1
|
Siregar KAAK, Syaifie PH, Jauhar MM, Arda AG, Rochman NT, Kustiawan PM, Mardliyati E. Revealing curcumin therapeutic targets on SRC, PPARG, MAPK8 and HSP90 as liver cirrhosis therapy based on comprehensive bioinformatic study. J Biomol Struct Dyn 2025; 43:3172-3189. [PMID: 38217310 DOI: 10.1080/07391102.2023.2301534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/09/2023] [Indexed: 01/15/2024]
Abstract
Cirrhosis naturally progresses through three stages: compensated, decompensated, and late decompensated, which carry an elevated risk of death. Although curcumin's anti-cirrhosis effects have been studied, underlying mechanism in preventing cirrhosis progression and the correlation between curcumin's action with upregulated genes remains insufficiently explored. In this study, we employed network pharmacology approach to construct a drug-target-disease network through bioinformatics and validate the findings with molecular docking and dynamic simulation. The curcumin-targeted liver cirrhosis network encompassed 54 nodes with 282 edges in protein-protein interactions (PPI) network. By utilizing network centrality analysis, we identified eight crucial genes. KEGG enrichment pathway revealed that these crucial genes are involved in pathway of cancer, endocrine resistance, estrogen signaling, chemical carcinogenesis-receptor activation, lipid metabolism, and atherosclerosis. Notably, these eight genes predominantly participate in cancer-related pathways. Further investigation revealed upregulation of four genes and downregulation of four others in hepatocellular carcinoma patients. These upregulated genes-MAPK8, SRC, PPARG, and HSP90AA1-strongly correlated with reduced survival probability in liver hepatocellular carcinoma patients with survival times approximately under 4000 days (∼11 years). Molecular docking and molecular dynamic results exhibited curcumin's superior binding affinities and stability compared to native ligands of MAPK8, SRC, PPARG, and HSP90AA1 within 50 ns simulations. Moreover, MM-GBSA analysis showed stronger binding energy of curcumin to MAPK8, SRC, and HSP90AA1 than native ligand. In conclusion, this study provides valuable insights into curcumin's potential mechanisms in preventing liver cirrhosis progression, specifically in HCC. These findings offer a theoretical basis for further pharmacological research into anti-HCC effect of curcumin.
Collapse
Affiliation(s)
- Khalish Arsy Al Khairy Siregar
- Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Indonesia
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Putri Hawa Syaifie
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | | | - Adzani Gaisani Arda
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
| | - Nurul Taufiqu Rochman
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Research Center for Advanced Material, National Research and Innovation Agency (BRIN), South Tangerang, Indonesia
| | | | - Etik Mardliyati
- Center of Excellence Life Sciences, Nano Center Indonesia, South Tangerang, Indonesia
- Research Center for Vaccine and Drug, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| |
Collapse
|
2
|
Graham RE, Zheng R, Wagner J, Unciti-Broceta A, Hay DC, Forbes SJ, Gadd VL, Carragher NO. Single-cell morphological tracking of cell states to identify small-molecule modulators of liver differentiation. iScience 2025; 28:111871. [PMID: 39995868 PMCID: PMC11848441 DOI: 10.1016/j.isci.2025.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/24/2024] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
We have developed a single-cell assay that combines Cell Painting-a morphological profiling assay-with trajectory inference analysis. We have applied this morphological trajectory inference to the bi-potent HepaRG liver progenitor cell line allowing us to track liver cell fate and map small-molecule-induced changes using a morphological atlas of liver cell differentiation. Our overarching goal is to demonstrate the potential of Cell Painting to study biological processes as continuous trajectories at the single-cell level, enhancing resolution and biological understanding. This work has identified small-molecule Src family kinase inhibitors that promote the differentiation of HepaRG cells toward a hepatocyte-like lineage as well as primary human hepatic progenitor cells toward a hepatocyte-like phenotype in vitro. These findings could significantly advance research on liver cell regeneration mechanisms and facilitate the development of cell-based and small-molecule therapies.
