1
|
Shan Y, Fu Y, Wang L, Yao Y. Response of the nitrogen processing bacterial community to water level fluctuation and nitrate availability in an intact marsh soil column. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111947-111957. [PMID: 37819472 DOI: 10.1007/s11356-023-30020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Wetlands are known to experience fluctuations in water levels and receive exogenous nitrogen inputs that affect various organisms, including soil microorganisms. To study the impact of these factors on microbial diversity, we collected intact soil columns from a Phragmites australis-dominated site in the Qixing River National Nature Reserve in Northeast China. In a laboratory experiment, we simulated water level fluctuations and exogenous nitrogen inputs to the soil columns and examined the associated changes in the relative abundance of 51 bacterial genera involved in nitrogen cycling processes. Our findings revealed that different bacterial genera exhibited varying relative abundances across treatments. Specifically, Massilia showed the highest total relative abundance at the genus level, while Planctomyces had the second highest, and Campylobacter had the lowest abundance. The DESeq2 model, based on negative binomial distribution, revealed that the tags of bacterial genera were significantly correlated with soil depth, but not with water levels or nitrogen concentrations. However, the addition of a 30 mg/L nitrate solution caused a decrease in the relative abundances of bacterial genera with decreasing water levels, while a 60 mg/L concentration of nitrogen resulted in a decrease and then an increase in the relative abundances of bacterial genera with decreasing water levels. Our study provides valuable insights into the response of nitrogen-cycling bacteria to changes in different environmental conditions.
Collapse
Affiliation(s)
- Yuanqi Shan
- Wetland Biodiversity Conservation and Research Center, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, China
| | - Yi Fu
- Wetland Biodiversity Conservation and Research Center, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, China
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, China
| | - Lei Wang
- College of Landscape Architectrue, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, China
| | - Yunlong Yao
- Wetland Biodiversity Conservation and Research Center, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, China.
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, China.
| |
Collapse
|
2
|
Mwagona PC, Yao Y, Yuanqi S, Yu H. Greenhouse gas emissions from intact riparian wetland soil columns continuously loaded with nitrate solution: a laboratory microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33702-33714. [PMID: 31595410 DOI: 10.1007/s11356-019-06406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
In this study, we aimed at determining greenhouse gas (GHG) (CO2, CH4, and N2O) fluxes exchange between the soil collected from sites dominated by different vegetation types (Calamagrostis epigeios, Phragmites australis, and Carex schnimdtii) in nitrogenous loaded riparian wetland and the atmosphere. The intact soil columns collected from the wetland were incubated in laboratory and continuously treated with [Formula: see text]-enriched water simulating downward surface water percolating through the soil to become groundwater in a natural system. This study revealed that the soil collected from the site dominated by C. epigeios was net CO2 and N2O sources, whereas the soil from P. australis and C. schnimdtii were net sinks of CO2 and N2O, respectively. The soil from the site dominated by C. schnimdtii had the highest climate impact, as it had the highest global warming potential (GWP) compared with the other sites. Our study indicates that total organic carbon and [Formula: see text] concentration in the soil water has great influence on GHG fluxes. Carbon dioxide (CO2) and N2O fluxes were accelerated by the availability of higher [Formula: see text] concentration in soil water. On the other hand, higher [Formula: see text] concentration in soil water favors CH4 oxidation, hence the low CH4 production. Temporally, CO2 fluxes were relatively higher in the first 15 days and reduced gradually likely due to a decline in organic carbon. The finding of this study implies that higher [Formula: see text] concentration in wetland soil, caused by human activities, could increase N2O and CO2 emissions from the soil. This therefore stresses the importance of controls of [Formula: see text] leaching in the mitigation of anthropogenic N2O and CO2 emissions.
Collapse
Affiliation(s)
- Patteson Chula Mwagona
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, People's Republic of China
| | - Yunlong Yao
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, People's Republic of China.
| | - Shan Yuanqi
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, People's Republic of China
| | - Hongxian Yu
- College of Wildlife and Protected Area, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin, 150040, People's Republic of China
| |
Collapse
|