1
|
Edvinsson L, Krause DN. Switching Off Vascular MAPK Signaling: A Novel Strategy to Prevent Delayed Cerebral Ischemia Following Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:952-961. [PMID: 38334872 PMCID: PMC12045832 DOI: 10.1007/s12975-024-01234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Patients who initially survive the rupture and repair of a brain aneurysm often take a devastating turn for the worse some days later and die or suffer permanent neurologic deficits. This catastrophic sequela is attributed to a delayed phase of global cerebral ischemia (DCI) following aneurysmal subarachnoid hemorrhage (aSAH), but we lack effective treatment. Here we present our view, based on 20 years of research, that the initial drop in blood flow at the time of rupture triggers genomic responses throughout the brain vasculature that manifest days later as increased vasoconstriction and decreased cerebral blood flow. We propose a novel treatment strategy to prevent DCI by early inhibition of the vascular mitogen-activated protein kinase (MAPK) pathway that triggers expression of vasoconstrictor and inflammatory mediators. We summarize evidence from experimental SAH models showing early treatment with MAPK inhibitors "switches off" these detrimental responses, maintains flow, and improves neurological outcome. This promising therapy is currently being evaluated in clinical trials.
Collapse
Affiliation(s)
- Lars Edvinsson
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Sölvegatan 19, 22100, Lund, Sweden.
- Department of Experimental Research, Glostrup Research Institute, CopenhagenUniversity, Copenhagen, Denmark.
| | - Diana N Krause
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Sölvegatan 19, 22100, Lund, Sweden
- Department of Pharmaceutical Sciences, SchoolofPharmacy&PharmaceuticalSciences, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
2
|
Salmonella effector SopB reorganizes cytoskeletal vimentin to maintain replication vacuoles for efficient infection. Nat Commun 2023; 14:478. [PMID: 36717589 PMCID: PMC9885066 DOI: 10.1038/s41467-023-36123-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
A variety of intracellular bacteria modulate the host cytoskeleton to establish subcellular niches for replication. However, the role of intermediate filaments, which are crucial for mechanical strength and resilience of the cell, and in bacterial vacuole preservation remains unclear. Here, we show that Salmonella effector SopB reorganizes the vimentin network to form cage-like structures that surround Salmonella-containing vacuoles (SCVs). Genetic removal of vimentin markedly disrupts SCV organization, significantly reduces bacterial replication and cell death. Mechanistically, SopB uses its N-terminal Cdc42-binding domain to interact with and activate Cdc42 GTPase, which in turn recruits vimentin around SCVs. A high-content imaging-based screening identified that MEK1/2 inhibition led to vimentin dispersion. Our work therefore elucidates the signaling axis SopB-Cdc42-MEK1/2 as mobilizing host vimentin to maintain concrete SCVs and identifies a mechanism contributing to Salmonella replication. Importantly, Trametinib, a clinically-approved MEK1/2 inhibitor identified in the screen, displayed significant anti-infection efficacy against Salmonella both in vitro and in vivo, and may provide a therapeutic option for treating drug-tolerant salmonellosis.
Collapse
|
3
|
Bömers JP, Grell AS, Edvinsson L, Johansson SE, Haanes KA. The MEK Inhibitor Trametinib Improves Outcomes following Subarachnoid Haemorrhage in Female Rats. Pharmaceuticals (Basel) 2022; 15:ph15121446. [PMID: 36558896 PMCID: PMC9785726 DOI: 10.3390/ph15121446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Aneurysmal subarachnoid haemorrhage (SAH) is a haemorrhagic stroke that causes approximately 5% of all stroke incidents. We have been working on a treatment strategy that targets changes in cerebrovascular contractile receptors, by blocking the MEK/ERK1/2 signalling pathway. Recently, a positive effect of trametinib was found in male rats, but investigations of both sexes in pre-clinical studies are an important necessity. In the current study, a SAH was induced in female rats, by autologous blood-injection into the pre-chiasmatic cistern. This produces a dramatic, transient increase in intracranial pressure (ICP) and an acute and prolonged decrease in cerebral blood flow. Rats were then treated with either vehicle or three doses of 0.5 mg/kg trametinib (specific MEK/ERK1/2 inhibitor) intraperitoneally at 3, 9, and 24 h after the SAH. The outcome was assessed by a panel of tests, including intracranial pressure (ICP), sensorimotor tests, a neurological outcome score, and myography. We observed a significant difference in arterial contractility and a reduction in subacute increases in ICP when the rats were treated with trametinib. The sensory motor and neurological outcomes in trametinib-treated rats were significantly improved, suggesting that the improved outcome in females is similar to that of males treated with trametinib.
