1
|
Miao S, Liu H, Yang Q, Zhang Y, Chen T, Chen S, Mao X, Zhang Q. Cathelicidin peptide LL-37: A multifunctional peptide involved in heart disease. Pharmacol Res 2024; 210:107529. [PMID: 39615616 DOI: 10.1016/j.phrs.2024.107529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/30/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Heart disease is a common human disease with high morbidity and mortality. Timely and effective prevention and treatment is an urgent clinical problem. The pathogenesis of heart disease is complex and diverse, involving hypertension, diabetes, atherosclerosis, drug toxicity, thrombosis, infection and other aspects. LL-37, an endogenous peptide, is well known for its antimicrobial properties. In recent years, LL-37 has been found to have a variety of biological functions, including its role in the regulation of atherosclerosis, thrombosis, inflammatory responses, and cardiac hypertrophy. Engineered LL-37-related peptides were developed and proved to regulate the development of disease, which revealed its potential clinical application. A comprehensive review and summary of LL-37 is presented to clarify its role in heart disease and to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Shuo Miao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Houde Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qingyu Yang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Chen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; Qingdao Ruipule Medical Technology Co., Ltd, China
| | - Shuai Chen
- School of Basic Medicine, Guizhou University of Traditional Chinese, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Burkes R. The Role of Viral Infections in the Development and Progression of COPD. Semin Respir Crit Care Med 2024; 45:543-547. [PMID: 39454638 DOI: 10.1055/s-0044-1791737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common chronic disease seen in smokers associated with poor functional status, quality of life, and morbidity and mortality from acute worsening of chronic symptoms, also called exacerbations. As a disease, the risk factors for COPD are well defined; however, there is room for innovation in identifying underlying biological processes, or "endotypes," that lead to the emergence and/or progression of COPD. Identifying endotypes allows for more thorough understanding of the disease, may reveal the means of disease prevention, and may be leveraged in novel therapeutic approaches. In this review, we discuss the interface of viral infections with both cellular and epithelial immunity as a potential endotype of interest in COPD.
Collapse
Affiliation(s)
- Robert Burkes
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
4
|
Höpfinger A, Karrasch T, Schäffler A, Schmid A. Circulating Levels of Cathelicidin Antimicrobial Peptide (CAMP) Are Affected by Oral Lipid Ingestion. Nutrients 2023; 15:3021. [PMID: 37447348 DOI: 10.3390/nu15133021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
INTRODUCTION Obesity and related diseases are among the main public health issues in the western world. They are thought to be caused by a state of chronic, low-grade inflammation. Cathelicidin antimicrobial peptide (CAMP) was recently discovered to be expressed and secreted by adipocytes. Representing a novel immunomodulatory adipokine, CAMP might play an important role in the complex interaction between metabolism and inflammation. METHODS In a cohort of 80 volunteers, serum samples were collected prior to, and 2 h, 4 h, and 6 h after, oral lipid ingestion. CAMP, fatty acid binding proteins 2 and 4 (FABP-2/-4), and dipeptidylpeptidase-4 (DPP-4) serum concentrations were measured via ELISA. Human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were treated with free fatty acids, and gene expression levels of CAMP, FABP-4, and DPP-4 were quantified by RT-PCR. RESULTS The mean base-line CAMP serum concentration was 55.78 ± 29.26 ng/mL, with a range of 10.77-146.24 ng/mL. Interestingly, CAMP serum levels were positively correlated with LDL cholesterol, but negatively correlated with HDL cholesterol and adiponectin. Men exhibited higher CAMP serum concentrations than women, an effect apparently linked to oral contraception in the majority of female participants. In both genders, CAMP serum concentrations significantly decreased in a stepwise manner 4 h and 6 h after oral lipid ingestion. This decline was paralleled by a rise of serum bile acid and triglyceride levels upon lipid ingestion. In human SGBS adipocytes, treatment with free fatty acids did not affect CAMP gene expression, but increased FABP-4 gene expression. CONCLUSIONS In conclusion, systemic levels of the antimicrobial peptide and novel adipokine CAMP are significantly decreased upon oral lipid ingestion. While this decline might be linked to the simultaneous increase in bile acids, the underlying mechanisms remain to be elucidated. Furthermore, CAMP might indicate a putative novel cardiovascular biomarker of both inflammatory and metabolic relevance in metaflammation and adipose inflammation.
