jessica Hanna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Dhrubo Ahmad
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Jakob Bakall
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - David Clausen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Jerry Anderson
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberto Peralta
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Kirtana Sandepudi
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Alex Benedetto
- Interdepartmental Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Ethan Yang
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Diya Basrai
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
| | - Lee E Miller
- Department of Neuroscience, Northwestern University, Chicago, IL, 60611, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Interdepartmental Neuroscience, Northwestern University, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew C Tresch
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, 60611, USA.
- Shirley Ryan AbilityLab, Chicago, IL, 60611, USA.
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA.
- Bio5 Institute and Department of Neurology, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
4
|
Ersöz A, Kim I, Han M. A portable neurostimulator circuit with anodic bias enhances stimulation injection capacity. J Neural Eng 2022; 19:055010. [PMID: 36067737 PMCID: PMC9573774 DOI: 10.1088/1741-2552/ac8fb6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Objective.Electrochemically safe and efficient charge injection for neural stimulation necessitates monitoring of polarization and enhanced charge injection capacity of the stimulating electrodes. In this work, we present improved microstimulation capability by developing a custom-designed multichannel portable neurostimulator with a fully programmable anodic bias circuitry and voltage transient monitoring feature.Approach.We developed a 16-channel multichannel neurostimulator system, compared charge injection capacities as a function of anodic bias potentials, and demonstrated convenient control of the system by a custom-designed user interface allowing bidirectional wireless data transmission of stimulation parameters and recorded voltage transients. Charge injections were conducted in phosphate-buffered saline with silicon-based iridium oxide microelectrodes.Main results.Under charge-balanced 200µs cathodic first pulsing, the charge injection capacities increased proportionally to the level of anodic bias applied, reaching a maximum of ten-fold increase in current intensity from 10µA (100µC cm-2) to 100µA (1000µC cm-2) with a 600 mV anodic bias. Our custom-designed and completely portable 16-channel neurostimulator enabled a significant increase in charge injection capacityin vitro. Significance.Limited charge injection capacity has been a bottleneck in neural stimulation applications, and our system may enable efficacious behavioral animal study involving chronic microstimulation while ensuring electrochemical safety.
Collapse
Affiliation(s)
- Alpaslan Ersöz
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Insoo Kim
- Department of Medicine Division of Occupational and Environmental Medicine, University of Connecticut, Farmington, CT, United States of America
| | - Martin Han
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| |
Collapse
|
5
|
A Miniaturized Closed-Loop Optogenetic Brain Stimulation Device. ELECTRONICS 2022. [DOI: 10.3390/electronics11101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper presents a tetherless and miniaturized closed-loop optogenetic brain stimulation device, designed as a back mountable device for laboratory mice. The device has the ability to sense the biomarkers corresponding to major depressive disorder (MDD) from local field potential (LFP), and produces a feedback signal to control the closed-loop operation after on-device processing of the sensed signals. MDD is a chronic neurological disorder and there are still many unanswered questions about the underlying neurological mechanisms behind its occurrence. Along with other brain stimulation paradigms, optogenetics has recently proved effective in the study of MDD. Most of these experiments have used tethered and connected devices. However, the use of tethered devices in optogenetic brain stimulation experiments has the drawback of hindering the free movement of the laboratory animal subjects undergoing stimulation. To address this issue, the proposed device is small, light-weight, untethered, and back-mountable. The device consists of: (i) an optrode which houses an electrode for collecting neural signals, an optical source for delivering light stimulations, and a temperature sensor for monitoring the temperature increase at the stimulation site, (ii) a neural sensor for acquisition and pre-processing of the neural signals to obtain LFP signals in the frequency range of 4 to 200 Hz, as electrophysiological biomarkers of MDD (iii) a classifier for classification of the signal into four classes: normal, abnormal alpha, abnormal theta, and abnormal gamma oscillations, (iv) a control algorithm to select stimulation parameters based on the input class, and (v) a stimulator for generating light stimulations. The design, implementation, and evaluation of the device are presented, and the results are discussed. The neural sensor and the stimulator are circular in shape with a radius of 8 mm. Pre-recorded neural signals from the mouse hippocampus are used for the evaluation of the device.