Collapse
Affiliation(s)
- Jesper Peter Bömers
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Department of Neurosurgery, Copenhagen University Hospital—Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Anne-Sofie Grell
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, 221 84 Lund, Sweden
| | - Sara Ellinor Johansson
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital—Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
- Correspondence:
| |
Collapse
|
4
|
You Y, Niu Y, Zhang J, Huang S, Ding P, Sun F, Wang X. U0126: Not only a MAPK kinase inhibitor. Front Pharmacol 2022; 13:927083. [PMID: 36091807 PMCID: PMC9452634 DOI: 10.3389/fphar.2022.927083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
U0126, as an inhibitor of the MAPK signaling pathway, is closely related to various biological processes, such as differentiation, cell growth, autophagy, apoptosis, and stress responses. It makes U0126 play an essential role in balancing cellular homeostasis. Although U0126 has been suggested to inhibit various cancers, its complete mechanisms have not been clarified in cancers. This review summarized the most recent and relevant research on the many applications of U0126 and described its role and mechanisms in different cancer cell types. Moreover, some acknowledged functions of U0126 researched in the laboratory were listed in our review. We discussed the probability of using U0126 to restain cancers or suppress the MAPK pathway as a novel way of cancer treatment.
Collapse
Affiliation(s)
- Yijie You
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Yunlian Niu
- Department of Neurology, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Jian Zhang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Sheng Huang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Peiyuan Ding
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Fengbing Sun
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Xuhui Wang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
5
|
Wang R, Wang J, Sun J, Yang K, Wang N, Qin B. PM 2.5 causes vascular hyperreactivity through the upregulation of the thromboxane A 2 receptor and activation of MAPK pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:33095-33105. [PMID: 35025049 DOI: 10.1007/s11356-021-18303-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Airborne fine particulate matter (PM2.5) is a major cardiovascular disease environmental risk factor. However, the underlying mechanism of action is not fully understood. Thromboxane is widely known as an important vasoconstrictor substance that binds to G-protein-coupled receptors (GPCR) in arteries and is involved in various cardiovascular diseases. This study examined the effect of PM2.5 on thromboxane A2 receptor (TP) in the mesenteric arteries and the underlying intracellular signal mechanisms (by focusing on the mitogen-activated protein kinase (MAPK) pathway). Rat mesenteric artery segments were exposed to PM2.5 in the presence of MAPK pathway inhibitors. The contractile reactivity of mesenteric arteries was analyzed using wire myography. The mRNA and protein expression of TP receptor and MAPK pathway molecules were detected by real-time PCR and Western blot. Mesenteric artery receptor localization was assessed by immunohistochemistry. The results showed that TP receptor-mediated maximum contraction response was achieved after exposing arteries to 1.0 μg/mL PM2.5 for 16 h (Emax: 228 ± 16% of K+). Moreover, inhibitor U0126 (ERK1/2 inhibitor), SB203580 (p38 inhibitor), and SP600125 (JNK inhibitor) depressed the increased TP receptor-mediated contractile responses (reduced rage were 17.9 ~ 59.6%). These inhibitors also decreased the increased mRNA expression and protein of the TP receptor induced by PM2.5 (reduced by more than 50% and 46%, respectively). The immunoreactivity of increased TP receptor expression was primarily localized in the cytoplasm. In addition, phosphorylation quantitative analysis showed that in the presence of MAPK inhibitors, the PM2.5-induced phosphorylation of ERK1/2, p38, and JNK protein increased by more than 30.0 ~ 130.3%. These results suggest that PM2.5 upregulates the TP receptor of rat mesenteric arteries through activation of the ERK1/2, p38, and JNK MAPK pathways.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacology, Xi'an Medical University, 1 Xin Wang Road, Xi'an, 710021, Shaanxi, China
- Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Jinhui Wang
- Xi'an Children's Hospital, Xi'an, Shaanxi, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kuan Yang
- Department of Pharmacology, Xi'an Medical University, 1 Xin Wang Road, Xi'an, 710021, Shaanxi, China
| | - Nana Wang
- Department of Pharmacology, Xi'an Medical University, 1 Xin Wang Road, Xi'an, 710021, Shaanxi, China
| | - Bei Qin
- Department of Pharmacology, Xi'an Medical University, 1 Xin Wang Road, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
