1
|
Bender AN, Krause DJ, Goebel ME, Hoffman JI, Lewallen EA, Bonin CA. Genetic diversity and demographic history of the leopard seal: A Southern Ocean top predator. PLoS One 2023; 18:e0284640. [PMID: 37566609 PMCID: PMC10420386 DOI: 10.1371/journal.pone.0284640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 08/13/2023] Open
Abstract
Leopard seals (Hydrurga leptonyx) are top predators that can exert substantial top-down control of their Antarctic prey species. However, population trends and genetic diversity of leopard seals remain understudied, limiting our understanding of their ecological role. We investigated the genetic diversity, effective population size and demographic history of leopard seals to provide fundamental data that contextualizes their predatory influence on Antarctic ecosystems. Ninety leopard seals were sampled from the northern Antarctic Peninsula during the austral summers of 2008-2019 and a 405bp segment of the mitochondrial control region was sequenced for each individual. We uncovered moderate levels of nucleotide (π = 0.013) and haplotype (Hd = 0.96) diversity, and the effective population size was estimated at around 24,000 individuals (NE = 24,376; 95% CI: 16,876-33,126). Consistent with findings from other ice-breeding pinnipeds, Bayesian skyline analysis also revealed evidence for population expansion during the last glacial maximum, suggesting that historical population growth may have been boosted by an increase in the abundance of sea ice. Although leopard seals can be found in warmer, sub-Antarctic locations, the species' core habitat is centered on the Antarctic, making it inherently vulnerable to the loss of sea ice habitat due to climate change. Therefore, detailed assessments of past and present leopard seal population trends are needed to inform policies for Antarctic ecosystems.
Collapse
Affiliation(s)
- Arona N. Bender
- Marine and Environmental Sciences Department, Hampton University, Hampton, VA, United States of America
| | - Douglas J. Krause
- Antarctic Ecosystem Research Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA, United States of America
| | - Michael E. Goebel
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Joseph I. Hoffman
- Department of Animal Behaviour, University of Bielefeld, Bielefeld, Germany
- British Antarctic Survey, Cambridge, United Kingdom
| | - Eric A. Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, United States of America
| | - Carolina A. Bonin
- Marine and Environmental Sciences Department, Hampton University, Hampton, VA, United States of America
- Department of Biological Sciences, Hampton University, Hampton, VA, United States of America
| |
Collapse
|
2
|
Stock A, Murray CC, Gregr EJ, Steenbeek J, Woodburn E, Micheli F, Christensen V, Chan KMA. Exploring multiple stressor effects with Ecopath, Ecosim, and Ecospace: Research designs, modeling techniques, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161719. [PMID: 36693571 DOI: 10.1016/j.scitotenv.2023.161719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Understanding the cumulative effects of multiple stressors is a research priority in environmental science. Ecological models are a key component of tackling this challenge because they can simulate interactions between the components of an ecosystem. Here, we ask, how has the popular modeling platform Ecopath with Ecosim (EwE) been used to model human impacts related to climate change, land and sea use, pollution, and invasive species? We conducted a literature review encompassing 166 studies covering stressors other than fishing mostly in aquatic ecosystems. The most modeled stressors were physical climate change (60 studies), species introductions (22), habitat loss (21), and eutrophication (20), using a range of modeling techniques. Despite this comprehensive coverage, we identified four gaps that must be filled to harness the potential of EwE for studying multiple stressor effects. First, only 12% of studies investigated three or more stressors, with most studies focusing on single stressors. Furthermore, many studies modeled only one of many pathways through which each stressor is known to affect ecosystems. Second, various methods have been applied to define environmental response functions representing the effects of single stressors on species groups. These functions can have a large effect on the simulated ecological changes, but best practices for deriving them are yet to emerge. Third, human dimensions of environmental change - except for fisheries - were rarely considered. Fourth, only 3% of studies used statistical research designs that allow attribution of simulated ecosystem changes to stressors' direct effects and interactions, such as factorial (computational) experiments. None made full use of the statistical possibilities that arise when simulations can be repeated many times with controlled changes to the inputs. We argue that all four gaps are feasibly filled by integrating ecological modeling with advances in other subfields of environmental science and in computational statistics.
Collapse
Affiliation(s)
- A Stock
- Institute for Resources, Environment and Sustainability, University of British Columbia, AERL Building, 429-2202 Main Mall, Vancouver V6T 1Z4, BC, Canada.