Collapse
|
6
|
Yuen J, Rusheen AE, Price JB, Barath AS, Shin H, Kouzani AZ, Berk M, Blaha CD, Lee KH, Oh Y. Biomarkers for Deep Brain Stimulation in Animal Models of Depression. Neuromodulation 2022; 25:161-170. [PMID: 35125135 PMCID: PMC8655028 DOI: 10.1111/ner.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Despite recent advances in depression treatment, many patients still do not respond to serial conventional therapies and are considered "treatment resistant." Deep brain stimulation (DBS) has therapeutic potential in this context. This comprehensive review of recent studies of DBS for depression in animal models identifies potential biomarkers for improving therapeutic efficacy and predictability of conventional DBS to aid future development of closed-loop control of DBS systems. MATERIALS AND METHODS A systematic search was performed in Pubmed, EMBASE, and Cochrane Review using relevant keywords. Overall, 56 animal studies satisfied the inclusion criteria. RESULTS Outcomes were divided into biochemical/physiological, electrophysiological, and behavioral categories. Promising biomarkers include biochemical assays (in particular, microdialysis and electrochemical measurements), which provide real-time results in awake animals. Electrophysiological tests, showing changes at both the target site and downstream structures, also revealed characteristic changes at several anatomic targets (such as the medial prefrontal cortex and locus coeruleus). However, the substantial range of models and DBS targets limits the ability to draw generalizable conclusions in animal behavioral models. CONCLUSIONS Overall, DBS is a promising therapeutic modality for treatment-resistant depression. Different outcomes have been used to assess its efficacy in animal studies. From the review, electrophysiological and biochemical markers appear to offer the greatest potential as biomarkers for depression. However, to develop closed-loop DBS for depression, additional preclinical and clinical studies with a focus on identifying reliable, safe, and effective biomarkers are warranted.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Knorr S, Musacchio T, Paulat R, Matthies C, Endres H, Wenger N, Harms C, Ip CW. Experimental deep brain stimulation in rodent models of movement disorders. Exp Neurol 2021; 348:113926. [PMID: 34793784 DOI: 10.1016/j.expneurol.2021.113926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022]
Abstract
Deep brain stimulation (DBS) is the preferred treatment for therapy-resistant movement disorders such as dystonia and Parkinson's disease (PD), mostly in advanced disease stages. Although DBS is already in clinical use for ~30 years and has improved patients' quality of life dramatically, there is still limited understanding of the underlying mechanisms of action. Rodent models of PD and dystonia are essential tools to elucidate the mode of action of DBS on behavioral and multiscale neurobiological levels. Advances have been made in identifying DBS effects on the central motor network, neuroprotection and neuroinflammation in DBS studies of PD rodent models. The phenotypic dtsz mutant hamster and the transgenic DYT-TOR1A (ΔETorA) rat proved as valuable models of dystonia for preclinical DBS research. In addition, continuous refinements of rodent DBS technologies are ongoing and have contributed to improvement of experimental quality. We here review the currently existing literature on experimental DBS in PD and dystonia models regarding the choice of models, experimental design, neurobiological readouts, as well as methodological implications. Moreover, we provide an overview of the technical stage of existing DBS devices for use in rodent studies.
Collapse
Affiliation(s)
- Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| | - Thomas Musacchio
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| | - Raik Paulat
- Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
| | - Cordula Matthies
- Department of Neurosurgery, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| | - Heinz Endres
- University of Applied Science Würzburg-Schweinfurt, Schweinfurt, Germany.
| | - Nikolaus Wenger
- Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
| | - Christoph Harms
- Department of Neurology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany.
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, Würzburg, Germany.
| |
Collapse
|
8
|
Plocksties F, Kober M, Niemann C, Heller J, Fauser M, Nüssel M, Uster F, Franz D, Zwar M, Lüttig A, Kröger J, Harloff J, Schulz A, Richter A, Köhling R, Timmermann D, Storch A. The software defined implantable modular platform (STELLA) for preclinical deep brain stimulation research in rodents. J Neural Eng 2021; 18. [PMID: 34542029 DOI: 10.1088/1741-2552/ac23e1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022]
Abstract
Context.Long-term deep brain stimulation (DBS) studies in rodents are of crucial importance for research progress in this field. However, most stimulation devices require jackets or large head-mounted systems which severely affect mobility and general welfare influencing animals' behavior.Objective.To develop a preclinical neurostimulation implant system for long-term DBS research in small animal models.Approach.We propose a low-cost dual-channel DBS implant called software defined implantable platform (STELLA) with a printed circuit board size of Ø13 × 3.3 mm, weight of 0.6 g and current consumption of 7.6µA/3.1 V combined with an epoxy resin-based encapsulation method.Main results.STELLA delivers charge-balanced and configurable current pulses with widely used commercial electrodes. Whilein vitrostudies demonstrate at least 12 weeks of error-free stimulation using a CR1225 battery, our calculations predict a battery lifetime of up to 3 years using a CR2032. Exemplary application for DBS of the subthalamic nucleus in adult rats demonstrates that fully-implanted STELLA neurostimulators are very well-tolerated over 42 days without relevant stress after the early postoperative phase resulting in normal animal behavior. Encapsulation, external control and monitoring of function proved to be feasible. Stimulation with standard parameters elicited c-Fos expression by subthalamic neurons demonstrating biologically active function of STELLA.Significance.We developed a fully implantable, scalable and reliable DBS device that meets the urgent need for reverse translational research on DBS in freely moving rodent disease models including sensitive behavioral experiments. We thus add an important technology for animal research according to 'The Principle of Humane Experimental Technique'-replacement, reduction and refinement (3R). All hardware, software and additional materials are available under an open source license.
