1
|
Pontes E, Viera V, Silva G, Silva Neto MD, Mendes B, Tome A, Almeida R, Santos NC, Gusmão RD, Lisboa H, Gusmão T. Effect of Malvaviscus arboreus Flower and Leaf Extract on the Functional, Antioxidant, Rheological, Textural, and Sensory Properties of Goat Yogurt. Foods 2024; 13:3942. [PMID: 39683014 DOI: 10.3390/foods13233942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The present study aimed to evaluate the effects of incorporating different concentrations (1% and 2%) of Malvaviscus arboreus flower (FE) and leaf (LE) extracts as functional ingredients in goat milk yogurt. This study analyzed the impact of these formulations (YFE1%, YFE2%, YLE1%, and YLE2%) on the physicochemical, bioactive, antioxidant, rheological, textural, and sensory properties of goat yogurt over a 28-day storage period. Including FE and LE extracts significantly enhanced the yogurt's antioxidant activity, reaching up to 10.17 µmol TEAC/g, and strengthened its ability to inhibit lipid oxidation during storage. This study also observed a reduction in the viability of lactic acid bacteria, particularly L. delbrueckii subsp. bulgaricus, suggesting that the extracts may have antimicrobial properties. Notably, using FE, especially at a concentration of 2% (YFE2%), improved both antioxidant and textural properties while reducing syneresis by the end of the storage period. Sensory evaluations showed positive results for YFE1% and YFE2% formulations. These findings suggest that FE has significant potential as a functional food ingredient. This research lays the groundwork for future studies exploring the integration of Malvaviscus arboreus-based ingredients into functional food products, opening new possibilities for innovation in this field.
Collapse
Affiliation(s)
- Edson Pontes
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Vanessa Viera
- Laboratory of Bromatology, Education and Health Centre, Federal University of Campina Grande, Cuité 58175-000, Brazil
| | - Gezaildo Silva
- Laboratory of Bromatology, Education and Health Centre, Federal University of Campina Grande, Cuité 58175-000, Brazil
| | - Manoel da Silva Neto
- Department of Biology, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Bianca Mendes
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Anna Tome
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Renata Almeida
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Newton C Santos
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Rennan de Gusmão
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Hugo Lisboa
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Thaisa Gusmão
- Department of Food Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| |
Collapse
|
2
|
Bâ AM, Séne S, Manokari M, Galardis MMB, Sylla SN, Selosse MA, Shekhawat MS. Coccoloba uvifera L. associated with Scleroderma Bermudense Coker: a pantropical ectomycorrhizal symbiosis used in restoring of degraded coastal sand dunes. MYCORRHIZA 2024; 34:375-389. [PMID: 39367926 PMCID: PMC11604829 DOI: 10.1007/s00572-024-01170-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/25/2024] [Indexed: 10/07/2024]
Abstract
Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO2, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.
Collapse
Affiliation(s)
- A M Bâ
- Laboratoire de Biologie et Physiologie Végétales, Université des Antilles, Guadeloupe, France.
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR113, UM2/CIRAD, IRD/Sup-Agro, Montpellier, France.
- Académie Nationale des Sciences et Techniques du Sénégal, Dakar, Sénégal.
| | - S Séne
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP 1386, Dakar, Sénégal
| | - M Manokari
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - M M Bullaín Galardis
- Plant Biotechnology Studies Center, Faculty of Agricultural Sciences, University of Granma, Carretera Manzanillo, Bayamo, 85100, Cuba
| | - S N Sylla
- Laboratoire Commun de Microbiologie IRD/ISRA/UCAD, BP 1386, Dakar, Sénégal
- Département de Biologie végétale, UCAD, Dakar, Sénégal
| | - M A Selosse
- Institut de Systématique, UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, Évolution, Biodiversité, Paris, 75005, France
- Faculty of Biology, Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, Gdańsk, 80-308, Poland
- Institut Universitaire de France, Paris, France
| | - M S Shekhawat
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| |
Collapse
|
3
|
Jadaun P, Harshithkumar R, Seniya C, Gaikwad SY, Bhoite SP, Chandane-Tak M, Borse S, Chavan-Gautam P, Tillu G, Mukherjee A. Mitochondrial resilience and antioxidant defence against HIV-1: unveiling the power of Asparagus racemosus extracts and Shatavarin IV. Front Microbiol 2024; 15:1475457. [PMID: 39507335 PMCID: PMC11537936 DOI: 10.3389/fmicb.2024.1475457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Asparagus racemosus (AR), an Ayurvedic botanical, possesses various biological characteristics, yet its impact on HIV-1 replication remains to be elucidated. This study aimed to investigate the inhibitory effects of AR root extracts and its principal bioactive molecule, Shatavarin IV (Shatavarin), on HIV-1 replication and their role in mitigating mitochondrial dysfunction during HIV-1 infection, utilizing both in vitro and in silico methodologies. The cytotoxicity of the extracts was evaluated using MTT and ATPlite assays. In vitro anti-HIV-1 activity was assessed in TZM-bl cells against X4 and R5 subtypes, and confirmed in peripheral blood mononuclear cells using HIV-1 p24 antigen capture ELISA and viral copy number assessment. Mechanistic insights were obtained through enzymatic assays targeting HIV-1 Integrase, Protease and Reverse Transcriptase. Shatavarin's activity was also validated via viral copy number and p24 antigen capture assays, along with molecular interaction studies against key HIV-1 replication enzymes. HIV-1 induced mitochondrial dysfunction was evaluated by detecting mitochondrial reactive oxygen species (ROS), calcium accumulation, mitochondrial potential, and caspase activity within the infected cells. Non-cytotoxic concentrations of both aqueous and hydroalcoholic extracts derived from Asparagus racemosus roots displayed dose-dependent inhibition of HIV-1 replication. Notably, the hydroalcoholic extract exhibited superior Reverse Transcriptase activity, complemented by moderate activity observed in the Protease assay. Molecular interaction studies revealed that Shatavarin IV, the key bioactive constituent of AR, formed hydrogen bonds within the active binding pocket site residues crucial for HIV replication enzyme catalysis, suggesting its potential in attenuating HIV-1 infection. Mitochondrial dysfunction induced by HIV-1 infection, marked by increased oxidative stress, mitochondrial calcium overload, loss of mitochondrial membrane potential, and elevated caspase activity, was effectively mitigated by treatment with AR extracts and Shatavarin IV. These findings underscore the potential of AR extracts and Shatavarin IV as antiviral agents, while enhancing mitochondrial function during HIV-1 infection. In conclusion, Asparagus racemosus extracts, particularly Shatavarin IV, demonstrate promising inhibitory effects against HIV-1 replication while concurrently ameliorating mitochondrial dysfunction induced by the virus. These findings suggest the therapeutic potential of AR extracts and Shatavarin in combating HIV-1 infection and improving mitochondrial health.
