1
|
Saab SA, Cardoso-Jaime V, Kefi M, Dimopoulos G. Advances in the dissection of Anopheles-Plasmodium interactions. PLoS Pathog 2025; 21:e1012965. [PMID: 40163471 PMCID: PMC11957333 DOI: 10.1371/journal.ppat.1012965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Malaria is a life-threatening mosquito-borne disease caused by the Plasmodium parasite, responsible for more than half a million deaths annually and principally involving children. The successful transmission of malaria by Anopheles mosquitoes relies on complex successive interactions between the parasite and various mosquito organs, host factors, and restriction factors. This review summarizes our current understanding of the mechanisms regulating Plasmodium infection of the mosquito vector at successive plasmodial developmental stages and highlights potential transmission-blocking targets and strategies.
Collapse
Affiliation(s)
- Sally A. Saab
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Victor Cardoso-Jaime
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States America
| |
Collapse
|
2
|
Liu T, Wang J, Li X, Yu S, Zheng D, Liu Z, Yang X, Wang Y. Human Defensin 5 Inhibits Plasmodium yoelii Development in Anopheles stephensi by Promoting Innate Immune Response. Trop Med Infect Dis 2024; 9:169. [PMID: 39195607 PMCID: PMC11360097 DOI: 10.3390/tropicalmed9080169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Malaria poses a serious threat to human health. Existing vector-based interventions have shortcomings, such as environmental pollution, strong resistance to chemical insecticides, and the slow effects of biological insecticides. Therefore, the need to develop novel strategies for controlling malaria, such as reducing mosquito vector competence, is escalating. Human defensin 5 (HD5) has broad-spectrum antimicrobial activity. To determine its effect on Plasmodium development in mosquitoes, HD5 was injected into Anopheles stephensi at various time points. The infection density of Plasmodium yoelii in An. stephensi was substantially reduced by HD5 treatment administered 24 h prior to infection or 6, 12, or 24 h post-infection (hpi). We found that HD5 treatment upregulated the expression of the innate immune effectors TEP1, MyD88, and Rel1 at 24 and 72 hpi. Furthermore, the RNA interference of MyD88, a key upstream molecule in the Toll signaling pathway, decreased the HD5-induced resistance of mosquitoes against Plasmodium infection. These results suggest that HD5 microinjection inhibits the development of malaria parasites in An. stephensi by activating the Toll signaling pathway.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (T.L.)
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (T.L.)
| | - Xin Li
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (T.L.)
| | - Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (T.L.)
| | - Dan Zheng
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (T.L.)
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zhilong Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (T.L.)
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (T.L.)
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China; (T.L.)
| |
Collapse
|
3
|
Cai JA, Christophides GK. Immune interactions between mosquitoes and microbes during midgut colonization. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101195. [PMID: 38552792 DOI: 10.1016/j.cois.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/07/2024]
Abstract
Mosquitoes encounter diverse microbes during their lifetime, including symbiotic bacteria, shaping their midgut ecosystem. The organization of the midgut supports microbiota persistence while defending against potential pathogens. The influx of nutrients during blood feeding triggers bacterial proliferation, challenging host homeostasis. Immune responses, aimed at controlling bacterial overgrowth, impact blood-borne pathogens such as malaria parasites. However, parasites deploy evasion strategies against mosquito immunity. Leveraging these mechanisms could help engineer malaria-resistant mosquitoes, offering a transformative tool for malaria elimination.