Collapse
Affiliation(s)
- Alexandra Höpfinger
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Thomas Karrasch
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Andreas Schäffler
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Andreas Schmid
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany
| |
Collapse
|
5
|
Egea V, Megens RTA, Santovito D, Wantha S, Brandl R, Siess W, Khani S, Soehnlein O, Bartelt A, Weber C, Ries C. Properties and fate of human mesenchymal stem cells upon miRNA let-7f-promoted recruitment to atherosclerotic plaques. Cardiovasc Res 2023; 119:155-166. [PMID: 35238350 PMCID: PMC10022860 DOI: 10.1093/cvr/cvac022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/28/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Atherosclerosis is a chronic inflammatory disease of the arteries leading to the formation of atheromatous plaques. Human mesenchymal stem cells (hMSCs) are recruited from the circulation into plaques where in response to their environment they adopt a phenotype with immunomodulatory properties. However, the mechanisms underlying hMSC function in these processes are unclear. Recently, we described that miRNA let-7f controls hMSC invasion guided by inflammatory cytokines and chemokines. Here, we investigated the role of let-7f in hMSC tropism to human atheromas and the effects of the plaque microenvironment on cell fate and release of soluble factors. METHODS AND RESULTS Incubation of hMSCs with LL-37, an antimicrobial peptide abundantly found in plaques, increased biosynthesis of let-7f and N-formyl peptide receptor 2 (FPR2), enabling chemotactic invasion of the cells towards LL-37, as determined by qRT-PCR, flow cytometry, and cell invasion assay analysis. In an Apoe-/- mouse model of atherosclerosis, circulating hMSCs preferentially adhered to athero-prone endothelium. This property was facilitated by elevated levels of let-7f in the hMSCs, as assayed by ex vivo artery perfusion and two-photon laser scanning microscopy. Exposure of hMSCs to homogenized human atheromatous plaque material considerably induced the production of various cytokines, chemokines, matrix metalloproteinases, and tissue inhibitors of metalloproteinases, as studied by PCR array and western blot analysis. Moreover, exposure to human plaque extracts elicited differentiation of hMSCs into cells of the myogenic lineage, suggesting a potentially plaque-stabilizing effect. CONCLUSIONS Our findings indicate that let-7f promotes hMSC tropism towards atheromas through the LL-37/FPR2 axis and demonstrate that hMSCs upon contact with human plaque environment develop a potentially athero-protective signature impacting the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Virginia Egea
- Corresponding authors. Tel: +49-89-4400-55310, E-mail: (C.R.); Tel: +49-89-4400-43902, E-mail: (V.E.)
| | - Remco Theodorus Adrianus Megens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
| | - Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), UoS of Milan, National Research Council (CNR), Milan, Italy
| | - Sarawuth Wantha
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Richard Brandl
- St. Mary’s Square Institute for Vascular Surgery and Phlebology, Munich, Germany
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Sajjad Khani
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Oliver Soehnlein
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Physiology and Pharmacology (FyFa), Karolinska Institutet, Stockholm, Sweden
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University of Muenster, Muenster, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, Neuherberg, Germany
- Department of Molecular Metabolism, Sabri Ülker Center for Metabolic Research, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University of Munich, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University of Maastricht, Maastricht, The Netherlands
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Ries
- Corresponding authors. Tel: +49-89-4400-55310, E-mail: (C.R.); Tel: +49-89-4400-43902, E-mail: (V.E.)