Collapse
Affiliation(s)
- Pratiksha Jadaun
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - R. Harshithkumar
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - Chandrabhan Seniya
- School of Biosciences, Engineering and Technology, VIT Bhopal University, Bhopal, India
| | - Shraddha Y. Gaikwad
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | | | - Madhuri Chandane-Tak
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| | - Swapnil Borse
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Girish Tillu
- AYUSH-Center of Excellence, CCIH-Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Anupam Mukherjee
- Division of Virology, ICMR – National Institute of Translational Virology and AIDS Research, Pune, India
| |
Collapse
|
4
|
Mayo-Montor CI, Vidal-Limon A, Loyola-Vargas VM, Carmona-Hernández O, Barreda-Castillo JM, Monribot-Villanueva JL, Guerrero-Analco JA. Targeting Hypoglycemic Natural Products from the Cloud Forest Plants Using Chemotaxonomic Computer-Assisted Selection. Int J Mol Sci 2024; 25:10881. [PMID: 39456663 PMCID: PMC11507857 DOI: 10.3390/ijms252010881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The cloud forest (CF), a hugely biodiverse ecosystem, is a hotspot of unexplored plants with potential for discovering pharmacologically active compounds. Without sufficient ethnopharmacological information, developing strategies for rationally selecting plants for experimental studies is crucial. With this goal, a CF metabolites library was created, and a ligand-based virtual screening was conducted to identify molecules with potential hypoglycemic activity. From the most promising botanical families, plants were collected, methanolic extracts were prepared, and hypoglycemic activity was evaluated through in vitro enzyme inhibition assays on α-amylase, α-glucosidase, and dipeptidyl peptidase IV (DPP-IV). Metabolomic analyses were performed to identify the dominant metabolites in the species with the best inhibitory activity profile, and their affinity for the molecular targets was evaluated using ensemble molecular docking. This strategy led to the identification of twelve plants (in four botanical families) with hypoglycemic activity. Sida rhombifolia (Malvaceae) stood out for its DPP-IV selective inhibition versus S. glabra. A comparison of chemical profiles led to the annotation of twenty-seven metabolites over-accumulated in S. rhombifolia compared to S. glabra, among which acanthoside D and cis-tiliroside were noteworthy for their potential selective inhibition due to their specific intermolecular interactions with relevant amino acids of DPP-IV. The workflow used in this study presents a novel targeting strategy for identifying novel bioactive natural sources, which can complement the conventional selection criteria used in Natural Product Chemistry.
Collapse
Affiliation(s)
- Cecilia I. Mayo-Montor
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | - Abraham Vidal-Limon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | | | | | - José Martín Barreda-Castillo
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | - Juan L. Monribot-Villanueva
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| | - José A. Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa 91073, Mexico; (C.I.M.-M.); (A.V.-L.); (J.M.B.-C.)
| |
Collapse
|
5
|
Uc-Cachón AH, Dzul-Beh A, González-Cortázar M, Zamilpa-Álvarez A, Molina-Salinas GM. Investigating the anti-growth, anti-resistance, and anti-virulence activities of Schoepfia schreberi J.F.Gmel. against the superbug Acinetobacter baumannii. Heliyon 2024; 10:e31420. [PMID: 38813144 PMCID: PMC11133943 DOI: 10.1016/j.heliyon.2024.e31420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Schoepfia schreberi has been used in Mayan folk medicine to treat diarrhea and cough. This study aimed to determine the anti-growth, anti-resistance, and/or anti-virulence activities of S. schreberi extracts against Acinetobacter baumannii, a pathogen leader that causes healthcare-associated infections with high rates of drug-resistant including carbapenems, the last line of antibiotics known as superbugs, and analyze their composition using HPLC-DAD. Ethyl acetate (SSB-3) and methanol (SSB-4) bark extracts exhibit antimicrobial and biocidal effects against drug-susceptible and drug-resistant A. baumannii. Chemical analysis revealed that SSB-3 and SSB-4 contained of gallic and ellagic acids derivatives. The anti-resistance activity of the extracts revealed that SSB-3 or SSB-4, combined with imipenem, exhibited potent antibiotic reversal activity against A. baumannii by acting as pump efflux modulators. The extracts also displayed activity against surface motility of A. baumannii and its capacity to survive reactive oxygen species. This study suggests that S. schreberi can be considered a source of antibiotics, even adjuvanted compounds, as anti-resistant or anti-virulence agents against A. baumannii, contributing to ethnopharmacological knowledge and reappraisal of Mayan medicinal flora, and supporting the traditional use of the bark of the medicinal plant S. schreberi for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Andrés Humberto Uc-Cachón
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
| | - Angel Dzul-Beh
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, 11340, Mexico
| | - Manases González-Cortázar
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, 62790, Morelos, Mexico
| | - Alejandro Zamilpa-Álvarez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Xochitepec, 62790, Morelos, Mexico
| | - Gloria María Molina-Salinas
- Unidad de Investigación Médica Yucatán, Instituto Mexicano del Seguro Social, Mérida, 97150, Yucatán, Mexico
| |
Collapse
|
6
|
Silva JJX, Leal LB, Sá JGA, Sabino LRA, Cavalcanti IMFSD, Silva LA, Santana ESDE, Fernandes FHP, C Filho IJ, Brandão WFM, Vieira JRC. A preliminary study of cutaneous wound healing on the upper eyelid in a small Brazilian population using Rhizophora mangle-based cream. AN ACAD BRAS CIENC 2024; 96:e20231143. [PMID: 38597495 DOI: 10.1590/0001-3765202420231143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 04/11/2024] Open
Abstract
Plants used in traditional medicine offer an affordable new alternative in tissue repair therapy. This study aimed to evaluate the effectiveness of the 5% Rhizophora mangle cream compared to the 5% dexpanthenol cream in healing open surgical wounds on the upper eyelid. A total of 18 patients were submitted to the experiment and divided into 2 groups with 9 patients each who used topically and daily 5% dexpanthenol cream (control group) or 5% R.mangle cream (intervention group) for 7 days. Clinical, morphometric and histomorphometric analyses of wounds and surgical procedures for skin removal were performed. In the morphometric analysis, all wounds treated with R.mangle and dexpanthenol creams showed complete macroscopic scars, without inflammatory signs and infection free. The skin hydration values in pre and post application periods of the cream were 43.82 ± 43.93 and 62.12 ± 67.40 respectively. The histomorphometric study showed lower values of epithelium distance in R. mangle group and higher in dexpanthenol group with significant difference between groups (p < 0.05). The R.mangle 5% cream proved to be effective in healing wounds of human upper eyelid skin with a significant improvement in epithelization compared to dexpanthenol 5% cream.