Collapse
Affiliation(s)
- Julia A Cai
- Department of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom
| | - George K Christophides
- Department of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, United Kingdom.
| |
Collapse
|
4
|
Zhang X, Zhang S, Kuang J, Sellens KA, Morejon B, Saab SA, Li M, Metto EC, An C, Culbertson CT, Osta MA, Scoglio C, Michel K. CLIPB4 Is a Central Node in the Protease Network that Regulates Humoral Immunity in Anopheles gambiae Mosquitoes. J Innate Immun 2023; 15:680-696. [PMID: 37703846 PMCID: PMC10603620 DOI: 10.1159/000533898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip-domain serine proteases (cSPs) and/or their non-catalytic homologs, which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network. CLIPB4 is tightly co-expressed with SRPN2 and forms protein complexes with SRPN2 in the hemolymph of immune-challenged female mosquitoes. Genetic and biochemical approaches validate our network analysis and show that CLIPB4 is required for melanization and antibacterial immunity, acting as a prophenoloxidase (proPO)-activating protease, which is inhibited by SRPN2. In addition, we provide novel insight into the structural organization of the cSP network in An. gambiae, by demonstrating that CLIPB4 is able to activate proCLIPB8, a cSP upstream of the proPO-activating protease CLIPB9. These data provide the first evidence that, in mosquitoes, cSPs provide branching points in immune protease networks and deliver positive reinforcement in proPO activation cascades.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Shasha Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | | | - Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sally A. Saab
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Miao Li
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Eve C. Metto
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Chunju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | | | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
5
|
Zhang X, Zhang S, Kuang J, Sellens KA, Morejon B, Saab SA, Li M, Metto EC, An C, Culbertson CT, Osta MA, Scoglio C, Michel K. CLIPB4 is a central node in the protease network that regulates humoral immunity in Anopheles gambiae mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.545904. [PMID: 37461554 PMCID: PMC10350057 DOI: 10.1101/2023.07.07.545904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Insect humoral immune responses are regulated in part by protease cascades, whose components circulate as zymogens in the hemolymph. In mosquitoes, these cascades consist of clip domain serine proteases (cSPs) and/or their non-catalytic homologs (cSPHs), which form a complex network, whose molecular make-up is not fully understood. Using a systems biology approach, based on a co-expression network of gene family members that function in melanization and co-immunoprecipitation using the serine protease inhibitor (SRPN)2, a key negative regulator of the melanization response in mosquitoes, we identify the cSP CLIPB4 from the African malaria mosquito Anopheles gambiae as a central node in this protease network. CLIPB4 is tightly co-expressed with SRPN2 and forms protein complexes with SRPN2 in the hemolymph of immune-challenged female mosquitoes. Genetic and biochemical approaches validate our network analysis and show that CLIPB4 is required for melanization and antibacterial immunity, acting as a prophenoloxidase (proPO)-activating protease, which is inhibited by SRPN2. In addition, we provide novel insight into the structural organization of the cSP network in An. gambiae, by demonstrating that CLIPB4 is able to activate proCLIPB8, a cSP upstream of the proPO-activating protease CLIPB9. These data provide the first evidence that, in mosquitoes, cSPs provide branching points in immune protease networks and deliver positive reinforcement in proPO activation cascades.
Collapse
Affiliation(s)
- Xiufeng Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Shasha Zhang
- Division of Biology, Kansas State University, Manhattan, KS, USA
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junyao Kuang
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | | | - Bianca Morejon
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sally A. Saab
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Miao Li
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Eve C. Metto
- Department of Chemistry, Kansas State University, Manhattan, KS, USA
| | - Chunju An
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | | | - Mike A. Osta
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Caterina Scoglio
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
6
|
Hearn J, Riveron JM, Irving H, Weedall GD, Wondji CS. Gene Conversion Explains Elevated Diversity in the Immunity Modulating APL1 Gene of the Malaria Vector Anopheles funestus. Genes (Basel) 2022; 13:1102. [PMID: 35741864 PMCID: PMC9222773 DOI: 10.3390/genes13061102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Leucine-rich repeat proteins and antimicrobial peptides are the key components of the innate immune response to Plasmodium and other microbial pathogens in Anopheles mosquitoes. The APL1 gene of the malaria vector Anopheles funestus has exceptional levels of non-synonymous polymorphism across the range of An. funestus, with an average πn of 0.027 versus a genome-wide average of 0.002, and πn is consistently high in populations across Africa. Elevated APL1 diversity was consistent between the independent pooled-template and target-enrichment datasets, however no link between APL1 diversity and insecticide resistance was observed. Although lacking the diversity of APL1, two further mosquito innate-immunity genes of the gambicin anti-microbial peptide family had πn/πs ratios greater than one, possibly driven by either positive or balancing selection. The cecropin antimicrobial peptides were expressed much more highly than other anti-microbial peptide genes, a result discordant with current models of anti-microbial peptide activity. The observed APL1 diversity likely results from gene conversion between paralogues, as evidenced by shared polymorphisms, overlapping read mappings, and recombination events among paralogues. In conclusion, we hypothesize that higher gene expression of APL1 than its paralogues is correlated with a more open chromatin formation, which enhances gene conversion and elevated diversity at this locus.