6
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Grossen AA, Ernst GL, Bauer AM. Update on intrathecal management of cerebral vasospasm: a systematic review and meta-analysis. Neurosurg Focus 2022; 52:E10. [PMID: 35231885 DOI: 10.3171/2021.12.focus21629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) accounts for a relatively small portion of strokes but has the potential to cause permanent neurological deficits. Vasospasm with delayed ischemic neurological deficit is thought to be responsible for much of the morbidity associated with aSAH. This has illuminated some treatment options that have the potential to target specific components of the vasospasm cascade. Intrathecal management via lumbar drain (LD) or external ventricular drain (EVD) offers unique advantages in this patient population. The aim of this review was to provide an update on intrathecal vasospasm treatments, emphasizing the need for larger-scale trials and updated protocols using data-driven evidence. METHODS A search of PubMed, Ovid MEDLINE, and Cochrane databases included the search terms (subarachnoid hemorrhage) AND (vasospasm OR delayed cerebral ischemia) AND (intrathecal OR intraventricular OR lumbar drain OR lumbar catheter) for 2010 to the present. Next, a meta-analysis was performed of select therapeutic regimens. The primary endpoints of analysis were vasospasm, delayed cerebral ischemia (DCI), cerebral infarction, and functional outcome. RESULTS Twenty-nine studies were included in the analysis. There were 10 studies in which CSF drainage was the primary experimental group. Calcium channel antagonists were the focus of 7 studies. Fibrinolytics and other vasodilators were each examined in 6 studies. The meta-analysis included studies examining CSF drainage via LD (n = 4), tissue plasminogen activator in addition to EVD (n = 3), intraventricular nimodipine (n = 2), and cisternal magnesium (n = 2). Results showed that intraventricular nimodipine decreased vasospasm (OR 0.59, 95% CI 0.37-0.94; p = 0.03). Therapies that significantly reduced DCI were CSF drainage via LD (OR 0.47, 95% CI 0.25-0.88; p = 0.02) and cisternal magnesium (OR 0.27, 95% CI 0.07-1.02; p = 0.05). CSF drainage via LD was also found to significantly reduce the incidence of cerebral infarction (OR 0.35, 95% 0.24-0.51; p < 0.001). Lastly, functional outcome was significantly better in patients who received CSF drainage via LD (OR 2.42, 95% CI 1.39-4.21; p = 0.002). CONCLUSIONS The authors' results showed that intrathecal therapy is a safe and feasible option following aSAH. It has been shown to attenuate cerebral vasospasm, reduce the incidence of DCI, and improve clinical outcome. The authors support the use of intrathecal management in the prevention and rescue management of cerebral vasospasm. More randomized controlled trials are warranted to determine the best combination of pharmaceutical agents and administration route in order to formulate a standardized treatment approach.
Collapse
|
8
|
Rehnström M, Ahnstedt H, Krause DN, Edvinsson ML, Haanes KA, Edvinsson L. Ovariectomy Reduces Vasocontractile Responses of Rat Middle Cerebral Arteries After Focal Cerebral Ischemia. J Cardiovasc Pharmacol 2022; 79:e122-e128. [PMID: 34654785 DOI: 10.1097/fjc.0000000000001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/17/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Effects of sex hormones on stroke outcome are not fully understood. A deleterious consequence of cerebral ischemia is upregulation of vasoconstrictor receptors in cerebral arteries that exacerbate stroke injury. Here, we tested the hypothesis that female sex hormones alter vasocontractile responses after experimental stroke in vivo or after organ culture in vitro, a model of vasocontractile receptor upregulation. Female rats with intact ovaries and ovariectomized (OVX) females treated with 17β-estradiol, progesterone, or placebo were subjected to transient, unilateral middle cerebral artery occlusion followed by reperfusion (I/R). The maximum contractile response, measured my wire myography, in response to the endothelin B receptor agonist sarafotoxin 6c was increased in female arteries after I/R, but the maximum response was significantly lower in arteries from OVX females. Maximum contraction mediated by the serotonin agonist 5-carboxamidotryptamine was diminished after I/R, with arteries from OVX females showing a greater decrease in maximum contractile response. Contraction elicited by angiotensin II was similar in all arteries. Neither estrogen nor progesterone treatment of OVX females affected I/R-induced changes in endothelin B- and 5-carboxamidotryptamine-induced vasocontraction. These findings suggest that sex hormones do not directly influence vasocontractile alterations that occur after ischemic stroke; however, loss of ovarian function does impact this process.