Collapse
Affiliation(s)
- Jerrar J X Silva
- Universidade Federal de Pernambuco, Departamento de Histologia e Embriologia, Centro de Biociência, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Leila B Leal
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Av. Professor Artur de Sá, s/n, Cidade Universitária, 50740-521 Recife, PE, Brazil
| | - Jéssica G A Sá
- Universidade Federal de Pernambuco, Departmento de Medicina Tropical, Centro de Ciências Médicas, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Larissa R A Sabino
- Fundação Santa Luzia, Estrada do Encanamento, 8, Casa Forte, 52060-210 Recife, PE, Brazil
| | - Isabelle M F S D Cavalcanti
- Universidade Federal de Pernambuco, Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Av. Professor Artur de Sá, s/n, Cidade Universitária, 50740-521 Recife, PE, Brazil
| | - Luzia A Silva
- Universidade Federal de Pernambuco, Departamento de Histologia e Embriologia, Centro de Biociência, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Eduarda S DE Santana
- Universidade Federal de Pernambuco, Departamento de Histologia e Embriologia, Centro de Biociência, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Fernando Henrique P Fernandes
- Universidade Federal de Pernambuco, Departamento de Histologia e Embriologia, Centro de Biociência, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Iranildo José C Filho
- Universidade Federal de Pernambuco, Departamento de Histologia e Embriologia, Centro de Biociência, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Wesley F M Brandão
- Universidade Federal de Pernambuco, Departamento de Histologia e Embriologia, Centro de Biociência, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Jeymesson Raphael C Vieira
- Universidade Federal de Pernambuco, Departamento de Histologia e Embriologia, Centro de Biociência, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE, Brazil
| |
Collapse
|
7
|
Muñoz-Cázares N, Peña-González MC, Castillo-Juárez I, Díaz-Núñez JL, Peña-Rodríguez LM. Exploring the anti-virulence potential of plants used in traditional Mayan medicine to treat bacterial infections. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116783. [PMID: 37321428 DOI: 10.1016/j.jep.2023.116783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE While the antimicrobial activity of a number of plants used in traditional Mayan medicine against infectious diseases has been documented, their potential to inhibit quorum sensing (QS) as means of discovering novel anti-virulence agents remains unexplored. AIM OF THE STUDY To evaluate the anti-virulence potential of plants used in traditional Mayan medicine by determining their inhibition of QS- regulated virulence factors in Pseudomonas aeruginosa. METHODS A group of plants used in traditional Mayan medicine against infectious diseases was selected, and their methanolic extracts were evaluated at 10 mg/mL for their antibacterial and anti-virulence activity using the reference strain P. aeruginosa PA14WT. The broth microdilution method was used to determine antibacterial activity (MIC), while anti-virulence activity was evaluated by measuring the anti-biofilm effect and the inhibition of pyocyanin and protease activities. The most bioactive extract was fractionated using a liquid-liquid partition procedure and the semipurified fractions were evaluated at 5 mg/mL for antibacterial and anti-virulence activity. RESULTS Seventeen Mayan medicinal plants traditionally used to treat infection-associated diseases were selected. None of the extracts exhibited antibacterial activity, whereas anti-virulence activity was detected in extracts of Bonellia flammea, Bursera simaruba, Capraria biflora, Ceiba aesculifolia, Cissampelos pareira and Colubrina yucatanensis. The most active extracts (74% and 69% inhibition) against biofilm formation were from C. aesculifolia (bark) and C. yucatanensis (root), respectively. Alternatively, the extracts of B. flammea (root), B. simaruba (bark), C. pareira (root), and C. biflora (root), reduced pyocyanin and protease production (50-84% and 30-58%, respectively). Fractionation of the bioactive root extract of C. yucatanensis allowed the identification of two semipurified fractions with anti-virulence activity. CONCLUSIONS The anti-virulence activity detected in the crude extracts of B. flammea, B. simaruba, C. biflora, C. aesculifolia, C. pareira, and C. yucatanensis, confirms the efficacy and traditional use of these medicinal plants against infectious diseases. The activity of the extract and semipurified fractions of C. yucatanensis indicates the presence of hydrophilic metabolites capable of interfering with QS in P. aeruginosa. This study represents the first report of Mayan medicinal plants with anti-QS properties and suggests they represent an important source of novel anti-virulence agents.
Collapse
Affiliation(s)
- Naybi Muñoz-Cázares
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| | - Maria Claudia Peña-González
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| | - Israel Castillo-Juárez
- Laboratorio de Investigación y Aplicación de Fitoquímicos Bioactivos, Posgrado en Botánica, Colegio de Postgraduados, Km 36.5 Carretera Federal México-Texcoco, Texcoco, Estado de México, 56230, Mexico.
| | - Jose Luis Díaz-Núñez
- Catedrático COMECYT-Colegio de Postgraduados, Campus Montecillo, Posgrado en Botánica, Colegio de Postgraduados, Km 36.5 Carretera Federal México-Texcoco, Texcoco, Estado de México, 56230, Mexico.
| | - Luis Manuel Peña-Rodríguez
- Laboratorio de Química Orgánica, Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Colonia Chuburná, 97205, Mérida, Yucatán, Mexico.