Collapse
Affiliation(s)
- Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (J.M.R.); (H.I.); (C.S.W.)
| | - Jacob M. Riveron
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (J.M.R.); (H.I.); (C.S.W.)
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (J.M.R.); (H.I.); (C.S.W.)
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK;
| | - Charles S. Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (J.M.R.); (H.I.); (C.S.W.)
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
| |
Collapse
|
7
|
Ruzzante L, Feron R, Reijnders MJMF, Thiébaut A, Waterhouse RM. Functional constraints on insect immune system components govern their evolutionary trajectories. Mol Biol Evol 2021; 39:6459179. [PMID: 34893861 PMCID: PMC8788225 DOI: 10.1093/molbev/msab352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Roles of constraints in shaping evolutionary outcomes are often considered in the contexts of developmental biology and population genetics, in terms of capacities to generate new variants and how selection limits or promotes consequent phenotypic changes. Comparative genomics also recognizes the role of constraints, in terms of shaping evolution of gene and genome architectures, sequence evolutionary rates, and gene gains or losses, as well as on molecular phenotypes. Characterizing patterns of genomic change where putative functions and interactions of system components are relatively well described offers opportunities to explore whether genes with similar roles exhibit similar evolutionary trajectories. Using insect immunity as our test case system, we hypothesize that characterizing gene evolutionary histories can define distinct dynamics associated with different functional roles. We develop metrics that quantify gene evolutionary histories, employ these to characterize evolutionary features of immune gene repertoires, and explore relationships between gene family evolutionary profiles and their roles in immunity to understand how different constraints may relate to distinct dynamics. We identified three main axes of evolutionary trajectories characterized by gene duplication and synteny, maintenance/stability and sequence conservation, and loss and sequence divergence, highlighting similar and contrasting patterns across these axes amongst subsets of immune genes. Our results suggest that where and how genes participate in immune responses limit the range of possible evolutionary scenarios they exhibit. The test case study system of insect immunity highlights the potential of applying comparative genomics approaches to characterize how functional constraints on different components of biological systems govern their evolutionary trajectories.