Collapse
Affiliation(s)
- Mimmi Rehnström
- Department of Experimental Vasc Res, Clinical Sciences, Lund University, Sweden
| | - Hilda Ahnstedt
- Department of Experimental Vasc Res, Clinical Sciences, Lund University, Sweden
| | - Diana N Krause
- Department of Pharmacology, School of Medicine, University of California at Irvine, Irvine, CA
| | | | | | - Lars Edvinsson
- Department of Experimental Vasc Res, Clinical Sciences, Lund University, Sweden
- Department of Clinical and Experimental Research, Rigshospitalet Glostrup, Denmark
| |
Collapse
|
9
|
Spray S, Haanes KA, Edvinsson L, Johansson SE. Subacute phase of subarachnoid haemorrhage in female rats: Increased intracranial pressure, vascular changes and impaired sensorimotor function. Microvasc Res 2021; 135:104127. [PMID: 33359306 DOI: 10.1016/j.mvr.2020.104127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Early brain injury (EBI) and delayed cerebral ischemia (DCI) after subarachnoid haemorrhage (SAH) has devastating consequences but therapeutic options and the underlying pathogenesis remain poorly understood despite extensive preclinical and clinical research. One of the drawbacks of most preclinical studies to date is that the mechanisms behind DCI after SAH are studied only in male animals. In this study we therefore established a female rat model of SAH in order to determine subacute pathophysiological changes that may contribute to DCI in females. METHODS Experimental SAH was induced in female rats by intracisternal injection of 300 μL of autologous blood. Sham operation served as a control. Neurological deficits and intracranial pressure measurements were evaluated at both 1 and 2 days after surgery. Additionally, changes in cerebral vascular contractility were evaluated 2 days after surgery using wire myography. RESULTS SAH in female rats resulted in sensorimotor deficits and decreased general wellbeing on both day 1 and day 2 after SAH. Intracranial pressure uniformly increased in all rats subjected to SAH on day 1. On day 2 the intracranial pressure had increased further, decreased slightly or remained at the level seen on day 1. Furthermore, female rats subjected to SAH developed cortical brain edema. Cerebral arteries, isolated 2 days after SAH, exhibited increased vascular contractions to endothelin-1 and 5-carboxamidotryptamine. CONCLUSION In the subacute phase after SAH in female rats, we observed increased intracranial pressure, decreased wellbeing, sensorimotor deficits, increased vascular contractility and cortical brain edema. Collectively, these pathophysiological changes may contribute to DCI after SAH in females. Previous studies reported similar pathophysiological changes for male rats in the subacute phase after SAH. Thus, prevention of these gender-independent mechanisms may provide the basis for a universal treatment strategy for DCI after SAH. Nevertheless, preclinical studies of potential therapies should employ both male and female SAH models.
Collapse
Affiliation(s)
- Stine Spray
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup-Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup-Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark.
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup-Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Sara Ellinor Johansson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup-Rigshospitalet, Nordstjernevej 42, DK-2600 Glostrup, Denmark
| |
Collapse
|
10
|
Wang D, Shi S, Ren T, Zhang Y, Guo P, Wang J, Wang W. U0126 pretreatment inhibits cisplatin-induced apoptosis and autophagy in HEI-OC1 cells and cochlear hair cells. Toxicol Appl Pharmacol 2021; 415:115447. [PMID: 33577918 DOI: 10.1016/j.taap.2021.115447] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
Deafness is the most common sensory disorder in the world. Ototoxic drugs are common inducing factors of sensorineural hearing loss, and cochlear hair cell (HC) damage is the main concern of the present studies. Cisplatin is a widely used, highly effective antitumor drug, but some patients have experienced irreversible hearing loss as a result of its application. This hearing loss is closely related to HC apoptosis and autophagy. U0126 is a specific inhibitor of the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) signaling pathway and has neuroprotective effects. For example, the neuroprotective effect of U0126 on ischemic stroke has been widely recognized. In neural cells, U0126 can prevent death due to excess glutamate, dopamine, or zinc ions. However, no studies of U0126 and ototoxic drug-induced injury have been reported to date. In the present study, we found that U0126 pretreatment significantly reduced the apoptosis and autophagy of HCs in auditory House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and cochlear HCs. In addition, U0126 reduced the cisplatin-induced production of reactive oxygen species as well as the cisplatin-induced decrease in the mitochondrial membrane potential. These findings suggest that U0126 may be a potential therapeutic candidate for the prevention of cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Dan Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Suming Shi
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Tongli Ren
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Yanping Zhang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Ping Guo
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Jiali Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China
| | - Wuqing Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai 200031, China.