| |
Collapse
|
8
|
Krengel F, Pavela R, Ocampo-Bautista F, Guevara-Fefer P. Acaricidal and insecticidal activity of essential oils obtained from the aerial parts of three Mexican Bursera species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122717-122725. [PMID: 37975981 PMCID: PMC10724095 DOI: 10.1007/s11356-023-30895-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
In search of new sustainable biopesticides, we determined the phytochemical profiles, acaricidal and insecticidal properties of EOs distilled from the aerial parts of three Mexican Bursera species. Results were obtained by GC-MS analysis and three different bioassays, indicating that the EO of Bursera glabrifolia exhibited high relative abundancies of α-pinene, β-myrcene, and α-phellandrene, as well as promising pesticidal activity against Spodoptera littoralis larvae (LD50,90 = 32.4, 107.2 µg/larva), and Musca domestica (LD50,90 = 23.2, 103.2, and 13.5, 77.4 µg/female or male adult, respectively) and Tetranychus urticae adults (LD50,90 = 7.4, 30.3 µg/cm2). The Bursera lancifolia and Bursera linanoe samples contained mainly D-limonene or linalyl acetate and linalool, respectively, and showed generally less potent pesticidal properties (S. littoralis larva, LD50,90 = 45.4, 154.4 and 52.2, 158.7 µg/larva, respectively; female M. domestica adult, LD50,90 = 69.2, 210.9 and 45.1, 243.8 µg/female adult, respectively; T. urticae adults, LD50,90 = 20.7, 90.5 and 17.5, 71.4 µg/cm2, respectively). However, the EO of B. linanoe exhibited an especially pronounced activity against male M. domestica adults (LD50,90 = 10.6, 77.2 µg/male adult). Our findings prove the pesticidal potential of Mexican Bursera species in the context of integrated pest management (IPM) and highlight the importance of conducting further research to elucidate both the active principles and possibly existing synergistic effects.
Collapse
Affiliation(s)
- Felix Krengel
- Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Circuito Exterior s/n, Alcaldía Coyoacán, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06, Prague 6, Prague, Czech Republic
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Fidel Ocampo-Bautista
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Patricia Guevara-Fefer
- Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Circuito Exterior s/n, Alcaldía Coyoacán, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico.
| |
Collapse
|
9
|
Wadaan MA, Baabbad A, Khan MF, Saravanan M, Anderson A. Phytochemical profiling, anti-hyperglycemic, antifungal, and radicals scavenging potential of crude extracts of Athyrium asplenioides- an in-vitro approach. ENVIRONMENTAL RESEARCH 2023; 231:116129. [PMID: 37187305 DOI: 10.1016/j.envres.2023.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
This research was aimed to evaluate the phytochemical profile, antifungal, anti-hyperglycemic, as well as antioxidant activity competence of different extracts of Athyrium asplenioides through in-vitro approach. The A. asplenioides crude methanol extract contained considerable quantity of pharmaceutically precious phytochemicals (saponins, tannins, quinones, flavonoid, phenols, steroid, and terpenoids) than others (acetone, ethyl acetate, and chloroform). Interestingly, the crude methanol extract showed remarkable antifungal activity against Candida species (C. krusei: 19.3 ± 2 mm > C. tropicalis: 18.4 ± 1 mm > C. albicans: 16.5 ± 1 mm > C. parapsilosis: 15.5 ± 2 mm > C. glabrate: 13.5 ± 2 mm > C. auris: 7.6 ± 1 mm) at a concentration of 20 mg mL-1. The crude methanol extract also showed remarkable anti-hyperglycemic activity on concentration basis. Surprisingly, remarkable free radicals scavenging potential against DPPH (76.38%) and ABTS (76.28%) free radicals at a concentration of 20 mg mL-1. According to the findings, the A. asplenioides crude methanol extract contains pharmaceutically valuable phytochemicals and may be useful for drug discovery.
Collapse
Affiliation(s)
- Mohammad Ahmad Wadaan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia.
| | - Almohannad Baabbad
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Farooq Khan
- Bio-Products Research Chair, Department of Zoology, College of Sciences, King Saud University, P.O. Box, 2455, Riyadh, 11451, Saudi Arabia
| | - Mythili Saravanan
- Department of Pharmaceutical Sciences, North Carolina Central University, USA
| | - A Anderson
- Faculty of Science of Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
10
|
Adassi MB, Ngoupaye GT, Yassi FB, Foutsop AF, Kom TD, Ngo Bum E. Revealing the most effective anticonvulsant part of Malvaviscus arboreus Dill. Ex Cav. and its acute and sub-acute toxicity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115995. [PMID: 36509255 DOI: 10.1016/j.jep.2022.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Different parts of Malvaviscus arboreus Dill. Ex Cav. (M. arboreus) are traditionally used in the West Region of Cameroon to treat many diseases, including epilepsy. AIM OF THE STUDY To determine which part of M. arboreus offers the best anticonvulsant effect, and to assess the acute and sub-acute toxicity of the part of interest. MATERIALS AND METHODS the anticonvulsant effect of the aqueous lyophilisate of the decoction of flowers, leaves, stems and roots of M. arboreus at various doses was evaluated and compared on the model of acute epileptic seizures induced by pentylenetetrazole (PTZ) (70 mg/kg), injected 1 h after oral administration of the various extracts. Out of these plant parts, the leaves were then selected to prepare the hydroethanolic extract and its anticonvulsant effect against PTZ at the doses of 122.5, 245 and 490 mg/kg, as well as its acute toxicity were compared with those of the aqueous lyophilisate of the leaves. The anticonvulsant effect of the aqueous lyophilisate of M. arboreus leaves was further evaluated on models of acute epileptic seizures induced by picrotoxin (PIC) (7.5 mg/kg), strychnine (STR) (2.5 mg/kg) and pilocarpine (350 mg/kg). The 28 days sub-acute toxicity, as well as the quantitative phytochemistry and the in vitro antioxidant potential (FRAP, DPPH, ABTS+) of the aqueous lyophilisate of the leaves of M. arboreus were also evaluated. RESULTS M. arboreus leaves showed the best anticonvulsant effect and the aqueous lyophilisate was the best extract. The latter significantly protected the animals against convulsions induced by PTZ (71.43%) (p < 0.01), PIC (57.14%) (p < 0.05) and STR (42%) and had no effect on pilocarpine-induced seizures. Furthermore, it showed no acute or sub-acute toxicity, and revealed a high content of flavonoids, saponins, tannins and alkaloids, and antioxidant activity in vitro. CONCLUSION The aqueous lyophilisate of the leaves of M. arboreus offers the best anticonvulsant effect on the extraction solvent used, and it would act mainly via a potentiation of the inhibitory systems of the brain (GABA, Glycine). In addition, its richness in bioactive compounds gives it an antioxidant potential, and it is not toxic in acute and sub-acute toxicity. All this justifies at least in part its empirical uses, and makes M. arboreus a candidate for the alternative treatment of epilepsy.