Collapse
Affiliation(s)
- Livio Ruzzante
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Maarten J M F Reijnders
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Antonin Thiébaut
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| |
Collapse
|
8
|
Rani J, Chauhan C, Das De T, Kumari S, Sharma P, Tevatiya S, Patel K, Mishra AK, Pandey KC, Singh N, Dixit R. Hemocyte RNA-Seq analysis of Indian malarial vectors Anopheles stephensi and Anopheles culicifacies: From similarities to differences. Gene 2021; 798:145810. [PMID: 34224830 DOI: 10.1016/j.gene.2021.145810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 02/05/2023]
Abstract
Anopheles stephensi and Anopheles culicifacies are dominant malarial vectors in urban and rural India, respectively. Both species carry significant biological differences in their behavioral adaptation and immunity, but the genetic basis of these variations are still poorly understood. Here, we uncovered the genetic differences of immune blood cells, that influence several immune-physiological responses. We generated, analyzed and compared the hemocyte RNA-Seq database of both mosquitoes. A total of 5,837,223,769 assembled bases collapsed into 7,595 and 3,791 transcripts, originating from hemocytes of laboratory-reared 3-4 days old naïve (sugar-fed) mosquitoes, Anopheles stephensi and Anopheles culicifacies respectively. Comparative GO annotation analysis revealed that both mosquito hemocytes encode similar proteins. Furthermore, while An. stephensi hemocytes showed a higher percentage of immune transcripts encoding APHAG (Autophagy), IMD (Immune deficiency pathway), PRDX (Peroxiredoxin), SCR (Scavenger receptor), IAP (Inhibitor of apoptosis), GALE (galactoside binding lectins), BGBPs (1,3 beta D glucan binding proteins), CASPs (caspases) and SRRP (Small RNA regulatory pathway), An. culicifacies hemocytes yielded a relatively higher percentage of transcripts encoding CLIP (Clip domain serine protease), FREP (Fibrinogen related proteins), PPO (Prophenol oxidase), SRPN (Serpines), ML (Myeloid differentiation 2-related lipid recognition protein), Toll path and TEP (Thioester protein), family proteins. However, a detailed comparative Interproscan analysis showed An. stephensi mosquito hemocytes encode proteins with increased repeat numbers as compared to An. culicifacies. Notably, we observed an abundance of transcripts showing significant variability of encoded proteins with repeats such as LRR (Leucine rich repeat), WD40 (W-D dipeptide), Ankyrin, Annexin, Tetratricopeptide and Mitochondrial substrate carrier repeat-containing family proteins, which may have a direct influence on species-specific immune-physiological responses. Summarily, our deep sequencing analysis unraveled that An. stephensi evolved with an expansion of repeat sequences in hemocyte proteins as compared to An. culicifacies, possibly providing an advantage for better adaptation to diverse environments.
Collapse
Affiliation(s)
- Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India; Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Karan Patel
- DNA Xperts Private Limited, Sector 63, Noida, Uttar Pradesh 20130, India
| | - Ashwani K Mishra
- DNA Xperts Private Limited, Sector 63, Noida, Uttar Pradesh 20130, India
| | - Kailash C Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India
| | - Namita Singh
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria, Research, Dwarka, New Delhi 110077, India.
| |
Collapse
|
9
|
Kulkarni A, Pandey A, Trainor P, Carlisle S, Chhilar JS, Yu W, Moon A, Xu J. Trained Immunity in Anopheles gambiae: Antibacterial Immunity Is Enhanced by Priming via Sugar Meal Supplemented With a Single Gut Symbiotic Bacterial Strain. Front Microbiol 2021; 12:649213. [PMID: 33995307 PMCID: PMC8121176 DOI: 10.3389/fmicb.2021.649213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
Mosquitoes have evolved an effective innate immune system. The mosquito gut accommodates various microbes, which play a crucial role in shaping the mosquito immune system during evolution. The resident bacteria in the gut microbiota play an essential role in priming basal immunity. In this study, we show that antibacterial immunity in Anopheles gambiae can be enhanced by priming via a sugar meal supplemented with bacteria. Serratia fonticola S1 and Enterobacter sp. Ag1 are gut bacteria in mosquitoes. The intrathoracic injection of the two bacteria can result in an acute hemocoelic infection in the naïve mosquitoes with mortality of ∼40% at 24 h post-infection. However, the Enterobacter orSerratia