1
|
Fioriniello S, Salzano A, Bifulco G, Aiese Cigliano R, Della Ragione F, Campanile G. Green forage impacts on the DNA methylation in the ruminal wall of Italian mediterranean dairy buffaloes. Sci Rep 2025; 15:8074. [PMID: 40057542 PMCID: PMC11890600 DOI: 10.1038/s41598-025-91969-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
Nutrition impacts the epigenetic signature, including DNA methylation. The aim of this study was to identify genomic regions differentially methylated in the rumen of Italian Mediterranean dairy buffaloes fed green forage [Total Mixed Ration (TMR) + ryegrass green feed (30% of diet)] compared to those receiving a standard TMR diet, through Reduced Representation Bisulfite Sequencing. We found 6571 differentially methylated genomic regions (DMRs), 51.73% hypomethylated and 48.27% hypermethylated. DMRs were uniformly dispersed in genes and intergenic regions and along chromosomes. Genes-associated DMRs were mainly hypomethylated, while intergenic DMRs were mostly hypermethylated. We highlighted 4648 genes associated with DMRs (differentially methylated genes, DMGs), mostly protein-coding genes. Gene Ontology study performed with hypermethylated or hypomethylated DMGs highlighted categories related to response to oxidative stress and inflammation, as well as rumen functionality. The integration of our results with differential expression data identified genes whose expression varies as a function of DNA methylation. This subset of genes included those involved in immune system functioning, inflammation, fatty acid metabolism, and stress response. Our findings highlighted the impact of green forage on rumen DNA methylation, which potentially influences molecular mechanisms relevant to rumen functionality and, then, animal welfare and production, through the modulation of gene expression.
Collapse
Affiliation(s)
- Salvatore Fioriniello
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Angela Salzano
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | - Giovanna Bifulco
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| | | | - Floriana Della Ragione
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples, Italy.
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Isernia, Pozzilli, Italy.
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, Federico II University, Naples, Italy
| |
Collapse
|
2
|
Santana ML, Bignardi AB, Pereira RJ, Sterman Ferraz JB, Eler JP. Transgenerational effects of the maternal gestational environment on the post-natal performance of beef cattle: A reaction norm approach. J Anim Breed Genet 2025; 142:24-42. [PMID: 38808373 DOI: 10.1111/jbg.12883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
In tropical beef cattle production systems, animals are commonly raised on pastures, exposing them to potential stressors. The end of gestation typically overlaps with a dry period characterized by limited food availability. Late gestation is pivotal for fetal development, making it an ideal scenario for inter- and transgenerational effects of the maternal gestational environment. Intergenerational effects occur due to exposure during gestation, impacting the development of the embryo and its future germline. Transgenerational effects, however, extend beyond direct exposure to the subsequent generations. The objective of the present study was to verify these effects on the post-natal performance of zebu beef cattle. We extended the use of a reaction norm model to identify genetic variation in the animals' responses to transgenerational effects. The inter- and transgenerational effects were predominantly positive (-0.09% to 19.74%) for growth and reproductive traits, indicating improved animal performance on the phenotypic scale in more favourable maternal gestational environments. Additionally, these effects were more pronounced in the reproductive performance of females. On average, the ratio of direct additive genetic variances of the slope and intercept of the reaction norm ranged from 1.23% to 3.60% for direct and from 10.17% to 11.42% for maternal effects. Despite its relatively modest magnitude, this variation proved sufficient to prompt modifications in parameter estimates. The average percentage variation of direct heritability estimates ranged from 19.3% for scrotal circumference to 33.2% for yearling weight across the environmental descriptors evaluated. Genetic correlations between distant environments for the studied traits were generally high for direct effects and far from unity for maternal effects. Changes in EBV rankings of sires across different gestational environments were also observed. Due to the multifaceted nature of inter- and transgenerational effects of the maternal gestational environment on various traits of beef cattle raised under tropical pasture conditions, they should not be overlooked by producers and breeders. There were differences in the specific response of beef cattle to variations in the quality of the maternal gestational environment, which can be partially explained by transgenerational epigenetic inheritance. Adopting a reaction norm model to capture a portion of the additive variance induced by inter- or transgenerational effects could be an alternative for future research and animal genetic evaluations.