Collapse
Affiliation(s)
- Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Maria Kober
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Christoph Niemann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Jakob Heller
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Martin Nüssel
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Felix Uster
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Denise Franz
- Institute of Physiology, University of Rostock, 18057 Rostock, Germany
| | - Monique Zwar
- Institute of Physiology, University of Rostock, 18057 Rostock, Germany
| | - Anika Lüttig
- Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, 04103 Leipzig, Germany
| | - Justin Kröger
- Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Jörg Harloff
- Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Axel Schulz
- Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, 04103 Leipzig, Germany
| | - Rüdiger Köhling
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, 18147 Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| |
Collapse
|
9
|
Su F, Chen M, Zu L, Li S, Li H. Model-Based Closed-Loop Suppression of Parkinsonian Beta Band Oscillations Through Origin Analysis. IEEE Trans Neural Syst Rehabil Eng 2021; 29:450-457. [PMID: 33531302 DOI: 10.1109/tnsre.2021.3056544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Excessive beta band (13-30 Hz) oscillations have been observed in the basal ganglia (BG) of patients with Parkinson's disease (PD). Understanding the origin and transmission of beta band oscillations are important to improve treatments of PD, such as closed-loop deep brain stimulation (DBS). This paper proposed a model-based closed-loop GPi stimulation system to suppress pathological beta band oscillations of BG. The feedback nucleus was selected through the analysis of GPi oscillations variation when different synaptic currents were blocked, mainly projections from globus pallidus external (GPe), the subthalamic nucleus (STN) and striatum. Since simulation results proved the important role of synaptic current from GPe in shaping the excessive GPi beta band oscillations, the local field potential (LFP) of GPe was chosen as the feedback signal. That is to say, the feedback nucleus was selected based on the origin analysis of the pathological GPi beta band oscillation. The closed-loop algorithm was the multiplication of linear delayed feedback of the filtered GPe-LFP and modeled synaptic dynamics from GPe to GPi. Thus, the formed stimulation waveform was synaptic current like shape, which was proved to be more energy efficient than open-loop continuous DBS in suppressing GPi beta band oscillation. With the development of DBS devices, the efficiency of this closed-loop stimulation could be testified in animal model and clinical.
Collapse
|
10
|
Adams SD, Doeven EH, Tye SJ, Bennet KE, Berk M, Kouzani AZ. TinyFSCV: FSCV for the Masses. IEEE Trans Neural Syst Rehabil Eng 2019; 28:133-142. [PMID: 31794399 DOI: 10.1109/tnsre.2019.2956479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The ability to monitor neurochemical dynamics in target brain regions with a high degree of temporal resolution has assisted researchers in investigating the pathogenesis, and pathophysiology of a variety of neurological and psychiatric disorders. Current systems for neurochemical monitoring are bulky or expensive, limiting widespread exploration of this research field and preventing large-scale parallel experimentation. In this paper, we present a new miniaturized research platform, the TinyFSCV system, which can be used to monitor dynamic changes in neurochemicals through Fast-Scan Cyclic Voltammetry (FSCV). This system contains a precision voltage output circuit that can accurately output potentials between -0.55 to 2 V and scan a connected electrochemical cell at up to 400 V/s, the required speed to sense most neurochemicals with FSCV. In addition, the device includes precision current measurement circuity with a measurement range of -115 to [Formula: see text] capable of taking measurements at up to 56 KS/s. Four experiments are conducted to demonstrate the capability of the system. These consisted of: static bench tests, static ferrocene tests, and static and dynamic dopamine tests. These experiments demonstrate the ability of the miniaturized platform to accurately sense and measure neurochemicals. Ultimately, the TinyFSCV system is a platform that can enable large-scale, low-cost parallel experimentation to take place in the field of neurochemical monitoring. In addition, this device will increase the accessibility of neurochemical sensing, providing advanced tools and techniques to more researchers, and facilitating widespread exploration of the field of neurodynamics.
Collapse
|