Collapse
Affiliation(s)
- Rebecca E. Graham
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Runshi Zheng
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jesko Wagner
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Asier Unciti-Broceta
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, Edinburgh EH4 2XU, UK
| | - David C. Hay
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Stuart J. Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Victoria L. Gadd
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Neil O. Carragher
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
- Cancer Research UK Scotland Centre, Edinburgh EH4 2XU, UK
| |
Collapse
|
3
|
Chapdelaine A, Sun G. Molecular Pharmacology of Dasatinib Provides Unique Insights into the Mechanistic Basis of Success and Failure of Targeted Cancer Therapy. ACS Pharmacol Transl Sci 2025; 8:1-9. [PMID: 39816794 PMCID: PMC11729423 DOI: 10.1021/acsptsci.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025]
Abstract
Despite the enthusiasm for targeted cancer therapies in preclinical studies and the success of a select few drugs, many promising drug candidates fail in clinical trials. The gap between preclinical promise and clinical outcomes underscores the need to investigate factors influencing the success or failure of targeted therapies. Dasatinib, an inhibitor of Abl and Src protein tyrosine kinases, is highly effective toward chronic myeloid leukemia (CML) by targeting BCR-Abl, but it is ineffective against solid tumors when targeting Src kinases. A review reveals cytotoxic inhibition is a key attribute predictive of dasatinib's clinical efficacy toward CML, and cytostatic inhibition by targeting Src kinases is the underlying reason for the preclinical promise and clinical inefficacy toward solid tumors. The analysis reveals that preclinical cytotoxic inhibition is highly predictive of clinical efficacy and shows that cancer regression can only be achieved when the drug-target is an essential oncogenic driver in a monodriver cancer. The analysis highlights dasatinib's potential in achieving stable disease in solid tumors, supporting its use in combination therapies.
Collapse
Affiliation(s)
- Abygail
G. Chapdelaine
- Department of Cell and Molecular
Biology, University of Rhode Island, 120 Flagg Rd, Kingston, Rhode Island 02881, United States
| | - Gongqin Sun
- Department of Cell and Molecular
Biology, University of Rhode Island, 120 Flagg Rd, Kingston, Rhode Island 02881, United States
| |
Collapse
|
4
|
Bolf EL, Beadnell TC, Rose MM, D’Alessandro A, Nemkov T, Hansen KC, Schweppe RE. Dasatinib and Trametinib Promote Anti-Tumor Metabolic Activity. Cells 2023; 12:1374. [PMID: 37408209 PMCID: PMC10216321 DOI: 10.3390/cells12101374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 07/07/2023] Open
Abstract
Thyroid cancer is the most common endocrine neoplasm, and despite its overall high survival rate, patients with metastatic disease or tumors that resist radioactive iodine experience a significantly worse prognosis. Helping these patients requires a better understanding of how therapeutics alter cellular function. Here, we describe the change in metabolite profiles after treating thyroid cancer cells with the kinase inhibitors dasatinib and trametinib. We reveal alterations to glycolysis, the TCA cycle, and amino acid levels. We also highlight how these drugs promote short-term accumulation of the tumor-suppressive metabolite 2-oxoglutarate, and demonstrate that it reduces the viability of thyroid cancer cells in vitro. These results show that kinase inhibition profoundly alters the metabolome of cancer cells and highlight the need to better understand how therapeutics reprogram metabolic processes, and ultimately, cancer cell behavior.
Collapse
Affiliation(s)
- Eric L. Bolf
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8106, Aurora, CO 80045, USA (T.C.B.); (M.M.R.)
| | - Thomas C. Beadnell
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8106, Aurora, CO 80045, USA (T.C.B.); (M.M.R.)
| | - Madison M. Rose
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8106, Aurora, CO 80045, USA (T.C.B.); (M.M.R.)
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.D.); (T.N.); (K.C.H.)
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.D.); (T.N.); (K.C.H.)
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (A.D.); (T.N.); (K.C.H.)
| | - Rebecca E. Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Mail Stop 8106, Aurora, CO 80045, USA (T.C.B.); (M.M.R.)
| |
Collapse
|
5
|
Chen Z, Xiao Y, Yang P, Wang R. Pan-cancer Analysis Reveals SRC May Link Lipid Metabolism and Macrophages. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3325. [PMID: 37228626 PMCID: PMC10203188 DOI: 10.30498/ijb.2023.335402.3325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/09/2022] [Indexed: 05/27/2023]
Abstract
Background SRC is a member of the membrane-associated non-receptor protein tyrosine kinase superfamily. It has been reported to mediate inflammation and cancer. However, the exact molecular mechanism involved is still not clear. Objectives The current study was designed to explore the prognostic landscape of SRC and further investigate the relationship between SRC and immune infiltration in pan-cancer. Materials and Methods Kaplan-Meier Plotter was used to detect the prognostic value of SRC in pan-cancer. Then using TIMER2.0 and CIBERSORT, the relationship between SRC and immune infiltration in pan-cancer was evaluated. Furthermore, the LinkedOmics database was used to screen SRC co-expressed genes, followed by functional enrichment of SRC co-expressed genes by Metascape online tool. STRING database and Cytoscape software were applied to construct and visualise the protein-protein interaction network of SRC co-expressed genes. MCODE plug-in was used to screen hub modules in the PPI network. The SRC co-expressed genes in hub modules were extracted, and the correlation analysis between interested SRC co-expressed genes and immune infiltration was conducted via TIMER2.0 and CIBERSORT. Results Our study demonstrated that SRC expression was significantly associated with overall survival and relapse-free survival in multiple cancer types. In addition, SRC expression was significantly correlated with the immune infiltration of B cells, dendritic cells, CD4+ T cells, macrophages, and neutrophils in pan-cancer. The expression of SRC had shown to have close correlations with M1 macrophage polarisation in LIHC, TGCT, THCA, and THYM. Moreover, the genes that co-expressed with SRC in LIHC, TGCT, THCA, and THYM were mainly enriched in lipid metabolism. Besides, correlation analysis showed that SRC co-expressed genes associated with lipid metabolism were also significantly correlated with the infiltration and polarisation of macrophages. Conclusion These results indicate that SRC can serve as a prognostic biomarker in pan-cancer and is related to macrophages infiltration and interacts with genes involved in lipid metabolism.