Collapse
Affiliation(s)
- Mário Luiz Santana
- Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
| | - Annaiza Braga Bignardi
- Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
| | - Rodrigo Junqueira Pereira
- Grupo de Melhoramento Animal de Mato Grosso (GMAT), Instituto de Ciências Agrárias e Tecnológicas, Universidade Federal de Rondonópolis, Rondonópolis, Brazil
| | - José Bento Sterman Ferraz
- Grupo de Melhoramento Animal e Biotecnologia (GMAB), FZEA, Departamento de Medicina Veterinária, Universidade de São Paulo, São Paulo, Brazil
| | - Joanir Pereira Eler
- Grupo de Melhoramento Animal e Biotecnologia (GMAB), FZEA, Departamento de Medicina Veterinária, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Zhong T, Zhao J, Zhan S, Wang L, Cao J, Dai D, Guo J, Li L, Zhang H, Niu L. LncRNA-mRNA modules involved in goat rumen development: Insights from genome-wide transcriptome profiling. Front Physiol 2022; 13:979121. [PMID: 36091364 PMCID: PMC9449361 DOI: 10.3389/fphys.2022.979121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
The rumen is an essential digestive and absorption organ of ruminants. During fetal life, lactation, and post-weaning period, goat rumen undergoes drastic morphological and metabolic-functional changes triggered by potential regulated genes and non-coding RNA molecules. As the essential regulatory factors, long non-coding RNAs (lncRNAs) have vital functions in various biological activities. However, their roles during rumen development are still poorly explored in ruminants. To explore the genome-wide expression profiles of lncRNAs and mRNAs in the goat rumens, we generated 5,007 lncRNAs and 19,738 mRNAs identified during the fetal and prepubertal stages by the high-throughput RNA sequencing. Notably, 365 lncRNAs and 2,877 mRNAs were considered to be differentially expressed. The weighted gene co-expression network analysis and functional analysis were performed to explore the regulatory roles of those differentially expressed molecules. The cis-and trans-target genes of differently expressed lncRNAs were enriched for pathways related to focal adhesion, cGMP-PKG signaling pathway, alpha-linolenic acid metabolism, arachidonic acid metabolism, and fat digestion and absorption. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses showed that the differently expressed genes mainly participated in mitotic cytokinesis, desmosome, fatty acid degradation, cell adhesion molecules, and fatty acid metabolism. The prediction of lncRNA-mRNA interaction networks further revealed transcripts potentially involved in rumen development. The present study profiles a global overview of lncRNAs and mRNAs during rumen development. Our findings provide valuable resources for genetic regulation and molecular mechanisms of rumen development in ruminants.
Collapse
|
4
|
Ibeagha-Awemu EM, Yu Y. Consequence of epigenetic processes on animal health and productivity: is additional level of regulation of relevance? Anim Front 2021; 11:7-18. [PMID: 34934525 PMCID: PMC8683131 DOI: 10.1093/af/vfab057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, Quebec, Canada
| | - Ying Yu
- Department of Animal Breeding and Genetics, College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Wang M, Ibeagha-Awemu EM. Impacts of Epigenetic Processes on the Health and Productivity of Livestock. Front Genet 2021; 11:613636. [PMID: 33708235 PMCID: PMC7942785 DOI: 10.3389/fgene.2020.613636] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
The dynamic changes in the epigenome resulting from the intricate interactions of genetic and environmental factors play crucial roles in individual growth and development. Numerous studies in plants, rodents, and humans have provided evidence of the regulatory roles of epigenetic processes in health and disease. There is increasing pressure to increase livestock production in light of increasing food needs of an expanding human population and environment challenges, but there is limited related epigenetic data on livestock to complement genomic information and support advances in improvement breeding and health management. This review examines the recent discoveries on epigenetic processes due to DNA methylation, histone modification, and chromatin remodeling and their impacts on health and production traits in farm animals, including bovine, swine, sheep, goat, and poultry species. Most of the reports focused on epigenome profiling at the genome-wide or specific genic regions in response to developmental processes, environmental stressors, nutrition, and disease pathogens. The bulk of available data mainly characterized the epigenetic markers in tissues/organs or in relation to traits and detection of epigenetic regulatory mechanisms underlying livestock phenotype diversity. However, available data is inadequate to support gainful exploitation of epigenetic processes for improved animal health and productivity management. Increased research effort, which is vital to elucidate how epigenetic mechanisms affect the health and productivity of livestock, is currently limited due to several factors including lack of adequate analytical tools. In this review, we (1) summarize available evidence of the impacts of epigenetic processes on livestock production and health traits, (2) discuss the application of epigenetics data in livestock production, and (3) present gaps in livestock epigenetics research. Knowledge of the epigenetic factors influencing livestock health and productivity is vital for the management and improvement of livestock productivity.