Collapse
Affiliation(s)
- Maxwell Blesdel Adassi
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Gwladys Temkou Ngoupaye
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, University of Dschang, P.O. Box 67, Dschang, Cameroon.
| | - Francis Bray Yassi
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box, Ngaoundéré, 454, Cameroon
| | - Aurelien Fossueh Foutsop
- Animal Physiology and Phytopharmacology Research Unit, Department of Animal Biology, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Tatiana Diebo Kom
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| |
Collapse
|
11
|
Mohammed AE, Alghamdi SS, Shami A, Suliman RS, Aabed K, Alotaibi MO, Rahman I. In silico Prediction of Malvaviscus arboreus Metabolites and Green Synthesis of Silver Nanoparticles - Opportunities for Safer Anti-Bacterial and Anti-Cancer Precision Medicine. Int J Nanomedicine 2023; 18:2141-2162. [PMID: 37131545 PMCID: PMC10149080 DOI: 10.2147/ijn.s400195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/20/2023] [Indexed: 05/04/2023] Open
Abstract
Introduction Biogenic silver nanoparticles (AgNPs) may be a feasible therapeutic option in the research and development towards selectively targeting specific cancers and microbial infections, lending a role in precision medicine. In-silico methods are a viable strategy to aid in drug discovery by identifying lead plant bioactive molecules for further wet lab and animal experiments. Methods Green synthesis of M-AgNPs was performed using the aqueous extract from the Malvaviscus arboreus leaves, characterized using UV spectroscopy, FTIR, TEM, DLS, and EDS. In addition, Ampicillin conjugated M-AgNPs were also synthesized. The cytotoxic potential of the M-AgNPs was evaluated using the MTT assay on MDA-MB 231, MCF10A, and HCT116 cancer cell lines. The antimicrobial effects were determined using the agar well diffusion assay on methicillin-resistant S. aureus (MRSA) and S. mutans, E. coli, and Klebsiella pneumoniae. Additionally, LC-MS was used to identify the phytometabolites, and in silico techniques were applied to determine the pharmacodynamic and pharmacokinetic profiles of the identified metabolites. Results Spherical M-AgNPs were successfully biosynthesized with a mean diameter of 21.8 nm and were active on all tested bacteria. Conjugation with ampicillin increased the susceptibility of the bacteria. These antibacterial effects were most predominant in Staphylococcus aureus (p < 0.0001). M-AgNPs had potent cytotoxic activity against the colon cancer cell line (IC50=29.5 μg/mL). In addition, four secondary metabolites were identified, Astragalin, 4-hydroxyphenyl acetic acid, Caffeic acid, and Vernolic acid. In silico studies identified Astragalin as the most active antibacterial and anti-cancer metabolite, binding strongly to the carbonic anhydrase IX enzyme with a comparatively higher number of residual interactions. Discussion Synthesis of green AgNPs presents a new opportunity in the field of precision medicine, the concept centered on the biochemical properties and biological effects of the functional groups present in the plant metabolites used for reduction and capping. M-AgNPs may be useful in treating colon carcinoma and MRSA infections. Astragalin appears to be the optimal and safe lead for further anti-cancer and anti-microbial drug development.
Collapse
Affiliation(s)
- Afrah E Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Sahar S Alghamdi
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Rasha Saad Suliman
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi, 3798, United Arab Emirates
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Modhi O Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
- Correspondence: Ishrat Rahman, Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia, Email
| |
Collapse
|
12
|
Evaluation of Antidiabetic and Antihyperlipidemic Activity of 80% Methanolic Extract of the Root of Solanum incanum Linnaeus (Solanaceae) in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4454881. [PMID: 35774744 PMCID: PMC9239786 DOI: 10.1155/2022/4454881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/19/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Background Conventional antidiabetic drugs are linked with a number of contraindications and untoward effects. The root decoction of Solanum incanum L. has traditionally been used to treat diabetes. However, its safety and efficacy have not been scientifically authenticated yet. Hence, the study was conducted in mice to corroborate its antidiabetic potential and safety profile. Methods Using normoglycemic, oral glucose-loaded, and streptozotocin-induced diabetic mice models, the hypoglycemic and antihyperglycemic activities of 80% methanolic root extract were investigated. On streptozotocin-induced diabetic mice, the effect of the test extract on diabetic lipid profile and body weight was also investigated. Further, the in vitro α-amylase inhibition activity was assessed. Results The test extract was safe at a limit test dose of 2 g/kg. Dose-dependent α-amylase inhibition activity was seen with peak percentage inhibition of 75.95% at 700 μg/mL. In normoglycemic mice, the plant extract showed statistically significant hypoglycemic activity at 200 and 400 mg/kg (P < 0.001) at 6 h and 4 and 6 h of treatment, respectively; in oral glucose-loaded mice, at both the test doses, the glucose level was also significantly dropped at 120 (P < 0.01) and 60 and 120 min (P < 0.001), respectively; whereas, in the third model, the test extract showed significant antihyperglycemic activity at 100 mg/kg (P < 0.05) on the 14th day and at 200 (P < 0.01) and 400 mg/kg (P < 0.001) on the 7th and 14th day of treatment. Similarly, following repeated administration of the test extract at 200 and 400 mg/kg, the body weight was significantly improved on the 14th day (P < 0.05) and on the 7th and 14th day (P < 0.01), respectively, while diabetic dyslipidemia after 14 days (P < 0.05). Conclusion The study revealed that the test extract showed promising antihyperglycemic and antihyperlipidemic activity. Thus, the findings back up its use in Ethiopian remedies for diabetes.