Collapse
Affiliation(s)
- Zhongyuan Chen
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, Hunan, China
| | - Yaqian Xiao
- Furong College, Hunan 3Furong College, Hunan University of Arts and Science, Changde, Hunan, China
| | - Pinhong Yang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, Hunan, China
| | - Ruisong Wang
- College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
- Changde Research Centre for Artificial Intelligence and Biomedicine, Changde, Hunan, China
| |
Collapse
|
6
|
Fekry B, Ribas-Latre A, Drunen RV, Santos RB, Shivshankar S, Dai Y, Zhao Z, Yoo SH, Chen Z, Sun K, Sladek FM, Younes M, Eckel-Mahan K. Hepatic circadian and differentiation factors control liver susceptibility for fatty liver disease and tumorigenesis. FASEB J 2022; 36:e22482. [PMID: 35947136 PMCID: PMC10062014 DOI: 10.1096/fj.202101398r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.
Collapse
Affiliation(s)
- Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rachel Van Drunen
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rafael Bravo Santos
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Samay Shivshankar
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Kai Sun
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Mamoun Younes
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
7
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
8
|
Seo HY, Lee SH, Lee JH, Lee JH, Jang BK, Kim MK. Kahweol Induces Apoptosis in Hepatocellular Carcinoma Cells by Inhibiting the Src/mTOR/STAT3 Signaling Pathway. Int J Mol Sci 2021; 22:ijms221910509. [PMID: 34638852 PMCID: PMC8508869 DOI: 10.3390/ijms221910509] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022] Open
Abstract
Kahweol, a coffee-specific diterpene, induces apoptosis in human cancer cells, and some targets of kahweol-mediated apoptosis have been identified. However, the specific apoptotic effects and mechanism of action of kahweol in hepatocellular carcinoma (HCC) cells are unknown. This study was performed to investigate the molecular mechanism by which kahweol induces apoptosis in HCC cells. The Src pathway is associated with apoptosis in cancer. In this study, we found that kahweol induces apoptosis by inhibiting phosphorylation of Src, and also inhibiting p-mTOR and p-STAT3. Therefore, we suggest that kahweol is a potent inhibitor of HCC cell growth.
Collapse
Affiliation(s)
- Hye-Young Seo
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea; (H.-Y.S.); (S.-H.L.); (J.-H.L.)
| | - So-Hee Lee
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea; (H.-Y.S.); (S.-H.L.); (J.-H.L.)
| | - Ji-Ha Lee
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea; (H.-Y.S.); (S.-H.L.); (J.-H.L.)
| | - Jae-Ho Lee
- Department of Anatomy, Keimyung University School of Medicine, Dageu 42601, Korea;
| | - Byoung Kuk Jang
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea; (H.-Y.S.); (S.-H.L.); (J.-H.L.)
- Correspondence: (B.K.J.); (M.K.K.); Tel.: +82-53-258-7720 (B.K.J.); +82-53-258-7730 (M.K.K.)
| | - Mi Kyung Kim
- Department of Internal Medicine, School of Medicine, Institute for Medical Science, Keimyung University, Daegu 42601, Korea; (H.-Y.S.); (S.-H.L.); (J.-H.L.)