primed mosquitoes showed a better 24 h survival upon the bacterial challenge. The priming confers the protection with a certain degree of specificity, the Enterobacter primed mosquitoes had a better survival upon the Enterobacter but not Serratia challenge, and the Serratia primed mosquitoes had a better survival upon the Serratia but not Enterobacter challenge. To understand the priming-mediated immune enhancement, the transcriptomes were characterized in the mosquitoes of priming as well as priming plus challenges. The RNA-seq was conducted to profile 10 transcriptomes including three samples of priming conditions (native microbiota, Serratia priming, and Enterobacter priming), six samples of priming plus challenges with the two bacteria, and one sample of injury control. The three priming regimes resulted in distinctive transcriptomic profiles with about 60% of genes affected by both bacteria. Upon challenges, different primed mosquitoes displayed different transcriptomic patterns in response to different bacteria. When a primed cohort was challenged with a heterogenous bacterium, more responsive genes were observed than when challenged with a homogenous bacterium. As expected, many canonical immune genes were responsive to the priming and challenge, but much more non-immune genes with various functions were also responsive in the contexts, which implies that the prior priming triggers a delicately coordinated systemic regulation that results in an enhanced immunity against the subsequent challenge. Besides the participation of typical immune pathways, the transcriptome data suggest the involvement of lysosome and metabolism in the context. Overall, this study demonstrated a trained immunity via priming with bacteria in diet.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Ashmita Pandey
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Patrick Trainor
- Department of Economics, Applied Statistics and International Business, New Mexico State University, Las Cruces, NM, United States
| | - Samantha Carlisle
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Jainder S. Chhilar
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Alex Moon
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
10
|
Sousa GL, Bishnoi R, Baxter RHG, Povelones M. The CLIP-domain serine protease CLIPC9 regulates melanization downstream of SPCLIP1, CLIPA8, and CLIPA28 in the malaria vector Anopheles gambiae. PLoS Pathog 2020; 16:e1008985. [PMID: 33045027 PMCID: PMC7580898 DOI: 10.1371/journal.ppat.1008985] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/22/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023] Open
Abstract
The arthropod melanization immune response is activated by extracellular protease cascades predominantly comprised of CLIP-domain serine proteases (CLIP-SPs) and serine protease homologs (CLIP-SPHs). In the malaria vector, Anopheles gambiae, the CLIP-SPHs SPCLIP1, CLIPA8, and CLIPA28 form the core of a hierarchical cascade downstream of mosquito complement that is required for microbial melanization. However, our understanding of the regulatory relationship of the CLIP-SPH cascade with the catalytic CLIP-SPs driving melanization is incomplete. Here, we report on the development of a novel screen to identify melanization pathway components based on the quantitation of melanotic mosquito excreta, eliminating the need for microdissections or hemolymph enzymatic assays. Using this screen, we identified CLIPC9 and subsequent functional analyses established that this protease is essential for the melanization of both Escherichia coli and the rodent malaria parasite Plasmodium berghei. Mechanistically, septic infection with E. coli promotes CLIPC9 cleavage and both full-length and cleaved CLIPC9 localize to this bacterium in a CLIPA8-dependent manner. The steady state level of CLIPC9 in the hemolymph is regulated by thioester-containing protein 1 (TEP1), suggesting it functions downstream of mosquito complement. In support, CLIPC9 cleavage is inhibited following SPCLIP1, CLIPA8, and CLIPA28 knockdown positioning it downstream of the CLIP-SPH cascade. Moreover, like CLIPA8 and CLIPA28, CLIPC9 processing is negatively regulated by serine protease inhibitor 2 (SRPN2). This report demonstrates how our novel excretion-based approach can be utilized to dissect the complex protease networks regulating mosquito melanization. Collectively, our findings establish that CLIPC9 is required for microbial melanization in An. gambiae and shed light on how the CLIP-SPH cascade regulates this potent immune response.