| |
Collapse
|
6
|
Kayongo A, Robertson NM, Siddharthan T, Ntayi ML, Ndawula JC, Sande OJ, Bagaya BS, Kirenga B, Mayanja-Kizza H, Joloba ML, Forslund SK. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front Immunol 2023; 13:1085551. [PMID: 36741369 PMCID: PMC9890194 DOI: 10.3389/fimmu.2022.1085551] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) has significantly contributed to global mortality, with three million deaths reported annually. This impact is expected to increase over the next 40 years, with approximately 5 million people predicted to succumb to COPD-related deaths annually. Immune mechanisms driving disease progression have not been fully elucidated. Airway microbiota have been implicated. However, it is still unclear how changes in the airway microbiome drive persistent immune activation and consequent lung damage. Mechanisms mediating microbiome-immune crosstalk in the airways remain unclear. In this review, we examine how dysbiosis mediates airway inflammation in COPD. We give a detailed account of how airway commensal bacteria interact with the mucosal innate and adaptive immune system to regulate immune responses in healthy or diseased airways. Immune-phenotyping airway microbiota could advance COPD immunotherapeutics and identify key open questions that future research must address to further such translation.
Collapse
Affiliation(s)
- Alex Kayongo
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Medicine, Center for Emerging Pathogens, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, United States
| | | | - Trishul Siddharthan
- Division of Pulmonary Medicine, School of Medicine, University of Miami, Miami, FL, United States
| | - Moses Levi Ntayi
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda,Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Josephine Caren Ndawula
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bernard S. Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Bruce Kirenga
- Makerere University Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Harriet Mayanja-Kizza
- Department of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany,Experimental and Clinical Research Center, a cooperation of Charité - Universitatsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany,Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany,*Correspondence: Sofia K. Forslund,
| |
Collapse
|
7
|
Herman B, Wong MCS, Viwattanakulvanid P. Vaccination status, favipiravir, and micronutrient supplementation roles in post-COVID symptoms: A longitudinal study. PLoS One 2022; 17:e0271385. [PMID: 35862378 PMCID: PMC9302723 DOI: 10.1371/journal.pone.0271385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Post-COVID symptoms are the new concern in the COVID-19 pandemic, where recovered patients experience residual symptoms affecting their quality of life. Therefore, it is imperative to evaluate the role of complete vaccination, prescribed medication, and micronutrients during COVID episodes in the occurrence of post-COVID symptoms. Method A longitudinal evaluation of Indonesia’s recovered COVID-19 patients was performed using the data collected from July 2021 and extracted in mid-February 2022. All participants were confirmed with a Real-Time Polymerase Chain Reaction test (PCR) and/or antigen test. This study collected demography and comorbidities information, symptoms and treatment of COVID-19, and collection of self-reported post-COVID symptoms every 30 days within 90 days after diagnosis/onset. Exposures of interest include vaccination status, Favipiravir administration, Vitamin C, Vitamin D, and Zinc. A Generalized Estimating Equation (GEE) was used to evaluate the longitudinal effect of exposures, presented with adjusted odds ratios and its 95% confidence interval. Results A total of 923 participants (18.2% fully-vaccinated) were involved in the study, with 79.7% being non-hospitalized. Only 25.7% did not develop any residual symptoms within 90 days. Fatigue was the most reported post-COVID symptom in each measurement time (39.5%, 16.3%, and 7.3%). Full-vaccination was effective against chronic cough (aOR 0.527, 95% CI 0.286–0.971), chronic headache (aOR 0.317, 95% CI 0.163–0.616), and chronic arthritis (aOR 0.285, 95% CI 0.116–0.703). The combination of micronutrient supplementations and Favipiravir gave no significant effect on all post-COVID symptoms. However, early initiation of Favipiravir and delaying vitamin D administration were associated with arthritis. Conclusion Full vaccination of COVID-19 prevents the disease and the development of residual symptoms when infected with SARS-COV-2. Hence, it is crucial to reconsider the prescription of micronutrient supplementation or adjust the dose of Favipiravir in the current guideline.