- Correspondence: (B.K.J.); (M.K.K.); Tel.: +82-53-258-7720 (B.K.J.); +82-53-258-7730 (M.K.K.)
| |
Collapse
|
9
|
Reusable, Noninvasive, and Sensitive Fluorescence Enhanced ZnO-Nanorod-Based Microarrays for Quantitative Detection of AFP in Human Serum. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9916909. [PMID: 34327239 PMCID: PMC8302379 DOI: 10.1155/2021/9916909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
The fabrication of sensitive protein microarrays such as PCR used in DNA microarray is challenging due to lack of signal amplification. The development of microarrays is utilized to improve the sensitivity and limitations of detection towards primal cancer detection. The sensitivity is enhanced by the use of ZnO-nanorods and is investigated as a substrate which enhance the florescent signal to diagnose the hepatocellular carcinoma (HCC) at early stages. The substrate for deposition of ZnO-nanorods is prepared by the conventional chemical bath deposition method. The resultant highly dense ZnO-nanorods enhance the fluorescent signal 7.2 times as compared to the substrate without ZnO-nanorods. The microarray showed sensitivity of 1504.7 ng ml−1 and limit of detection of 0.1 pg ml−1 in wide dynamic range of 0.05 pg-10 μg ml−1 for alpha fetoprotein (AFP) detection in 10% human serum. This immunoassay was successfully applied for human serum samples to detect tumor marker with good recoveries. The ZnO-nanorod substrate is a simple protein microarray which showed a great promise for developing a low-cost, sensitive, and high-throughput protein assay platform for several applications in both fundamental research and clinical diagnosis.
Collapse
|
10
|
Liang L, Zhu K, Tao J, Lu S. ORN: Inferring patient-specific dysregulation status of pathway modules in cancer with OR-gate Network. PLoS Comput Biol 2021; 17:e1008792. [PMID: 33819263 PMCID: PMC8049496 DOI: 10.1371/journal.pcbi.1008792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/15/2021] [Accepted: 02/15/2021] [Indexed: 01/26/2023] Open
Abstract
Pathway level understanding of cancer plays a key role in precision oncology. However, the current amount of high-throughput data cannot support the elucidation of full pathway topology. In this study, instead of directly learning the pathway network, we adapted the probabilistic OR gate to model the modular structure of pathways and regulon. The resulting model, OR-gate Network (ORN), can simultaneously infer pathway modules of somatic alterations, patient-specific pathway dysregulation status, and downstream regulon. In a trained ORN, the differentially expressed genes (DEGs) in each tumour can be explained by somatic mutations perturbing a pathway module. Furthermore, the ORN handles one of the most important properties of pathway perturbation in tumours, the mutual exclusivity. We have applied the ORN to lower-grade glioma (LGG) samples and liver hepatocellular carcinoma (LIHC) samples in TCGA and breast cancer samples from METABRIC. Both datasets have shown abnormal pathway activities related to immune response and cell cycles. In LGG samples, ORN identified pathway modules closely related to glioma development and revealed two pathways closely related to patient survival. We had similar results with LIHC samples. Additional results from the METABRIC datasets showed that ORN could characterize critical mechanisms of cancer and connect them to less studied somatic mutations (e.g., BAP1, MIR604, MICAL3, and telomere activities), which may generate novel hypothesis for targeted therapy.
Collapse
Affiliation(s)
- Lifan Liang
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kunju Zhu
- Clinical Medicine Research Institute, Jinan University, Guangzhou, Guangdong, China
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Songjian Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
11
|
Zhou G, Da Won Bae S, Nguyen R, Huo X, Han S, Zhang Z, Hebbard L, Duan W, Eslam M, Liddle C, Yuen L, Lam V, Qiao L, George J. An aptamer-based drug delivery agent (CD133-apt-Dox) selectively and effectively kills liver cancer stem-like cells. Cancer Lett 2021; 501:124-132. [PMID: 33352247 DOI: 10.1016/j.canlet.2020.12.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Liver cancer has no effective therapies, hence a poor survival. Cancer stem-like cells not only contribute to cancer initiation and progression, but also to drug resistance, cancer metastasis, and eventually treatment failure. Hence, any approaches that can effectively kill cancer stem-like cells hold a great potential for cancer treatment. CD133 is a robust marker for liver cancer stem-like cells. We developed a specific aptamer against CD133 (CD133-apt), and then loaded this aptamer with an anticancer drug doxorubicin (CD133-apt-Dox). The efficacy of CD133-apt-Dox in targeting liver cancer stem-like cells and its overall effect in treating liver cancer were investigated using multiple in vitro and in vivo studies including in patients-derived liver cancer organoids. We have observed that CD133-apt could preferably delivered doxorubicin to CD133-expressing cells with efficient drug accumulation and retention. CD133-apt-Dox impaired the self-renewal capacity of liver cancer stem-like cells and attenuated their stem-ness phenotypes in vitro or in vivo. CD133-apt-Dox significantly inhibited the growth of liver cancer cells and patients-derived organoids and reduced the growth of xenograft tumours in nude mice inhibited the growth of DEN-induced liver cancer in immunocompetent mice. Hence, aptamer-mediated targeting of CD133 is a highly promising approach for liver cancer therapy.