| |
Collapse
|
11
|
Chronic real-time particulate matter exposure causes rat pulmonary arteriole hyperresponsiveness and remodeling: The role of ET BR-ERK1/2 signaling. Toxicol Appl Pharmacol 2020; 403:115154. [PMID: 32710959 DOI: 10.1016/j.taap.2020.115154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/03/2023]
Abstract
Exposure to air pollution is associated with the incidence of respiratory diseases. The present study evaluated the pulmonary vascular system injury by chronic real-time particulate matter (PM10) exposure and investigated the underlying mechanisms. Rats were exposed to PM10 or filtered air for 2 to 4 months using a whole body exposure system, and intraperitoneally injected with the MEK1/2 inhibitor U0126. Right heart catheterization and myography were performed to detect lung function and pulmonary vascular reactivity, respectively. Western blotting, qRT-PCR, enzyme-linked immunosorbent assay and histological analyses were used to detect the effects and mechanisms by which PM10 exposure-induced pulmonary vascular dysfunction. Functional experiment results showed that PM10 exposure increased the pulmonary artery pressure of rats and caused endothelin B receptor (ETBR)-mediated pulmonary arteriole hyperreactivity. U0126 significantly rescued these pathological changes. PM10 exposure upregulated the contractile ETBR of pulmonary arteriolar smooth muscle, and damaged pulmonary artery endothelial cells to induce the release of more endothelin 1 (ET-1). The upregulated ETBR bound to increased ET-1 induced pulmonary arteriolar hyperresponsiveness and remodeling. U0126 inhibited the PM10 exposure-induced upregulation of ETBR in pulmonary arteriole, ETBR-mediated pulmonary arterial hyperresponsiveness and vascular remodeling. In conclusion, chronic real-time particulate matter exposure can activate the ERK1/2 signaling, thereby inducing the upregulation of contractile ETBR in pulmonary arteriole, which may be involved in pulmonary arteriole hyperresponsiveness and remodeling in rats. These findings provide new mechanistic evidence of PM10 exposure-induced respiratory diseases, and a new possible target for treatment.
Collapse
|
12
|
Christensen ST, Johansson SE, Warfvinge K, Braun T, Boettger T, Edvinsson L, Haanes KA. Exploration of Physiological and Pathophysiological Implications of miRNA-143 and miRNA-145 in Cerebral Arteries. J Cardiovasc Pharmacol 2019; 74:409-419. [PMID: 31425342 DOI: 10.1097/fjc.0000000000000735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with a high short-term mortality rate which leads to cognitive impairments that reduce the quality of life of the majority of patients. The miRNA-143/145 cluster is highly expressed in vascular smooth muscle cells (VSMC) and has been shown to be necessary for differentiation and function, as well as an important determinant for phenotypic modulation/switching of VSMCs in response to vascular injury. We aimed to determine whether miRNA-143 and miRNA-145 are important regulators of phenotypical changes of VSMCs in relation to SAH, as well as establishing their physiological role in the cerebral vasculature. We applied quantitative PCR to study ischemia-induced alterations in the expression of miRNA-143 and miRNA-145, for rat cerebral vasculature, in an ex vivo organ culture model and an in vivo SAH model. To determine the physiological importance, we did myograph studies on basilar and femoral arteries from miRNA-143/145 knockout mice. miRNA-143 and miRNA-145 are not upregulated in the vasculature following our SAH model, despite the upregulation of miR-145 in the organ culture model. Regarding physiological function, miRNA-143 and miRNA-145 are very important for general contractility in cerebral vessels in response to depolarization, angiotensin II, and endothelin-1. Applying an anti-miRNA targeting approach in SAH does not seem to be a feasible approach because miRNA-143 and miRNA-145 are not upregulated following SAH. The knockout mouse data suggest that targeting miRNA-143 and miRNA-145 would lead to a general reduced contractility of the cerebral vasculature and unwanted dedifferentiation of VSMCs.