Collapse
Affiliation(s)
- Bumi Herman
- College of Public Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Clinical Epidemiology, Research Development & Publication, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Martin Chi-sang Wong
- School of Public Health and Primary Care (JCSPHPC) at the Chinese University of Hong Kong, Shatin, Hong Kong
- The Chinese Academy of Medical Sciences and the Peking Union Medical College, Beijing, China
- The School of Public Health, The Peking University, Beijing, China
| | | |
Collapse
|
8
|
Nucera F, Lo Bello F, Shen SS, Ruggeri P, Coppolino I, Di Stefano A, Stellato C, Casolaro V, Hansbro PM, Adcock IM, Caramori G. Role of Atypical Chemokines and Chemokine Receptors Pathways in the Pathogenesis of COPD. Curr Med Chem 2021; 28:2577-2653. [PMID: 32819230 DOI: 10.2174/0929867327999200819145327] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) represents a heightened inflammatory response in the lung generally resulting from tobacco smoking-induced recruitment and activation of inflammatory cells and/or activation of lower airway structural cells. Several mediators can modulate activation and recruitment of these cells, particularly those belonging to the chemokines (conventional and atypical) family. There is emerging evidence for complex roles of atypical chemokines and their receptors (such as high mobility group box 1 (HMGB1), antimicrobial peptides, receptor for advanced glycosylation end products (RAGE) or toll-like receptors (TLRs)) in the pathogenesis of COPD, both in the stable disease and during exacerbations. Modulators of these pathways represent potential novel therapies for COPD and many are now in preclinical development. Inhibition of only a single atypical chemokine or receptor may not block inflammatory processes because there is redundancy in this network. However, there are many animal studies that encourage studies for modulating the atypical chemokine network in COPD. Thus, few pharmaceutical companies maintain a significant interest in developing agents that target these molecules as potential antiinflammatory drugs. Antibody-based (biological) and small molecule drug (SMD)-based therapies targeting atypical chemokines and/or their receptors are mostly at the preclinical stage and their progression to clinical trials is eagerly awaited. These agents will most likely enhance our knowledge about the role of atypical chemokines in COPD pathophysiology and thereby improve COPD management.
Collapse
Affiliation(s)
- Francesco Nucera
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Federica Lo Bello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Sj S Shen
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Paolo Ruggeri
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Irene Coppolino
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| | - Antonino Di Stefano
- Division of Pneumology, Cyto- Immunopathology Laboratory of the Cardio-Respiratory System, Clinical Scientific Institutes Maugeri IRCCS, Veruno, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, Salerno Medical School, University of Salerno, Salerno, Italy
| | - Phil M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology, Ultimo, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Gaetano Caramori
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, Pugliatti Square 1, 98122 Messina, Italy
| |
Collapse
|
9
|
Brief Report: Increased Cotinine Concentrations are Associated With Reduced Expression of Cathelicidin (LL-37) and NOD-2 in Alveolar Macrophages of PLWH Who Smoke. J Acquir Immune Defic Syndr 2021; 85:670-673. [PMID: 32852363 DOI: 10.1097/qai.0000000000002491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is a strong link between cigarette smoking and pulmonary complications among people living with HIV. However, the effects of smoking on the local lung immune environment in this population remain unclear. Bronchoalveolar lavage and saliva were collected from HIV-infected smokers involved in a prospective study investigating alveolar macrophage expression of host defense molecules. Salivary cotinine concentrations were inversely related to expression of the immune cell receptor nucleotide-binding oligomerization domain-2 and the cathelicidin antimicrobial peptide LL-37. The negative correlation between salivary cotinine and LL-37 was particularly strong. Our study provides insight into how nicotine may adversely affect lung innate immunity in HIV.
Collapse
|
10
|
Burkes RM, Panos RJ, Borchers MT. How might endotyping guide chronic obstructive pulmonary disease treatment? Current understanding, knowledge gaps and future research needs. Curr Opin Pulm Med 2021; 27:120-124. [PMID: 33394748 PMCID: PMC8480198 DOI: 10.1097/mcp.0000000000000751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review discusses emerging therapies directed at chronic obstructive pulmonary disease (COPD) endotypes and pathobiological processes that manifest as the disease. RECENT FINDINGS Specific endotypes have been targeted in COPD. These include eosinophilic inflammation, overproduction of interleukin-17, chronic bronchitis and altered nature of mucous, and chronic infection. Therapies exactly directed at the cause of these endotypes or their resultant clinical findings have been assessed. Although some intermediate outcomes have seemed promising, there have been no findings that shift the paradigm of COPD therapy. SUMMARY Basic and clinical scientists continue to define endotypes that may be directly addressed with therapeutics. As of the time of this up-to-date review, there is yet to be an endotype-directed therapy to demonstrate great clinical effect.