Collapse
MESH Headings
- AC133 Antigen/genetics
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/pharmacokinetics
- Aptamers, Nucleotide/administration & dosage
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/pharmacokinetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Doxorubicin/administration & dosage
- Doxorubicin/pharmacokinetics
- Drug Carriers/administration & dosage
- Drug Carriers/pharmacokinetics
- Drug Delivery Systems/methods
- HEK293 Cells
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
Collapse
Affiliation(s)
- Gang Zhou
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Xiaoqi Huo
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Shuanglin Han
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Zhiqiang Zhang
- Renal Inflammation and Immunology Group, Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, 2145, Australia; Department of Urology, The Second Affiliated Hospital of Anhui Medical University, 230601, Anhui, China
| | - Lionel Hebbard
- Discipline of Molecular and Cell Biology, Australian Institute for Tropical Health and Medicine, Centre for Molecular Therapeutics, James Cook University, Townsville, 4811, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria, 3217, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Lawrence Yuen
- Department of Surgery, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Vincent Lam
- Department of Surgery, Westmead Hospital, Westmead, NSW, 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney and Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
12
|
Yu B, Mamedov R, Fuhler GM, Peppelenbosch MP. Drug Discovery in Liver Disease Using Kinome Profiling. Int J Mol Sci 2021; 22:2623. [PMID: 33807722 PMCID: PMC7961955 DOI: 10.3390/ijms22052623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The liver is one of the most important organs, playing critical roles in maintaining biochemical homeostasis. Accordingly, disease of the liver is often debilitating and responsible for untold human misery. As biochemical nexus, with kinases being master regulators of cellular biochemistry, targeting kinase enzymes is an obvious avenue for treating liver disease. Development of such therapy, however, is hampered by the technical difficulty of obtaining comprehensive insight into hepatic kinase activity, a problem further compounded by the often unique aspects of hepatic kinase activities, which makes extrapolations from other systems difficult. This consideration prompted us to review the current state of the art with respect to kinome profiling approaches towards the hepatic kinome. We observe that currently four different approaches are available, all showing significant promise. Hence we postulate that insight into the hepatic kinome will quickly increase, leading to rational kinase-targeted therapy for different liver diseases.
Collapse
Affiliation(s)
| | | | | | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC—University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands; (B.Y.); (R.M.); (G.M.F.)
| |
Collapse
|
13
|
Siniprasad P, Nair B, Balasubramaniam V, Sadanandan P, Namboori PK, Nath LR. Evaluation of Kaempferol as AKT Dependent mTOR Regulator via Targeting FKBP-12 in Hepatocellular Carcinoma: An In silico Approach. LETT DRUG DES DISCOV 2020; 17:1401-1408. [DOI: 10.2174/1570180817999200623115703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/18/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Background:
Hepatocellular carcinomas (HCCs) are inherently chemotherapy-resistant
tumors with about 30-50% activation of PI3K/Akt/mTOR pathway, and this pathway is not aberrant
in normal cells. Therefore, targeting the PI3K/Akt/mTOR pathway has become a promising strategy
in drug designing to combat liver cancer. Recently, many studies with phytochemicals suggest few classes
of compounds, especially flavonoids, to be useful in down-regulating the PI3K/Akt/mTOR pathway corresponding
to HCC. In the present study, an attempt is made to explore flavonoids, from which the best
mTORC1 inhibitor against hepatocellular carcinoma is selected using computational molecular modeling.
Methods:
In the present study, we performed a virtual screening method with phytochemicals of
flavonoid category. To ensure proper bioavailability and druggability, pharmacokinetic and interaction
parameters have been used to screen the molecules. The target protein molecules have been selected
from the RCSB. The interaction studies have been conducted using Biovia Discovery Studio
client version 17.2.0.1.16347 and the pharmacokinetic predictions have been made through ADMET
SAR. The responsiveness towards the regulation of the mTOR pathway varies from person to person,
demanding a pharmacogenomic approach in the analysis. The genetic variants (Single Nucleotide
Variants-SNVs) corresponding to the mutations have been identified.
Results and Discussion:
The study identified phytoconstituents with better interaction with receptor
FKBP12, a Rapamycin binding domain which is the target of Rapamycin and its analogues for
mTORC1 inhibition in HCC. Another protein, ‘AKT serine/threonine-protein kinase’ has been identified,
which is associated with activation of mTORC1. The molecular interaction studies (docking
studies) and ADMET (absorption, distribution, metabolism, excretion and toxicity) analysis were
used to identify the affinity between selected phytoconstituents as mTORC1 inhibitor against Hepatocellular
carcinoma. The docking studies support Kaempferol to be a potential ligand with docking
score values of 33.4 (3CQU-3D structure of AKT1)] and 27.3 (2FAP-3D structure of FRB domain
of mTOR) respectively as compared to that of standard drug Everolimus with 24.4 (3CQU-3D structure
of AKT1) and 20.1 (2FAP-3D structure of FRB domain of mTOR) respectively. Docking studies
along with ADMET results show that Kaempferol has favorable drug likeliness properties and
binds to the same active site (site1) of the targeted proteins (3CQU-3D structure of AKT1) and
(2FAP-3D structure of FRB domain of mTOR) where the standard drug Everolimus is known to
bind.