| | - C C Murray
- Fisheries and Oceans Canada, Institute of Ocean Sciences, 9860 West Saanich Road, Sidney, BC V8L 5T5, Canada
| | - E J Gregr
- Institute for Resources, Environment and Sustainability, University of British Columbia, AERL Building, 429-2202 Main Mall, Vancouver V6T 1Z4, BC, Canada; SciTech Environmental Consulting, Vancouver, BC, Canada
| | - J Steenbeek
- Ecopath International Initiative (EII) Research Association, Barcelona, Spain
| | - E Woodburn
- Institute for Resources, Environment and Sustainability, University of British Columbia, AERL Building, 429-2202 Main Mall, Vancouver V6T 1Z4, BC, Canada
| | - F Micheli
- Hopkins Marine Station, Oceans Department, Stanford University, Pacific Grove, CA 93950, USA; Stanford Center for Ocean Solutions, Pacific Grove, CA 93950, USA
| | - V Christensen
- Ecopath International Initiative (EII) Research Association, Barcelona, Spain; Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| | - K M A Chan
- Institute for Resources, Environment and Sustainability, University of British Columbia, AERL Building, 429-2202 Main Mall, Vancouver V6T 1Z4, BC, Canada; Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
McCormack SA, Melbourne-Thomas J, Trebilco R, Griffith G, Hill SL, Hoover C, Johnston NM, Marina TI, Murphy EJ, Pakhomov EA, Pinkerton M, Plagányi É, Saravia LA, Subramaniam RC, Van de Putte AP, Constable AJ. Southern Ocean Food Web Modelling: Progress, Prognoses, and Future Priorities for Research and Policy Makers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Graphical AbstractGraphical summary of multiple aspects of Southern Ocean food web structure and function including alternative energy pathways through pelagic food webs, climate change and fisheries impacts and the importance of microbial networks and benthic systems.
Collapse
|
4
|
Krüger L, Huerta MF, Santa Cruz F, Cárdenas CA. Antarctic krill fishery effects over penguin populations under adverse climate conditions: Implications for the management of fishing practices. AMBIO 2021; 50:560-571. [PMID: 32979187 PMCID: PMC7882667 DOI: 10.1007/s13280-020-01386-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Fast climate changes in the western Antarctic Peninsula are reducing krill density, which along with increased fishing activities in recent decades, may have had synergistic effects on penguin populations. We tested that assumption by crossing data on fishing activities and Southern Annular Mode (an indicator of climate change in Antarctica) with penguin population data. Increases in fishing catch during the non-breeding period were likely to result in impacts on both chinstrap (Pygoscelis antarcticus) and gentoo (P. papua) populations. Catches and climate change together elevated the probability of negative population growth rates: very high fishing catch on years with warm winters and low sea ice (associated with negative Southern Annular Mode values) implied a decrease in population size in the following year. The current management of krill fishery in the Southern Ocean takes into account an arbitrary and fixed catch limit that does not reflect the variability of the krill population under effects of climate change, therefore affecting penguin populations when the environmental conditions were not favorable.
Collapse
Affiliation(s)
- Lucas Krüger
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
| | - Magdalena F. Huerta
- Centro de Humedales Río Cruces, Universidad Austral de Chile, Camino Cabo Blanco Alto s/n, Valdivia, Chile
| | - Francisco Santa Cruz
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
| | - César A. Cárdenas
- Departamento Científico, Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile
| |
Collapse
|
5
|
McCormack SA, Melbourne‐Thomas J, Trebilco R, Blanchard JL, Raymond B, Constable A. Decades of dietary data demonstrate regional food web structures in the Southern Ocean. Ecol Evol 2021; 11:227-241. [PMID: 33437425 PMCID: PMC7790630 DOI: 10.1002/ece3.7017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/11/2020] [Accepted: 10/23/2020] [Indexed: 11/07/2022] Open
Abstract
Understanding regional-scale food web structure in the Southern Ocean is critical to informing fisheries management and assessments of climate change impacts on Southern Ocean ecosystems and ecosystem services. Historically, a large component of Southern Ocean ecosystem research has focused on Antarctic krill, which provide a short, highly efficient food chain, linking primary producers to higher trophic levels. Over the last 15 years, the presence of alternative energy pathways has been identified and hypotheses on their relative importance in different regions raised. Using the largest circumpolar dietary database ever compiled, we tested these hypotheses using an empirical circumpolar comparison of food webs across the four major regions/sectors of the Southern Ocean (defined as south of 40°S) within the austral summer period. We used network analyses and generalizations of taxonomic food web structure to confirm that while Antarctic krill are dominant as the mid-trophic level for the Atlantic and East Pacific food webs (including the Scotia Arc and Western Antarctic Peninsula), mesopelagic fish and other krill species are dominant contributors to predator diets in the Indian and West Pacific regions (East Antarctica and the Ross Sea). We also highlight how tracking data and habitat modeling for mobile top predators in the Southern Ocean show that these species integrate food webs over large regional scales. Our study provides a quantitative assessment, based on field observations, of the degree of regional differentiation in Southern Ocean food webs and the relative importance of alternative energy pathways between regions.