Collapse
|
13
|
Bioactive Natural Products against Systemic Arterial Hypertension: A Past 20-Year Systematic and Prospective Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8499625. [PMID: 35769156 PMCID: PMC9236778 DOI: 10.1155/2022/8499625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/24/2022] [Indexed: 11/18/2022]
Abstract
Background. Systemic arterial hypertension is one of the most common cardiovascular risks, corresponding to 45% of deaths involving CVDs. The use of natural products, such as medicinal plants, belongs to a millennial part of human therapeutics history and has been employed as an alternative anti-hypertensive treatment. Objective. The present review aims to prospect some natural products already experimentally assayed against arterial hypertension through scientific virtual libraries and patent documents over the past 20 years. Search strategy. This is a systematic review of the adoption of the PRISMA protocol and a survey of the scientific literature that synthesizes the results from published articles between 2001 and 2020 concerning the use of medicinal plants in the management of hypertension, including which parts of the plant or organism are used, as well as the mechanisms of action underlying the anti-hypertensive effect. Furthermore, a technological prospection was also carried out in patent offices from different countries in order to check technologies based on natural products claimed for the treatment or prevention of hypertension. Inclusion criteria. Scientific articles where a natural product had been experimentally assayed for anti-hypertensive activity (part of plants, plant extracts, and products derived from other organisms) were included. Data extraction and analysis. The selected abstracts of the articles and patent documents were submitted to a rigorous reading process. Those articles and patents that were not related to anti-hypertensive effects and claimed potential applications were excluded from the search. Results. Eighty specimens of biological species that showed anti-hypertensive activity were recovered, with 01 representative from the kingdom Fungi and 02 from the kingdom Protista, with emphasis on the families Asteraceae and Lamiaceae, with 6 representatives each. Leaves and aerial parts were the most used parts of the plants for the extraction of anti-hypertensive products, with maceration being the most used extraction method. Regarding phytochemical analyses, the most described classes of biomolecules in the reviewed works were alkaloids, terpenes, coumarins, flavonoids, and peptides, with the reduction of oxidative stress and the release of NO among the mechanisms of action most involved in this process. Regarding the number of patent filings, China was the country that stood out as the main one, with 813 registrations. Conclusion. The anti-hypertensive activity of natural products is still little explored in Western countries. Besides, China and India have shown more results in this area than other countries, confirming the strong influence of traditional medicine in these countries.
Collapse
|
14
|
Topical gel containing phenolic-rich extract from Ipomoea pes-capre leaf (Convolvulaceae) has anti-inflammatory, wound healing, and antiophidic properties. Biomed Pharmacother 2022; 149:112921. [DOI: 10.1016/j.biopha.2022.112921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
|
15
|
Fatima H, Shahid M, Pruitt C, Pung MA, Mills PJ, Riaz M, Ashraf R. Chemical Fingerprinting, Antioxidant, and Anti-Inflammatory Potential of Hydroethanolic Extract of Trigonella foenum-graecum. Antioxidants (Basel) 2022; 11:364. [PMID: 35204245 PMCID: PMC8869320 DOI: 10.3390/antiox11020364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
In the current study, the antioxidant and anti-inflammatory potential of hydroethanolic extract of T. foenum-graecum seeds was evaluated. Phenolic profiling of T. foenum-graecum was conducted through high-performance liquid chromatography-photodiode array (HPLC-PDA) as well as through the mass spectrometry technique to characterize compounds responsible for bioactivity, which confirmed almost 18 compounds, 13 of which were quantified through a chromatographic assay. In vitro antioxidant analysis of the extract exhibited substantial antioxidant activities with the lowest IC50 value of both DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) inhibition assays. The extract was found to be non-toxic against human RBCs and murine macrophage RAW 264.7 cells. Moreover, the extract significantly (p < 0.001) reduced the lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α), intrlukin-6 (IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) in RAW 264.7 cells in a concentration-dependent manner. The hydroethanolic extract of T. foenum-graecum exhibited considerable anti-inflammatory potential by decreasing the cellular infiltration to the inflammatory site in both carrageenan-induced peritonitis and an air pouch model of inflammation. Pretreatment with T. foenum-graecum extract caused significant improvement in antioxidants such as superoxide dismutase (SOD), CAT (catalase), malondialdehyde (MDA), and myeloperoxidase (MPO) against oxidative stress induced by carrageenan. Based on our results of in vivo and in vitro experimentation, we concluded that hydroethanolic extract of T. foenum-graecum is a potential source of phenolic compounds with antioxidant and anti-inflammatory potential.
Collapse
Affiliation(s)
- Hina Fatima
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan;
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Chris Pruitt
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Meredith A. Pung
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Paul J. Mills
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA 92093, USA; (C.P.); (M.A.P.)
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan;
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| |
Collapse
|
16
|
Fatima H, Shahid M, Jamil A, Naveed M. Therapeutic Potential of Selected Medicinal Plants Against Carrageenan Induced Inflammation in Rats. Dose Response 2021; 19:15593258211058028. [PMID: 34867126 PMCID: PMC8641123 DOI: 10.1177/15593258211058028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The current study was aimed to analyze the therapeutic effect of selected medicinal plants, that is, Curcuma longa, Zingiber officinale, Trigonella graceum-foenum, Nigella sativa, and Syzygium aromaticum against carrageenan-induced oxidative stress and inflammation in rats. Phytochemical analysis revealed the presence of diverse range of bioactives. IC50 values for antioxidant assays including DPPH (2,2-diphenyl-1-picrylhydrazyl), metal chelating, ABTS scavenging (2, 2′-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid), β-carotene bleaching, and H2O2 (hydrogen peroxide) scavenging ranged from 37-294, 71-243.4, 69.66-191.8, 98.92-228.5, and 82-234.9 μg/mL, respectively. All tested plants extract were found active against tested pathogenic microorganisms with lowest minimum inhibitory concentrations. Oral administration of tested plants extracts in different doses (250, 500, and 1000 mg/kg b. w) did not exhibit any toxicological effects on hemato-biochemical profile of treated rats in comparison to control group rats. Further, plants extract exhibited considerable anti-inflammatory activity in rats paw inflammation and decreased cellular infiltration to inflammatory site in dose dependent manner. Pretreatment of animals with tested plants extract (100, 200, and 400 mg/kg b. w.) caused significant alteration in total antioxidants, oxidants, and enzymes activities in paw tissue homogenate and the effect was more pronounced at higher concentration (400 mg/kg b. w.). Results showed that tested plants extract are rich source of diverse classes of phenolics and have therapeutic potential against oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hina Fatima
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
17
|
Chakraborty R, Roy S. Angiotensin-converting enzyme inhibitors from plants: A review of their diversity, modes of action, prospects, and concerns in the management of diabetes-centric complications. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:478-492. [PMID: 34642085 DOI: 10.1016/j.joim.2021.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/10/2021] [Indexed: 12/29/2022]
Abstract
Angiotensin-converting enzyme (ACE) inhibitors are antihypertensive medications often used in the treatment of diabetes-related complications. Synthetic ACE inhibitors are known to cause serious side effects like hypotension, renal insufficiency, and hyperkalaemia. Therefore, there has been an intensifying search for natural ACE inhibitors. Many plants or plant-based extracts are known to possess ACE-inhibitory activity. In this review, articles focusing on the natural ACE inhibitors extracted from plants were retrieved from databases like Google Scholar, PubMed, Scopus, and Web of Science. We have found more than 50 plant species with ACE-inhibitory activity. Among them, Angelica keiskei, Momordica charantia, Muntingia calabura, Prunus domestica, and Peperomia pellucida were the most potent, showing comparatively lower half-maximal inhibitory concentration values. Among the bioactive metabolites, peptides (e.g., Tyr-Glu-Pro, Met-Arg-Trp, and Gln-Phe-Tyr-Ala-Val), phenolics (e.g., cyanidin-3-O-sambubioside and delphinidin-3-O-sambubioside), flavonoids ([-]-epicatechin, astilbin, and eupatorin), terpenoids (ursolic acid and oleanolic acid) and alkaloids (berberine and harmaline) isolated from several plant and fungus species were found to possess significant ACE-inhibitory activity. These were also known to possess promising antioxidant, antidiabetic, antihyperlipidemic and anti-inflammatory activities. Considering the minimal side effects and lower toxicity of herbal compounds, development of antihypertensive drugs from these plant extracts or phytocompounds for the treatment of diabetes-associated complications is an important endeavour. This review, therefore, focuses on the ACE inhibitors extracted from different plant sources, their possible mechanisms of action, present status, and any safety concerns.
