1
|
Liu B, Zhou Z, Wang L, Zhang X, Xu Z, Liu Z, Hu J, Fu W, Zhong Z. The heatwaves weaken the effect of light on the growth, photosynthesis, and reproductive capacity of Ulva prolifera. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107163. [PMID: 40339513 DOI: 10.1016/j.marenvres.2025.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/10/2025]
Abstract
In recent years, green tides (GTs) dominated by Ulva prolifera have become frequent ecological disasters in China. These expansive algal blooms form thick floating mats that drastically reduce light penetration, creating heterogeneous light environments across water depths. Concurrently, the increasing frequency and intensity of marine heatwaves (MHWs) in coastal ecosystems have introduced additional stressors to marine primary producers. Here, we investigated the combined effects of a simulated heatwaves and light intensity on the growth, photosynthesis, and reproduction of U. prolifera. The results showed that the light treatment groups (LTGs) had a maximum growth rate of 45 %, stabilizing at 13-14 % later in cultivation. In contrast, heatwaves and light treatment groups (HWLGs) inhibit growth, with lower growth rates and even negative growth (-2 % to -18 %). HWLGs also led to lower Fv/Fm and higher NPQ compared with that of the LTGs. When comparing release rates of reproductive cells, the HWLGs had significantly lower rates than the LTGs. The low light (LL) group had the highest release rate of reproductive cells at 84 %, while the heatwave low light group (HWLL) had the lowest (30 %). This study indicates that heatwaves weaken the effect of light on the growth, photosynthesis, and reproductive capacity of U. prolifera. As GTs in the Yellow Sea and Bohai Sea continue to be an ecological threat, further research is needed to better understand the impact of varying light and heatwave conditions on U. prolifera reproduction and bloom dynamics.
Collapse
Affiliation(s)
- Bao Liu
- College of Marine Science and Technology and Environment, Dalian Ocean University, 116023, China; Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhengbang Zhou
- College of Marine Science and Technology and Environment, Dalian Ocean University, 116023, China; Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Luyao Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Xiaoli Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaokun Xu
- Changdao Lankun Marine Development Co., LTD, Yantai, 264003, China
| | - Zhiyuan Liu
- Changdao Lankun Marine Development Co., LTD, Yantai, 264003, China
| | - Jinhuan Hu
- Changdao Lankun Marine Development Co., LTD, Yantai, 264003, China
| | - Wantao Fu
- College of Marine Science and Technology and Environment, Dalian Ocean University, 116023, China.
| | - Zhihai Zhong
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
2
|
Carve M, Singh N, Grist S, Shimeta J, Nugegoda D. Toxicity of the organic UV filter oxybenzone to the brown macroalga Hormosira banksii and the green macroalga Ulva lactuca. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177982. [PMID: 39662409 DOI: 10.1016/j.scitotenv.2024.177982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Oxybenzone (BP-3), a common sunscreen ingredient, has been detected in marine ecosystems and shown to be toxic to various marine species, raising environmental concerns. However, its effects on macroalgae remain largely unknown. This study investigated the toxicity of BP-3 on two macroalgae species: Hormosira banksii and Ulva lactuca. A chronic germination-inhibition experiment with H. banksii and an acute study with mature U. lactuca were conducted using BP-3 concentrations ranging from 0.03 to 27 mg/L. Results revealed significant inhibition of H. banksii spore germination at 3, 9, and 27 mg/L BP-3 at 72 h, with a 10 % effect concentration of 0.363 mg/L (95 % confidence interval: 0.27-0.45 mg/L). For U. lactuca, relative growth rate decreased by 20-70 % compared to controls in treatments of 0.1, 3, 9, and 27 mg/L BP-3 after 72 h. Exposure to ≥0.3 mg/L BP-3 resulted in lower chlorophyll a and b concentrations and higher lipid peroxidation, with significant differences observed between the control and ≥9 mg/L BP-3 treatments. Exposure to 1 mg/L BP-3 induced significant alterations in several key metabolic pathways associated with stress response mechanisms, energy metabolism, and cellular signalling in U. lactuca. These findings suggest that BP-3 does not pose an acute risk to mature U. lactuca or a chronic risk to H. banksii at concentrations typically observed in the marine environment, as in both cases effect concentrations exceeded BP-3 concentrations typically observed in marine environmental water samples. However, further research is needed to assess potential risks associated with chronic exposure to environmentally relevant concentrations. These toxicity data contribute valuable information for future risk assessments of BP-3 and aid in setting water quality guidelines for this widely used organic UV filter.