Collapse
Affiliation(s)
- Mengqi Wang
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
- Department of Animal Science, Laval University, Quebec, QC, Canada
| | - Eveline M. Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
DNA methylation studies in cattle. J Appl Genet 2021; 62:121-136. [PMID: 33400132 DOI: 10.1007/s13353-020-00604-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/23/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Investigation of the role of epigenetics in cattle breeding is gaining importance. DNA methylation represents an epigenetic modification which is essential for genomic stability and maintenance of development. Recently, DNA methylation research in cattle has intensified. The studies focus on the definition of methylomes in various organs and tissues in relation to the expression of genes underlying economically important traits, and explore methylome changes under developmental, environmental, disease, and diet influences. The investigations further characterize the methylation patterns of gametes in connection with their quality, and study methylome alterations in the developing naturally or assisted produced zygotes, embryos, and fetuses, considering their viability. A wide array of technologies developed for accurate and precise analysis of DNA methylation patterns is employed for both single-gene and genome-wide studies. Overall, the research is directed towards the identification of single methylation markers or their combinations which may be useful in the selection and breeding of animals to ensure cattle improvement.
Collapse
|
7
|
Wang X, Li X, Wu S, Shi K, He Y. DNA methylation and transcriptome comparative analysis for Lvliang Black goats in distinct feeding pattern reveals epigenetic basis for environment adaptation. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1914164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Xi Wang
- Department of Animal Breeding and Genetics, College of animal science, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Xi Li
- Department of Animal Breeding and Genetics, College of animal science, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Sujun Wu
- Department of Animal Breeding and Genetics, College of animal science, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Kerong Shi
- Department of Animal Breeding and Genetics, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Yanghua He
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
8
|
Zhao C, Ji G, Carrillo JA, Li Y, Tian F, Baldwin RL, Zan L, Song J. The Profiling of DNA Methylation and Its Regulation on Divergent Tenderness in Angus Beef Cattle. Front Genet 2020; 11:939. [PMID: 33005170 PMCID: PMC7479246 DOI: 10.3389/fgene.2020.00939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/28/2020] [Indexed: 01/18/2023] Open
Abstract
Beef is an essential food source in the world. Beef quality, especially tenderness, has a significant impact on consumer satisfaction and industry profit. Many types of research to date have focused on the exploration of physiological and developmental mechanisms of beef tenderness. Still, the role and impact of DNA methylation status on beef tenderness have yet to be elucidated. In this study, we exhaustively analyzed the DNA methylation status in divergent tenderness observed in Angus beef. We characterized the methylation profiles related to beef tenderness and explored methylation distributions on the whole genome. As a result, differentially methylated regions (DMRs) associated with tenderness and toughness of beef were identified. Importantly, we annotated these DMRs on the bovine genome and explored bio-pathways of underlying genes and methylation biomarkers in beef quality. Specifically, we observed that the ATP binding cassette subfamily and myosin-related genes were highly methylated gene sets, and generation of neurons, regulation of GTPase activity, ion transport and anion transport, etc., were the significant pathways related with beef tenderness. Moreover, we explored the relationship between DNA methylation and gene expression in DMRs. Some methylated genes were identified as candidate biomarkers for beef tenderness. These results provide not only novel epigenetic information associated with beef quality but offer more significant insights into meat science, which will further help us explore the mechanism of muscle biology.
Collapse
Affiliation(s)
- Chunping Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Guanyu Ji
- Shenzhen GenDo Health Sci&Tech Ltd., Shenzhen, China
| | - José A Carrillo
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Yaokun Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Fei Tian
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Ransom L Baldwin
- Animal Genomics and Improvement Laboratory, BARC, NEA, USDA, Beltsville, MD, United States
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| |
Collapse
|