Collapse
Affiliation(s)
- Rakhi Chakraborty
- Department of Botany, A.P.C. Roy Government College, Matigara 734010, West Bengal, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur 734011, West Bengal, India.
| |
Collapse
|
18
|
Quesada I, de Paola M, Alvarez MS, Hapon MB, Gamarra-Luques C, Castro C. Antioxidant and Anti-atherogenic Properties of Prosopis strombulifera and Tessaria absinthioides Aqueous Extracts: Modulation of NADPH Oxidase-Derived Reactive Oxygen Species. Front Physiol 2021; 12:662833. [PMID: 34335290 PMCID: PMC8322988 DOI: 10.3389/fphys.2021.662833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 12/05/2022] Open
Abstract
Despite popular usage of medicinal plants, their effects as cardiovascular protective agents have not been totally elucidated. We hypothesized that treatment with aqueous extract from Prosopis strombulifera (AEPs) and Tessaria absinthioides (AETa), Argentinian native plants, produces antioxidant effects on vascular smooth muscle cells (VSMCs) and attenuates atherogenesis on apolipoprotein E-knockout (ApoE-KO) mice. In VSMCs, both extracts (5–40 μg/ml) inhibited 10% fetal calf serum-induced cell proliferation, arrested cell in G2/M phase, reduced angiotensin II-induced reactive oxygen species (ROS) generation, and decreased NADPH oxidase subunit expression. In ApoE-KO mice, extracts significantly reduced triglycerides and lipid peroxidation [plasma thiobarbituric acid reactive substances (TBARS)], increased plasma total antioxidant status (TAS), and improved glutathione peroxidase activity in the liver. Under high-fat diet (HFD), both extracts were able to inhibit O2– generation in the aortic tissue and caused a significant regression of atheroma plaques (21.4 ± 1.6% HFD group vs. 10.2 ± 1.2%∗ AEPs group and 14.3 ± 1.0%∗ AETa group; ∗p < 0.01). Consumption of AEPs and AETa produces antioxidant/antimitogenic/anti-atherosclerotic effects, and their use may be beneficial as a complementary strategy regarding cardiovascular disease therapies.
Collapse
Affiliation(s)
- Isabel Quesada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Matilde de Paola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Soledad Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina
| | - María Belén Hapon
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Castro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
19
|
Ijarotimi OS, Adesanya IH, Oluwajuyitan TD. Nutritional, antioxidant, angiotensin-converting-enzyme and carbohydrate-hydrolyzing-enzyme inhibitory activities of underutilized leafy vegetable: African wild lettuce (Lactuca taraxacifolia Willd). CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00282-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Background
African wild lettuce (Lactuca taraxacifolia Willd.) is an underutilised indigenous leafy vegetable containing essential nutrients and medicinal properties. Hence, this study aimed to determine the chemical composition, antioxidant activities, α-amylase, α-glucosidase and angiotensin converting enzyme inhibitory potentials of wild lettuce leaves powder samples.
Methods
Freshly harvested Wild Lettuce leaves were processed into whole leafy powder (WLF), extracted powder (WLE), residue (WLR) and leaf protein isolate (WPI). Chemical composition, antioxidant activities, α-amylase, α-glucosidase and angiotensin-converting enzyme inhibitory potentials of the powder samples were determined.
Results
Crude protein of Wild Lettuce leaves ranged from 23.27 to 46.57 and crude fiber from 4.17–37.37 g/100 g. Phosphorous was the most abundant element, while zinc had the lowest concentration. The samples essential amino acids, protein efficiency ratio, essential amino acid index and biological values were 39.83–50.65 mg/100 g protein. 2.79–3.51, 77.03–92.36% and 72.26–88.97%, respectively. Saponin, tannin, oxalate, phytate, terpennoids, flavonoid and phenol in the leafy vegetable samples were within tolerable levels. The African wild lettuce leaf protein isolate (WPI) had higher DPPH antioxidant activity (91.88%), percentage inhibitory properties on α-amylase (26.11%), α-glucosidase (64.24%) and angiotensin-1-converting enzyme (97.53%) than WLF (18.28, 25.44, 55.41 and 67.56), WLE (70.85, 24.97, 62.53 and 93.27) and WLR (53.07, 24.68, 50.03 and 85.28) respectively.
Conclusion
African wild lettuce leaf samples, particularly protein isolate, contain essential nutrients, antioxidant activities and ability to inhibit angiotensin-1-converting, α-amylase and α-glucosidase enzymes Therefore, the leafy vegetable samples, particularly WPI, may be suitable as antioxidant, antidiabetic and antihypertensive agent.