Collapse
Affiliation(s)
- Megan Carve
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia.
| | - Navneet Singh
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Stephen Grist
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Jeff Shimeta
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| | - Dayanthi Nugegoda
- School of Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Bodar PA, Thakur RS, Rajai JV, Bhushan S, Mantri VA. A metabolomic snapshot through NMR revealed differences in phase transition during the induction of reproduction in Ulva ohnoi (Chlorophyta). Mol Omics 2024; 20:86-102. [PMID: 38239131 DOI: 10.1039/d3mo00197k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The present study deals with the metabolomic status of Ulva cells undergoing phase transition (vegetative, determination and differentiation) when exposed to different abiotic conditions. The objective was to study whether metabolite changes occurring during the phase transition reveal any commonality among differential abiotic conditions. The phase transition was followed through microscopic observations and 1H NMR characterization at 0 h, 24 h, and 48 h after the incubation of the thallus under abiotic conditions, such as different salinities (20-35 psu), temperatures (20-35 °C), photoperiods (18 : 6, 12 : 12, and 6 : 18 D/N), light intensities (220, 350, and 500 μmol photons m-2 s-1), nitrate (0.05-0.2 g L-1) and phosphate (0.05-0.2 g L-1) concentrations. Microscopic analysis revealed the role of all abiotic conditions except variable salinity and phosphate concentration in phase transition. NMR analysis revealed that glucose increased in the determination phase [7.58 to 9.62 normalized intensity (AU)] and differentiation phase (5.85 to 6.41 AU) from 20 °C to 25 °C temperature. Coniferyl aldehyde increased in vegetative (5.79 to 6.83 AU) and differentiation (6.66 to 7.40 AU) phases from 20 °C to 30 °C temperature. The highest average (22.97) was found in photoperiod (average range = 0-122.91) and the highest SD (24.73) in salinity (SD range = 1.86-57.04) in region 9 (creatinine and cysteine) of the differentiation phase. A total of 30 metabolites were identified under the categories of sugars, amino acids, and aromatic compounds. The present study will aid in understanding the mechanisms underlying cell differentiation during reproduction. The result may serve as an important reference point for future studies, besides helping in controlling seedling preparation for commercial farming as well as the management of rapid green tide formation.
Collapse
Affiliation(s)
- Payal A Bodar
- Applied Phycology and Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Road, Bhavnagar - 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Rajendra Singh Thakur
- Analytical and Environmental, Science Division and Centralized Instrument Facility, Bhavnagar 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Jasmine V Rajai
- Applied Phycology and Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Road, Bhavnagar - 364002, India.
| | - Satej Bhushan
- Applied Phycology and Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Road, Bhavnagar - 364002, India.