Collapse
Affiliation(s)
- Simon Topp Christensen
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| | - Sara Ellinor Johansson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Thomas Braun
- Department Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Boettger
- Department Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristian Agmund Haanes
- Department of Clinical Experimental Research, Copenhagen University Hospital, Rigshospitalet-Glostrup, Denmark
| |
Collapse
|
13
|
Pre-clinical effects of highly potent MEK1/2 inhibitors on rat cerebral vasculature after organ culture and subarachnoid haemorrhage. Clin Sci (Lond) 2019; 133:1797-1811. [DOI: 10.1042/cs20190636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Background: Aneurysmal subarachnoid haemorrhage (SAH) is a variant of haemorrhagic stroke with a striking 50% mortality rate. In addition to the initial insult, secondary delayed brain injury may occur days after the initial ischemic insult and is associated with vasospasms leading to delayed cerebral ischemia. We have previously shown that the MEK1/2 inhibitor U0126 improves neurological assessment after SAH in rats. Aim: The purpose of the present study was to analyse the impact of a broad selection of high potency MEK1/2 inhibitors in an organ culture model and use the IC50 values obtained from the organ culture to select highly potent inhibitors for pre-clinical in vivo studies. Results: Nine highly potent mitogen activated protein kinase kinase (MEK1/2) inhibitors were screened and the two most potent inhibitors from the organ culture screening, trametinib and PD0325901, were tested in an in vivo experimental rat SAH model with intrathecal injections. Subsequently, the successful inhibitor trametinib was administered intraperitoneally in a second in vivo study. In both regimens, trametinib treatment caused significant reductions in the endothelin-1 induced contractility after SAH, which is believed to be associated with endothelin B receptor up-regulation. Trametinib treated rats showed improved neurological scores, evaluated by the ability to traverse a rotating pole, after induced SAH. Conclusion: The PD0325901 treatment did not improve the neurological score after SAH, nor showed any beneficial therapeutic effect on the contractility, contrasting with the reduction in neurological deficits seen after trametinib treatment. These data show that trametinib might be a potential candidate for treatment of SAH.
Collapse
|
14
|
Christensen ST, Grell AS, Johansson SE, Andersson CM, Edvinsson L, Haanes KA. Synergistic effects of a cremophor EL drug delivery system and its U0126 cargo in an ex vivo model. Drug Deliv 2019; 26:680-688. [PMID: 31274009 PMCID: PMC6691891 DOI: 10.1080/10717544.2019.1636421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuroprotection has proven clinically unsuccessful in subarachnoid hemorrhage. We believe that this is because the major component in the early damage pathway, the vascular wall, has not been given the necessary focus. U0126 is a potent inhibitor of vascular phenotypical changes, exemplified by functional endothelin B (ETB) receptor upregulation. The current study aimed to determine the optimal dose of U0126 ex vivo and test the toxicology of this dose in vivo. To find the optimal dose and test a suitable in vivo delivery system, we applied an ex vivo model of blood flow cessation and investigated functional ETB receptor upregulation (using a specific agonist) as the primary endpoint. The secondary endpoint was depolarization-induced contractility assessed by 60 mM K+ stimuli. Furthermore, an in vivo toxicology study was performed on the optimal selected doses. U0126 (10 µM) had a strong effect on the prevention of functional ETB receptor contractility, combined with minimal effect on the depolarization-induced contractility. When cremophor EL was chosen for drug delivery, it had an inhibitory and additive effect (combined with U0126) on the ETB receptor contractility. Hence, 10 µM U0126 in 0.5% cremophor EL seems to be a dose that will be close to the maximal inhibition observed ex vivo on basilar arteries, without exhibiting side effects in the toxicology studies. U0126 and cremophor EL are well tolerated at doses that have effect on ETB receptor upregulation. Cremophor EL has an additional positive effect, preventing functional ETB receptor upregulation, making it suitable as a drug delivery system.
Collapse
Affiliation(s)
- S T Christensen
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | - A S Grell
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | - S E Johansson
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| | | | - L Edvinsson
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark.,c Department of Clinical Sciences, Division of Experimental Vascular Research , Lund University , Lund , Sweden
| | - K A Haanes
- a Department of Clinical Experimental Research , Copenhagen University Hospital, Rigshospitalet-Glostrup , Copenhagen , Denmark
| |
Collapse
|