Collapse
|
20
|
Rodríguez-Morales S, Ocampo-Medina B, Romero-Ceronio N, Alvarado-Sánchez C, Vilchis-Reyes MÁ, Roa de la Fuente LF, Ortiz-Andrade R, Hernández-Abreu O. Metabolic Profiling of Vasorelaxant Extract from Malvaviscus arboreus by LC/QTOF-MS. Chem Biodivers 2021; 18:e2000820. [PMID: 33560535 DOI: 10.1002/cbdv.202000820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/05/2021] [Indexed: 11/07/2022]
Abstract
We aimed to develop a standardized methodology to determine the metabolic profile of organic extracts from Malvaviscus arboreus Cav. (Malvaceae), a Mexican plant used in traditional medicine for the treatment of hypertension and other illnesses. Also, we determined the vasorelaxant activity of these extracts by ex vivo rat thoracic aorta assay. Organic extracts of stems and leaves were prepared by a comprehensive maceration process. The vasorelaxant activity was determined by measuring the relaxant capability of the extract to decrease a contraction induced by noradrenaline (0.1 μM). The hexane extract induced a significant vasorelaxant effect in a concentration- and endothelium-dependent manner. Secondary metabolites, such as polyunsaturated fatty acids, terpenes and one flavonoid, were annotated by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS) in positive ion mode. This exploratory study allowed us to identify bioactive secondary metabolites from Malvaviscus arboreus, as well as identify potentially-new vasorelaxant molecules and scaffolds for drug discovery.
Collapse
Affiliation(s)
- Sergio Rodríguez-Morales
- Unidad de Química-Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo S/N, 97356, Sisal, Yucatán, Mexico
| | - Blanca Ocampo-Medina
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1, Cunduacán, 86690, Tabasco, Mexico
| | - Nancy Romero-Ceronio
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1, Cunduacán, 86690, Tabasco, Mexico
| | - Cuauhtémoc Alvarado-Sánchez
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1, Cunduacán, 86690, Tabasco, Mexico
| | - Miguel Ángel Vilchis-Reyes
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1, Cunduacán, 86690, Tabasco, Mexico
| | - Luis Fernando Roa de la Fuente
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1, Cunduacán, 86690, Tabasco, Mexico
| | - Rolffy Ortiz-Andrade
- Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Calle 43 N. 613, 97069, Mérida, Yucatán, Mexico
| | - Oswaldo Hernández-Abreu
- Centro de Investigación de Ciencia y Tecnología Aplicada de Tabasco, Universidad Juárez Autónoma de Tabasco, Carretera Cunduacán-Jalpa km. 1, Cunduacán, 86690, Tabasco, Mexico
| |
Collapse
|
21
|
Gonzales M, Villena GK, Kitazono AA. Evaluation of the antioxidant activities of aqueous extracts from seven wild plants from the Andes using an in vivo yeast assay. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
22
|
Geck MS, Cristians S, Berger-González M, Casu L, Heinrich M, Leonti M. Traditional Herbal Medicine in Mesoamerica: Toward Its Evidence Base for Improving Universal Health Coverage. Front Pharmacol 2020; 11:1160. [PMID: 32848768 PMCID: PMC7411306 DOI: 10.3389/fphar.2020.01160] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/16/2020] [Indexed: 01/28/2023] Open
Abstract
The quality of health care in Mesoamerica is influenced by its rich cultural diversity and characterized by social inequalities. Especially indigenous and rural communities confront diverse barriers to accessing formal health services, leading to often conflicting plurimedical systems. Fostering integrative medicine is a fundamental pillar for achieving universal health coverage (UHC) for marginalized populations. Recent developments toward health sovereignty in the region are concerned with assessing the role of traditional medicines, and particularly herbal medicines, to foster accessible and culturally pertinent healthcare provision models. In Mesoamerica, as in most regions of the world, a wealth of information on traditional and complementary medicine has been recorded. Yet these data are often scattered, making it difficult for policy makers to regulate and integrate traditionally used botanical products into primary health care. This critical review is based on a quantitative analysis of 28 survey papers focusing on the traditional use of botanical drugs in Mesoamerica used for the compilation of the "Mesoamerican Medicinal Plant Database" (MAMPDB), which includes a total of 12,537 use-records for 2188 plant taxa. Our approach presents a fundamental step toward UHC by presenting a pharmacological and toxicological review of the cross-culturally salient plant taxa and associated botanical drugs used in traditional medicine in Mesoamerica. Especially for native herbal drugs, data about safety and effectiveness are limited. Commonly used cross-culturally salient botanical drugs, which are considered safe but for which data on effectiveness is lacking constitute ideal candidates for treatment outcome studies.
Collapse
Affiliation(s)
- Matthias S. Geck
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Biovision – Foundation for Ecological Development, Zurich, Switzerland
| | - Sol Cristians
- Botanical Garden, Institute of Biology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mónica Berger-González
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala, Guatemala
- Department of Epidemiology and Public Heath, Swiss TPH, University of Basel, Basel, Switzerland
| | - Laura Casu
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| | - Marco Leonti
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
23
|
Promoting Beneficial and Inhibiting Undesirable Biofilm Formation with Mangrove Extracts. Int J Mol Sci 2019; 20:ijms20143549. [PMID: 31331112 PMCID: PMC6678755 DOI: 10.3390/ijms20143549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/02/2023] Open
Abstract
The extracts of two mangrove species, Bruguiera cylindrica and Laguncularia racemosa, have been analyzed at sub-lethal concentrations for their potential to modulate biofilm cycles (i.e., adhesion, maturation, and detachment) on a bacterium, yeast, and filamentous fungus. Methanolic leaf extracts were also characterized, and MS/MS analysis has been used to identify the major compounds. In this study, we showed the following. (i) Adhesion was reduced up to 85.4% in all the models except for E. coli, where adhesion was promoted up to 5.10-fold. (ii) Both the sum and ratio of extracellular polysaccharides and proteins in mature biofilm were increased up to 2.5-fold and 2.6-fold in comparison to the negative control, respectively. Additionally, a shift toward a major production of exopolysaccharides was found coupled with a major production of both intracellular and extracellular reactive oxygen species. (iii) Lastly, detachment was generally promoted. In general, the L. racemosa extract had a higher bioactivity at lower concentrations than the B. cylindrica extract. Overall, our data showed a reduction in cells/conidia adhesion under B. cylindrica and L. racemosa exposure, followed by an increase of exopolysaccharides during biofilm maturation and a variable effect on biofilm dispersal. In conclusion, extracts either inhibited or enhanced biofilm development, and this effect depended on both the microbial taxon and biofilm formation step.
Collapse
|