| | - Vaibhav A Mantri
- Applied Phycology and Biotechnology Division, CSIR- Central Salt and Marine Chemicals Research Institute, Gijubhai Badheka Road, Bhavnagar - 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
4
|
Blomme J, Wichard T, Jacobs TB, De Clerck O. Ulva: An emerging green seaweed model for systems biology. JOURNAL OF PHYCOLOGY 2023. [PMID: 37256696 DOI: 10.1111/jpy.13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, spanning from freshwater to marine and terrestrial habitats. These organisms, which predominantly belong to the class Ulvophyceae, showcase a remarkable instance of parallel evolution toward complex multicellularity and macroscopic thalli in the Viridiplantae lineage. Within the green seaweeds, several Ulva species ("sea lettuce") are model organisms for studying carbon assimilation, interactions with bacteria, life cycle progression, and morphogenesis. Ulva species are also notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically disturbed coastal ecosystems during "green tide" blooms. From an economic perspective, Ulva has garnered increasing attention as a promising feedstock for the production of food, feed, and biobased products, also as a means of removing excess nutrients from the environment. We propose that Ulva is poised to further develop as a model in green seaweed research. In this perspective, we focus explicitly on Ulva mutabilis/compressa as a model species and highlight the molecular data and tools that are currently available or in development. We discuss several areas that will benefit from future research or where exciting new developments have been reported in other Ulva species.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Cao J, Liu J, Zhao S, Tong Y, Li S, Xia Z, Hu M, Sun Y, Zhang J, He P. Advances in the research on micropropagules and their role in green tide outbreaks in the Southern Yellow Sea. MARINE POLLUTION BULLETIN 2023; 188:114710. [PMID: 36860024 DOI: 10.1016/j.marpolbul.2023.114710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The green tide event that occurred in the Southern Yellow Sea in 2007 lasted for 16 years, causing serious economic losses and ecological damage to coastal cities. To address this problem, a series of studies were conducted. However, the contribution of micropropagules to green tide outbreaks remains poorly understood, and the relationship between micropropagules and green algae that are settled nearshore or floating at sea also needs to be further explored. The present study focuses on the identification of these micropropagules in the Southern Yellow Sea and uses the Citespace tool to quantitatively analyze current research hotspots, frontier trends, and development trends. In addition, it examines the micropropagules' life cycle and how it directly affects the green algal biomass and clarifies the temporal and spatial distribution of micropropagules in the entire Southern Yellow Sea. The study also discusses unresolved scientific problems and limitations in the current research on algal micropropagules and provides an outlook on future research directions. We expect to further analyze the contribution of micropropagules to green tide outbreaks and provide data to support comprehensive green tide management.
Collapse
Affiliation(s)
- Jiaxing Cao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yichao Tong
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Shuang Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Zhangyi Xia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Meijuan Hu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yuqing Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Jianheng Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
6
|
From model organism to application: Bacteria-induced growth and development of the green seaweed Ulva and the potential of microbe leveraging in algal aquaculture. Semin Cell Dev Biol 2023; 134:69-78. [PMID: 35459546 DOI: 10.1016/j.semcdb.2022.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022]
Abstract
The marine green macroalga Ulva (Chlorophyta, Ulvales), also known as sea lettuce, coexists with a diverse microbiome. Many Ulva species proliferate in nature and form green algal blooms ("green tides"), which can occur when nutrient-rich wastewater from agricultural or densely populated areas is flushed into the sea. Bacteria are necessary for the adhesion of Ulva to its substrate, its growth, and the development of its blade morphology. In the absence of certain bacteria, Ulva mutabilis develops into a callus-like morphotype. However, with the addition of the necessary marine bacteria, the entire morphogenesis can be restored. Surprisingly, just two bacteria isolated from U. mutabilis are sufficient for inducing morphogenesis and establishing the reductionist system of a tripartite community. While one bacterial strain causes algal blade cell division, another causes the differentiation of basal cells into a rhizoid and supports cell wall formation because of a low concentration of the morphogen thallusin (below 10-10 mol/L). This review focuses on the research conducted on this topic since 2015, discusses how U. mutabilis has developed into a model organism in chemical ecology, and explores the questions that have already been addressed and the perspectives that a reductionist model system allows. In particular, the field of systems biology will achieve a comprehensive, quantitative understanding of the dynamic interactions between Ulva and its associated bacteria to better predict the behavior of the system as a whole. The reductionist approach has enabled the study of the bacteria-induced morphogenesis of Ulva. Specific questions regarding the optimization of cultivation conditions as well as the yield of raw materials for the food and animal feed industries can be answered in the laboratory and through applied science. Genome sequencing, the improvement of genetic engineering tools, and the first promising attempts to leverage macroalgae-microbe interactions in aquaculture make this model organism, which has a comparatively short parthenogenetic life cycle, attractive for both fundamental and applied research. The reviewed research paves the way for the synthetic biology of macroalgae-associated microbiomes in sustainable aquacultures.
