1
|
Lu B, Qiao Q, Park ER, Wang Y, Gilleran JA, Pan M, Pilch DS, Wu X, Roberge JY, Fan H. Acylpyrazoline-Based Third-Generation Selective Antichlamydial Compounds with Enhanced Potency. ACS OMEGA 2023; 8:6597-6607. [PMID: 36844602 PMCID: PMC9947980 DOI: 10.1021/acsomega.2c06992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Chlamydiae are obligate intracellular Gram-negative bacteria and widespread pathogens in humans and animals. Broad-spectrum antibiotics are currently used to treat chlamydial infections. However, broad-spectrum drugs also kill beneficial bacteria. Recently, two generations of benzal acylhydrazones have been shown to selectively inhibit chlamydiae without toxicity to human cells and lactobacilli, which are dominating, beneficial bacteria in the vagina of reproductive-age women. Here, we report the identification of two acylpyrazoline-based third-generation selective antichlamydials (SACs). With minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of 10-25 μM against Chlamydia trachomatis and Chlamydia muridarum, these new antichlamydials are 2- to 5-fold more potent over the benzal acylhydrazone-based second-generation selective antichlamydial lead SF3. Both acylpyrazoline-based SACs are well tolerated by Lactobacillus, Escherichia coli, Klebsiella, and Salmonella as well as host cells. These third-generation selective antichlamydials merit further evaluation for therapeutic application.
Collapse
Affiliation(s)
- Bin Lu
- Department
of Parasitology, Central South University
Xiangya Medical School, Changsha, Hunan 410013, China
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Qi Qiao
- Molecular
Design and Synthesis Core, RUBRIC, Office for Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Elizabeth R. Park
- Molecular
Design and Synthesis Core, RUBRIC, Office for Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Yuxuan Wang
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - John A. Gilleran
- Molecular
Design and Synthesis Core, RUBRIC, Office for Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Matthew Pan
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Daniel S. Pilch
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Xiang Wu
- Department
of Parasitology, Central South University
Xiangya Medical School, Changsha, Hunan 410013, China
| | - Jacques Y. Roberge
- Molecular
Design and Synthesis Core, RUBRIC, Office for Research, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Huizhou Fan
- Department
of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Vishwakarma RK, Brodolin K. The σ Subunit-Remodeling Factors: An Emerging Paradigms of Transcription Regulation. Front Microbiol 2020; 11:1798. [PMID: 32849409 PMCID: PMC7403470 DOI: 10.3389/fmicb.2020.01798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Transcription initiation is a key checkpoint and highly regulated step of gene expression. The sigma (σ) subunit of RNA polymerase (RNAP) controls all transcription initiation steps, from recognition of the -10/-35 promoter elements, upon formation of the closed promoter complex (RPc), to stabilization of the open promoter complex (RPo) and stimulation of the primary steps in RNA synthesis. The canonical mechanism to regulate σ activity upon transcription initiation relies on activators that recognize specific DNA motifs and recruit RNAP to promoters. This mini-review describes an emerging group of transcriptional regulators that form a complex with σ or/and RNAP prior to promoter binding, remodel the σ subunit conformation, and thus modify RNAP activity. Such strategy is widely used by bacteriophages to appropriate the host RNAP. Recent findings on RNAP-binding protein A (RbpA) from Mycobacterium tuberculosis and Crl from Escherichia coli suggest that activator-driven changes in σ conformation can be a widespread regulatory mechanism in bacteria.
Collapse
Affiliation(s)
- Rishi Kishore Vishwakarma
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | - Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|