Conclusion:
The study exhibited that Kaempferol had a better binding affinity towards the receptor
FKBP12, a Rapamycin Binding Domain and AKT serine/threonine-protein kinase resulting in its
better efficacy in the mTORC1 inhibition as when compared with standard drug Everolimus against
HCC. To the best of our knowledge, no studies have been reported on Kaempferol as mTORC1 inhibitor
against Hepatocellular carcinoma.
Collapse
Affiliation(s)
- Pooja Siniprasad
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Vaisali Balasubramaniam
- Computational Chemistry Group (CCG), Computational Engineering and Networking, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore-641112, India
| | - Prashanth Sadanandan
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| | - Puliyapally Krishnan Namboori
- Computational Chemistry Group (CCG), Computational Engineering and Networking, Amrita Vishwa Vidyapeetham, Amritanagar, Coimbatore-641112, India
| | - Lekshmi Reghu Nath
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala 682041, India
| |
Collapse
|
14
|
Chen YL, Yen IC, Lin KT, Lai FY, Lee SY. 4-Acetylantrocamol LT3, a New Ubiquinone from Antrodia cinnamomea, Inhibits Hepatocellular Carcinoma HepG2 Cell Growth by Targeting YAP/TAZ, mTOR, and WNT/β-Catenin Signaling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1243-1261. [PMID: 32668963 DOI: 10.1142/s0192415x20500615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
4-acetylantrocamol LT3 (4AALT3), a new ubiquinone from the mycelium of Antrodia cinnamomea (Polyporaceae), has been recently shown to possess anticancer activity. However, the detailed mechanisms of such action remain unclear. In this study, the molecular mechanisms of 4AALT3 on hepatocellular carcinoma cells (HCC) were investigated. Human hepatocellular carcinoma cell line HepG2 cells were treated with concentrations of 4AALT3. Cell viability, colony formation, and the underlying mechanisms were then analyzed by CCK-8, colony formation, qPCR, and Western blotting assays. We found that 4AALT3 significantly decreased cell viability and colony formation in a dose-dependent manner. Accordingly, 4AALT3 significantly decreased protein levels of cyclin B, E1, D1, and D3, thereby facilitating cell cycle arrest. In addition, 4AALT3 significantly suppressed the nuclear localization of Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ), mammalian target of rapamycin (mTOR), and WNT/[Formula: see text]-catenin signaling pathways, all of which are well-known signaling pathways that contribute to the malignant properties of HCC. These effects are associated with activation of 5' AMP-activated protein kinase (AMPK) and autophagy. Our findings indicate that 4AALT3 exerts inhibitory effects on HepG2 cell growth via multiple signaling pathways and may be a potential agent for HCC therapy.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Radiology, Taoyuan Armed Forces General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Kuen-Tze Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Yi Lai
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
15
|
Dewdney B, Alanazy M, Gillman R, Walker S, Wankell M, Qiao L, George J, Roberts A, Hebbard L. The effects of fructose and metabolic inhibition on hepatocellular carcinoma. Sci Rep 2020; 10:16769. [PMID: 33028928 PMCID: PMC7541473 DOI: 10.1038/s41598-020-73653-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma is rapidly becoming one of the leading causes of cancer-related deaths, largely due to the increasing incidence of non-alcoholic fatty liver disease. This in part may be attributed to Westernised diets high in fructose sugar. While many studies have shown the effects of fructose on inducing metabolic-related liver diseases, little research has investigated the effects of fructose sugar on liver cancer metabolism. The present study aimed to examine the metabolic effects of fructose on hepatocellular carcinoma growth in vitro and in vivo. Fructose sugar was found to reduce cell growth in vitro, and caused alterations in the expression of enzymes involved in the serine-glycine synthesis and pentose phosphate pathways. These biosynthesis pathways are highly active in cancer cells and they utilise glycolytic by-products to produce energy and nucleotides for growth. Hence, the study further investigated the efficacy of two novel drugs that inhibit these pathways, namely NCT-503 and Physcion. The study is the first to show that the combination treatment of NCT-503 and Physcion substantially inhibited hepatocellular carcinoma growth in vitro and in vivo. The combination of fructose diet and metabolism-inhibiting drugs may provide a unique metabolic environment that warrants further investigation in targeting hepatocellular carcinoma.