Collapse
Affiliation(s)
- Stacey A. McCormack
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
| | - Jessica Melbourne‐Thomas
- CSIRO [Commonwealth Scientific and Industrial Research Organisation] Oceans and AtmosphereHobartTas.Australia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTas.Australia
| | - Rowan Trebilco
- CSIRO [Commonwealth Scientific and Industrial Research Organisation] Oceans and AtmosphereHobartTas.Australia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTas.Australia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTas.Australia
- Australian Antarctic Program PartnershipUniversity of TasmaniaHobartTasmaniaAustralia
| | - Ben Raymond
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTas.Australia
- Australian Antarctic DivisionDepartment of Agriculture, Water and EnvironmentKingstonTas.Australia
- Australian Antarctic Program PartnershipUniversity of TasmaniaHobartTasmaniaAustralia
| | - Andrew Constable
- Centre for Marine SocioecologyUniversity of TasmaniaHobartTas.Australia
- Australian Antarctic DivisionDepartment of Agriculture, Water and EnvironmentKingstonTas.Australia
| |
Collapse
|
6
|
Comparing feedback and spatial approaches to advance ecosystem-based fisheries management in a changing Antarctic. PLoS One 2020; 15:e0231954. [PMID: 32898163 PMCID: PMC7478840 DOI: 10.1371/journal.pone.0231954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/04/2020] [Indexed: 11/25/2022] Open
Abstract
To implement ecosystem-based approaches to fisheries management, decision makers need insight on the potential costs and benefits of the policy options available to them. In the Southern Ocean, two such options for addressing trade-offs between krill-dependent predators and the krill fishery include “feedback management” (FBM) strategies and marine protected areas (MPAs); in theory, the first adjusts to change, while the latter is robust to change. We compared two possible FBM options to a proposed MPA in the Antarctic Peninsula and Scotia Sea given a changing climate. One of our feedback options, based on the density of Antarctic krill (Euphasia superba), projected modest increases in the abundances of some populations of krill predators, whereas outcomes from our second FBM option, based on changes in the abundances of penguins, were more mixed, with some areas projecting predator population declines. The MPA resulted in greater increases in some, but not all, predator populations than either feedback strategy. We conclude that these differing outcomes relate to the ways the options separate fishing and predator foraging, either by continually shifting the spatial distribution of fishing away from potentially vulnerable populations (FBM) or by permanently closing areas to fishing (the MPA). For the krill fishery, we show that total catches could be maintained using an FBM approach or slightly increased with the MPA, but the fishery would be forced to adjust fishing locations and sometimes fish in areas of relatively low krill density–both potentially significant costs. Our work demonstrates the potential to shift, rather than avoid, ecological risks and the likely costs of fishing, indicating trade-offs for decision makers to consider.
Collapse
|
7
|
Krause DJ, Goebel ME, Kurle CM. Leopard seal diets in a rapidly warming polar region vary by year, season, sex, and body size. BMC Ecol 2020; 20:32. [PMID: 32493329 PMCID: PMC7271520 DOI: 10.1186/s12898-020-00300-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/23/2020] [Indexed: 11/21/2022] Open
Abstract
Background Resolving the preferred prey items and dietary proportions of leopard seals is central to understanding food-web dynamics in the rapidly-warming Antarctic Peninsula region. Previous studies have identified a wide range of prey items; however, due to anecdotal or otherwise limited information, leopard seal diets remain unresolved by seal sex, individual, body size, region, and season. Over the 2013, 2014, and 2017 field seasons we collected scat, tissue samples (red blood cells and plasma; n = 23) for stable isotope analyses, and previously-reported animal-borne video from 19 adult leopard seals foraging near mesopredator breeding colonies at Cape Shirreff, Livingston Island. We summarized a priori diet information from scat and video analysis and applied a three-isotope (δ13C, δ15N, δ34S), four-source (fish, fur seal, krill, penguin) Bayesian mixing model to examine temporal variability in both prey sources and leopard seal tissues. Results The austral spring diets of males and females focused on Antarctic krill (31.7–38.0%), notothen fish (31.6–36.5%), and penguin (24.4–26.9%) and were consistent across all 3 years. Several lines of evidence suggest the transition to summer foraging was distinct for males and females. Female diets transitioned rapidly to higher δ15N values (+2.1‰), indicating increased consumption of penguin (29.5–46.2%) and energy-dense Antarctic fur seal pup (21.3–37.6%). Conclusions The seasonal increase in leopard seal δ15N values, and thus fur seal in their diet, was predictably related to larger body size; it may also be forcing reductions to the largest Antarctic fur seal colony in the Antarctic Peninsula. Our ensemble sampling approach reduces historical biases in monitoring marine apex predator diets. Further, our results are necessary to best inform regional fisheries management planning.
Collapse
Affiliation(s)
- Douglas J Krause
- Antarctic Ecosystem Research Division, NOAA Fisheries-Southwest Fisheries Science Center, 8901 La Jolla Shores Dr., La Jolla, CA, USA.
| | - Michael E Goebel
- Antarctic Ecosystem Research Division, NOAA Fisheries-Southwest Fisheries Science Center, 8901 La Jolla Shores Dr., La Jolla, CA, USA
| | - Carolyn M Kurle
- Divsion of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA
| |
Collapse
|