Collapse
Affiliation(s)
- Robert M. Burkes
- University of Cincinnati College of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine
| | - Ralph J. Panos
- University of Cincinnati College of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine
- Cincinnati Veterans’ Affairs Medical Center
| | - Michael T. Borchers
- University of Cincinnati College of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine
- Cincinnati Veterans’ Affairs Medical Center
| |
Collapse
|
11
|
Burkes RM, Ceppe AS, Couper DJ, Comellas AP, Wells JM, Peters SP, Criner GJ, Kanner RE, Paine R, Christenson SA, Cooper CB, Barjaktarevic IZ, Krishnan JA, Labaki WW, Han MK, Curtis JL, Hansel NN, Wise RA, Drummond MB. Plasma Cathelicidin is Independently Associated with Reduced Lung Function in COPD: Analysis of the Subpopulations and Intermediate Outcome Measures in COPD Study Cohort. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:370-381. [PMID: 33108110 DOI: 10.15326/jcopdf.7.4.2020.0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ratrionale The antimicrobial peptide cathelicidin, also known in humans as LL-37, is a defensin secreted by immune and airway epithelial cells. Deficiencies in this peptide may contribute to adverse pulmonary outcomes in chronic obstructive pulmonary disease (COPD). Objectives Using clinical and biological samples from the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS), we assessed the associations of plasma cathelicidin levels with cross-sectional and longitudinal COPD outcomes. Methods A total of 1609 SPIROMICS participants with COPD and available plasma samples were analyzed. Cathelicidin was modeled dichotomously (lowest quartile [< 50 ng/ml] versus highest 75% [≥ 50 ng/ml]) and continuously per 10 ng/ml. Fixed-effect multilevel regression analyses were used to assess associations between cathelicidin and cross-sectional as well as longitudinal lung function. The associations between cathelicidin and participant-reported retrospective and prospective COPD exacerbations were assessed via logistic regression. Measurements and Main Results Cathelicidin < 50 ng/ml (N=383) was associated with female sex, black race, and lower body mass index (BMI).At baseline,cathelicidin < 50 ng/ml was independently associated with 3.55% lower % predicted forced expiratory volume in 1 second (FEV1)(95% confidence interval [CI] -6.22% to -0.88% predicted; p=0.01), while every 10 ng/ml lower cathelicidin was independently associated with 0.65% lower % predicted FEV1 (95% CI -1.01% to -0.28% predicted; p< 0.001). No independent associations with longitudinal lung function decline or participant-reported COPD exacerbations were observed. Conclusions Reduced cathelicidin is associated with lower lung function at baseline. Plasma cathelicidin may potentially identify COPD patients at increased risk for more severe lung disease.
Collapse
Affiliation(s)
- Robert M Burkes
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill
| | - Agathe S Ceppe
- Marsico Lung Institute, University of North Carolina, Chapel Hill
| | - David J Couper
- Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Alejandro P Comellas
- Division of Pulmonary, Critical Care, and Occupational Medicine, Carver College of Medicine, University of Iowa, Iowa City
| | - J Michael Wells
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama, Birmingham
| | - Stephen P Peters
- Section of Pulmonary, Critical Care, Allergy, and Immunologic Disease, Wake Forest University, Winston-Salem, North Carolina
| | - Gerard J Criner
- Division of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - Richard E Kanner
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City
| | - Robert Paine
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City
| | - Stephanie A Christenson
- Division of Pulmonary Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco
| | - Christopher B Cooper
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Igor Z Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep, and Allergy Medicine, University of Illinois, Chicago
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor.,Medicine Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University Baltimore, Maryland
| | - Robert A Wise
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University Baltimore, Maryland
| | - M Bradley Drummond
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill.,Marsico Lung Institute, University of North Carolina, Chapel Hill
| | | |
Collapse
|