Collapse
Affiliation(s)
- Brittany Dewdney
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Mohammed Alanazy
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, 2145, Australia
| | - Rhys Gillman
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Sarah Walker
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Woden, ACT, 2606, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, 2145, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, 2145, Australia
| | - Alexandra Roberts
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia. .,Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, 2145, Australia.
| |
Collapse
|
16
|
Looi CK, Hii LW, Ngai SC, Leong CO, Mai CW. The Role of Ras-Associated Protein 1 (Rap1) in Cancer: Bad Actor or Good Player? Biomedicines 2020; 8:334. [PMID: 32906721 PMCID: PMC7555474 DOI: 10.3390/biomedicines8090334] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 02/05/2023] Open
Abstract
Metastasis is known as the most life-threatening event in cancer patients. In principle, the immune system can prevent tumor development. However, dysfunctional T cells may fail to eliminate the tumor cells effectively and provide additional survival advantages for tumor proliferation and metastasis. Constitutive activation of Ras-associated protein1 (Rap1) has not only led to T cell anergy, but also inhibited autophagy and supported cancer progression through various oncogenic events. Inhibition of Rap1 activity with its negative regulator, Rap1GAP, impairs tumor progression. However, active Rap1 reduces tumor invasion in some cancers, indicating that the pleiotropic effects of Rap1 signaling in cancers could be cancer-specific. All in all, targeting Rap1 signaling and its regulators could potentially control carcinogenesis, metastasis, chemoresistance and immune evasion. Rap1GAP could be a promising therapeutic target in combating cancer.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
| | - Ling-Wei Hii
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia;
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
17
|
Lorusso G, Rüegg C, Kuonen F. Targeting the Extra-Cellular Matrix-Tumor Cell Crosstalk for Anti-Cancer Therapy: Emerging Alternatives to Integrin Inhibitors. Front Oncol 2020; 10:1231. [PMID: 32793493 PMCID: PMC7387567 DOI: 10.3389/fonc.2020.01231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network composed of a multitude of different macromolecules. ECM components typically provide a supportive structure to the tissue and engender positional information and crosstalk with neighboring cells in a dynamic reciprocal manner, thereby regulating tissue development and homeostasis. During tumor progression, tumor cells commonly modify and hijack the surrounding ECM to sustain anchorage-dependent growth and survival, guide migration, store pro-tumorigenic cell-derived molecules and present them to enhance receptor activation. Thereby, ECM potentially supports tumor progression at various steps from initiation, to local growth, invasion, and systemic dissemination and ECM-tumor cells interactions have long been considered promising targets for cancer therapy. Integrins represent key surface receptors for the tumor cell to sense and interact with the ECM. Yet, attempts to therapeutically impinge on these interactions using integrin inhibitors have failed to deliver anticipated results, and integrin inhibitors are still missing in the emerging arsenal of drugs for targeted therapies. This paradox situation should urge the field to reconsider the role of integrins in cancer and their targeting, but also to envisage alternative strategies. Here, we review the therapeutic targets implicated in tumor cell adhesion to the ECM, whose inhibitors are currently in clinical trials and may offer alternatives to integrin inhibition.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
18
|
Liang P, Wu H, Zhang Z, Jiang S, Lv H. Preparation and characterization of parthenolide nanocrystals for enhancing therapeutic effects of sorafenib against advanced hepatocellular carcinoma. Int J Pharm 2020; 583:119375. [PMID: 32344021 DOI: 10.1016/j.ijpharm.2020.119375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/21/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
A novel nanocrystals delivery system of parthenolide (PTL) was designed to combined application with sorafenib (Sora) for advanced hepatocellular carcinoma (HCC) therapy, attempting to not only improve the poor aqueous solubility of PTL, but also enhance the synergistic therapeutic effects with Sora. The PTL nanocrystals (PTL-NCs) were prepared by precipitation-high-pressure homogenization method. The formed PTL-NCs with rod morphology possessed size of 126.9 ± 2.31 nm, zeta potential of -11.18 ± 0.59 mV and drug loading of 31.11 ± 1.99%. Meanwhile, PTL in PTL-NCs exhibited excellent storage stability and sustained release behavior. The combination therapy of Sora and PTL-NCs (Sora/PTL-NCs) in vitro for HepG2 cells presented superior therapeutic effects over that of individual PTL and Sora on intracellular uptake, cell proliferation inhibition and migration inhibition. Meanwhile the strongest anti-tumor effect with 81.86% inhibition rate and minimized systemic toxicity of Sora/PTL-NCs in vivo were obtained on tumor-bearing mice compared with that of PTL (48.84%) and Sora (58.83%). Thus, these findings suggested that PTL-NCs as an effective delivery system for the synergistically used with Sora to gain an optimal response against HCC, for referenced in the industrialization of nanocrystals products for intravenous administration.