Collapse
Affiliation(s)
- Gregory L. Sousa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ritika Bishnoi
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Richard H. G. Baxter
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Michael Povelones
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
11
|
Mitri C, Bischoff E, Belda Cuesta E, Volant S, Ghozlane A, Eiglmeier K, Holm I, Dieme C, Brito-Fravallo E, Guelbeogo WM, Sagnon N, Riehle MM, Vernick KD. Leucine-Rich Immune Factor APL1 Is Associated With Specific Modulation of Enteric Microbiome Taxa in the Asian Malaria Mosquito Anopheles stephensi. Front Microbiol 2020; 11:306. [PMID: 32174902 PMCID: PMC7054466 DOI: 10.3389/fmicb.2020.00306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
The commensal gut microbiome is contained by the enteric epithelial barrier, but little is known about the degree of specificity of host immune barrier interactions for particular bacterial taxa. Here, we show that depletion of leucine-rich repeat immune factor APL1 in the Asian malaria mosquito Anopheles stephensi is associated with higher midgut abundance of just the family Enterobacteraceae, and not generalized dysbiosis of the microbiome. The effect is explained by the response of a narrow clade containing two main taxa related to Klebsiella and Cedecea. Analysis of field samples indicate that these two taxa are recurrent members of the wild Anopheles microbiome. Triangulation using sequence and functional data incriminated relatives of C. neteri and Cedecea NFIX57 as candidates for the Cedecea component, and K. michiganensis, K. oxytoca, and K.sp. LTGPAF-6F as candidates for the Klebsiella component. APL1 presence is associated with host ability to specifically constrain the abundance of a narrow microbiome clade of the Enterobacteraceae, and the immune factor may promote homeostasis of this clade in the enteric microbiome for host benefit.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Eugeni Belda Cuesta
- Integromics Unit, Institute of Cardiometabolism and Nutrition, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
- CNRS USR 3756, Institut Pasteur, Paris, France
| | - Amine Ghozlane
- Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Paris, France
- CNRS USR 3756, Institut Pasteur, Paris, France
| | - Karin Eiglmeier
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Inge Holm
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Constentin Dieme
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Emma Brito-Fravallo
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Wamdaogo M. Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - N’Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Michelle M. Riehle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Zhao L, Alto BW, Jiang Y, Yu F, Zhang Y. Transcriptomic Analysis of Aedes aegypti Innate Immune System in Response to Ingestion of Chikungunya Virus. Int J Mol Sci 2019; 20:ijms20133133. [PMID: 31252518 PMCID: PMC6651163 DOI: 10.3390/ijms20133133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/21/2019] [Accepted: 06/23/2019] [Indexed: 01/07/2023] Open
Abstract
Aedes aegypti (L.) is the primary vector of emergent mosquito-borne viruses, including chikungunya, dengue, yellow fever, and Zika viruses. To understand how these viruses interact with their mosquito vectors, an analysis of the innate immune system response was conducted. The innate immune system is a conserved evolutionary defense strategy and is the dominant immune system response found in invertebrates and vertebrates, as well as plants. RNA-sequencing analysis was performed to compare target transcriptomes of two Florida Ae. aegypti strains in response to chikungunya virus infection. We analyzed a strain collected from a field population in Key West, Florida, and a laboratory strain originating from Orlando. A total of 1835 transcripts were significantly expressed at different levels between the two Florida strains of Ae. aegypti. Gene Ontology analysis placed these genes into 12 categories of biological processes, including 856 transcripts (up/down regulated) with more than 1.8-fold (p-adj (p-adjust value) ≤ 0.01). Transcriptomic analysis and q-PCR data indicated that the members of the AaeCECH genes are important for chikungunya infection response in Ae. aegypti. These immune-related enzymes that the chikungunya virus infection induces may inform molecular-based strategies for interruption of arbovirus transmission by mosquitoes.
Collapse
Affiliation(s)
- Liming Zhao
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street South East, Vero Beach, FL 32962, USA.
| | - Barry W Alto
- Florida Medical Entomology Laboratory, University of Florida, 200 9th Street South East, Vero Beach, FL 32962, USA
| | - Yongxing Jiang
- Mosquito Control Services, City of Gainesville, 405 NW 39th Avenue Gainesville, FL 32609, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL 32611, USA
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL 32611, USA
| |
Collapse
|