Collapse
|
7
|
The sporogenesis is partly regulated by oxidative signal in Ulva prolifera: A physiological and transcriptomic perspective. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
El-Sayed HS, Elshobary ME, Barakat KM, Khairy HM, El-Sheikh MA, Czaja R, Allam B, Senousy HH. Ocean acidification induced changes in Ulva fasciata biochemistry may improve Dicentrarchus labrax aquaculture via enhanced antimicrobial activity. AQUACULTURE 2022; 560:738474. [DOI: 10.1016/j.aquaculture.2022.738474] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
|
9
|
Liu X, Blomme J, Bogaert KA, D’hondt S, Wichard T, Deforce D, Van Nieuwerburgh F, De Clerck O. Transcriptional dynamics of gametogenesis in the green seaweed Ulva mutabilis identifies an RWP-RK transcription factor linked to reproduction. BMC PLANT BIOLOGY 2022; 22:19. [PMID: 34991492 PMCID: PMC8734247 DOI: 10.1186/s12870-021-03361-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/17/2021] [Indexed: 06/02/2023]
Abstract
BACKGROUND The molecular mechanism underlying sexual reproduction in land plants is well understood in model plants and is a target for crop improvement. However, unlike land plants, the genetic basis involved in triggering reproduction and gamete formation remains elusive in most seaweeds, which are increasingly viewed as an alternative source of functional food and feedstock for energy applications. RESULTS Gametogenesis of Ulva mutabilis, a model organism for green seaweeds, was studied. We analyzed transcriptome dynamics at different time points during gametogenesis following induction of reproduction by fragmentation and removal of sporulation inhibitors. Analyses demonstrated that 45% of the genes in the genome were differentially expressed during gametogenesis. We identified several transcription factors that potentially play a key role in the early gametogenesis of Ulva given the function of their homologs in higher plants and microalgae. In particular, the detailed expression pattern of an evolutionarily conserved transcription factor containing an RWP-RK domain suggested a key role during Ulva gametogenesis. CONCLUSIONS Transcriptomic analyses of gametogenesis in the green seaweed Ulva highlight the importance of a conserved RWP-RK transcription factor in the induction of sexual reproduction. The identification of putative master regulators of gametogenesis provides a starting point for further functional characterization.
Collapse
Affiliation(s)
- Xiaojie Liu
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Jonas Blomme
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Kenny A. Bogaert
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Sofie D’hondt
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
DeWeese KJ, Osborne MG. Understanding the metabolome and metagenome as extended phenotypes: The next frontier in macroalgae domestication and improvement. JOURNAL OF THE WORLD AQUACULTURE SOCIETY 2021; 52:1009-1030. [PMID: 34732977 PMCID: PMC8562568 DOI: 10.1111/jwas.12782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/25/2021] [Indexed: 06/01/2023]
Abstract
"Omics" techniques (including genomics, transcriptomics, metabolomics, proteomics, and metagenomics) have been employed with huge success in the improvement of agricultural crops. As marine aquaculture of macroalgae expands globally, biologists are working to domesticate species of macroalgae by applying these techniques tested in agriculture to wild macroalgae species. Metabolomics has revealed metabolites and pathways that influence agriculturally relevant traits in crops, allowing for informed crop crossing schemes and genomic improvement strategies that would be pivotal to inform selection on macroalgae for domestication. Advances in metagenomics have improved understanding of host-symbiont interactions and the potential for microbial organisms to improve crop outcomes. There is much room in the field of macroalgal biology for further research toward improvement of macroalgae cultivars in aquaculture using metabolomic and metagenomic analyses. To this end, this review discusses the application and necessary expansion of the omics tool kit for macroalgae domestication as we move to enhance seaweed farming worldwide.
Collapse
Affiliation(s)
- Kelly J DeWeese
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, California, Los Angeles
| | - Melisa G Osborne
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, California, Los Angeles
| |
Collapse
|