Collapse
Affiliation(s)
- Pan Liang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Hangyi Wu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenhai Zhang
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210023, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No. 1 People's Hospital, Jining, Shandong 272000, China.
| | - Huixia Lv
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
19
|
Liu Z, Liu H, Li Y, Wang Y, Xing R, Mi F, Xiang C, Fu R. Adiponectin inhibits the differentiation and maturation of osteoclasts via the mTOR pathway in multiple myeloma. Int J Mol Med 2020; 45:1112-1120. [PMID: 31985020 PMCID: PMC7053860 DOI: 10.3892/ijmm.2020.4475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
The present study sought to investigate the correlation between adipose cytokines (visfatin, leptin and adiponectin) and markers of multiple myeloma bone disease, and to determine the effects and mechanism of action of adiponectin on the differentiation and maturation of osteoclasts in multiple myeloma (MM). The levels of visfatin, leptin and adiponectin were measured. Their association with the indices of myeloma tumor load and bone disease were analyzed. Reverse transcription-quantitative PCR was used to detect the expression of receptor activator of nuclear factor-κB ligand (RANKL), osteoclast associated Ig-like receptor (OSCAR), tartrate-resistant acid phosphatase (TRAP) and Cathepsin K genes. Flow cytometry was used to detect the expression of adiponectin receptor 1 (AdipoR1) and the phosphorylation of the mechanistic target of rapamycin kinase (mTOR) pathway-associated proteins mTOR and eukaryotic translation initiation factor 4E-binding protein (4EBP1). There were no significant correlations among leptin, visfatin and the indexes of myeloma tumor load and bone disease. Serum adiponectin levels were significantly lower in patients with newly diagnosed multiple myeloma compared with healthy volunteers (12.37±3.13 vs. 13.80±0.95; P<0.05). The number of mature osteoclasts in the adiponectin group was lower compared with in the control group. Adiponectin also inhibited the mRNA expression of the osteoclast-associated factors RANKL, OSCAR, TRAP and Cathepsin K. Comparison between the non-adiponectin group and the adiponectin group revealed that adiponectin increased the expression of AdipoR1 on the surface of osteoclast precursor cells (26.21±4.27% vs. 29.86±6.23%; P<0.05) and reduced the expression of phosphorylated (p-)mTOR (7.89±1.00% vs. 5.91±1.26%; P<0.05) and p-4EBP1 (26.78±5.00% vs. 22.49±4.24%; P<0.05). The p-mTOR and p-4EBP1 levels in the adiponectin + MHY1485 (an mTOR signaling pathway-specific agonist) group were significantly higher compared with those in the adiponectin group. It was revealed that adiponectin may inhibit osteoclast differentiation and maturation via the mTOR pathway. In conclusion, adiponectin inhibits the differentiation and maturation of osteoclasts by increasing the expression of AdipoR1 and reducing the phosphorylation levels of mTOR and 4EBP1 in patients with MM.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yanqi Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yangyang Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rui Xing
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fu Mi
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chenhuan Xiang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
20
|
Sridhar S, Sharma I, Sankpal UT, Ghabach B, Narra K, Neerukonda L, Basha R. Targeted Molecular Therapeutic Options for Hepatocellular Carcinoma. Crit Rev Oncog 2020; 25:47-55. [PMID: 32865910 PMCID: PMC11079775 DOI: 10.1615/critrevoncog.2020034985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Liver cancer is the 6th leading cause of cancer related deaths in the US even though it ranks 14th in incidence. More men are diagnosed with liver cancer than women, and the number of projected deaths among men (20,020) is almost double that among women (10,140) in the US. Infections like hepatitis and metabolic conditions like obesity are believed to be major risk factors for the onset of liver cancer. Hepatocellular carcinoma (HCC), the most common type of liver cancer, accounts for 75% of all cases. Chemotherapy has not been effective in treating HCC. Targeted therapies are being used in advanced HCC patients due to a better survival and less side effects when compared to traditional chemotherapy. Therapeutic agents targeting the regulators of growth factor signaling pathways and the mediators of downstream signaling-for example, inhibitors of the tyrosine kinase receptor-are used as targeted molecular therapies. Kinase inhibitors that modulate growth signals, such as sorafenib and lenvatinib, are commonly employed in targeted molecular therapy for HCC patients. This review covers these agents, highlighting modes of action and providing details on clinical trials.
Collapse
Affiliation(s)
- Swathi Sridhar
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Ishna Sharma
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Umesh T. Sankpal
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | | | | | | | - Riyaz Basha
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| |
Collapse
|