1
|
Valença T, Oliveira Affonço G, Falótico T. Wild capuchin monkeys use stones and sticks to access underground food. Sci Rep 2024; 14:10415. [PMID: 38710945 PMCID: PMC11074112 DOI: 10.1038/s41598-024-61243-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Primates employ different tools and techniques to overcome the challenges of obtaining underground food resources. Humans and chimpanzees are known to tackle this problem with stick tools and one population of capuchin monkeys habitually uses stone tools. Although early hominids could have used stones as digging tools, we know little about when and how these could be useful. Here, we report a second primate population observed using stone tools and the first capuchin monkey population to habitually use the 'stick-probing' technique for obtaining underground resources. The bearded capuchin monkeys (Sapajus libidinosus) from Ubajara National Park, Brazil, use 'hands-only' and 'stone-digging' techniques for extracting underground storage organs and trapdoor spiders. Males also use 'stick-probing' and 'stone-stick' techniques for capturing trapdoor spiders. Tool use does not increase success in obtaining these resources. Stone-digging is less frequent in this population than in the only other known population that uses this technique. Females use stones in a lower proportion of their digging episodes than males in both populations. Ecological and cultural factors potentially influence technique choice and sex differences within and between populations. This population has a different pattern of underground food exploration using tools. Comparing this population with others and exploring the ecological and cultural factors under which capuchin monkeys employ different tools and techniques will allow us to better understand the pressures that may have shaped the evolution of those behaviors in primates.
Collapse
Affiliation(s)
- Tatiane Valença
- University of São Paulo, São Paulo, Brazil.
- Capuchin Culture Project, Neotropical Primates Research Group, São Paulo, Brazil.
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.
| | - Gabriela Oliveira Affonço
- University of São Paulo, São Paulo, Brazil
- Capuchin Culture Project, Neotropical Primates Research Group, São Paulo, Brazil
| | - Tiago Falótico
- University of São Paulo, São Paulo, Brazil
- Capuchin Culture Project, Neotropical Primates Research Group, São Paulo, Brazil
- Technological Primates Research Group, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
2
|
Bryant KL, Hansen C, Hecht EE. Fermentation technology as a driver of human brain expansion. Commun Biol 2023; 6:1190. [PMID: 37996482 PMCID: PMC10667226 DOI: 10.1038/s42003-023-05517-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023] Open
Abstract
Brain tissue is metabolically expensive. Consequently, the evolution of humans' large brains must have occurred via concomitant shifts in energy expenditure and intake. Proposed mechanisms include dietary shifts such as cooking. Importantly, though, any new food source must have been exploitable by hominids with brains a third the size of modern humans'. Here, we propose the initial metabolic trigger of hominid brain expansion was the consumption of externally fermented foods. We define "external fermentation" as occurring outside the body, as opposed to the internal fermentation in the gut. External fermentation could increase the bioavailability of macro- and micronutrients while reducing digestive energy expenditure and is supported by the relative reduction of the human colon. We discuss the explanatory power of our hypothesis and survey external fermentation practices across human cultures to demonstrate its viability across a range of environments and food sources. We close with suggestions for empirical tests.
Collapse
Affiliation(s)
- Katherine L Bryant
- Laboratoire de Psychologie Cognitive, Aix-Marseille Université, Marseille, France.
| | - Christi Hansen
- Hungry Heart Farm and Dietary Consulting, Conley, GA, USA
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
3
|
Bone-related behaviours of captive chimpanzees (Pan troglodytes) during two excavating experiments. Primates 2023; 64:35-46. [PMID: 36401675 PMCID: PMC9842580 DOI: 10.1007/s10329-022-01033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2022] [Indexed: 11/21/2022]
Abstract
After stone tools, bone tools are the most abundant artefact type in the Early Pleistocene archaeological record. That said, they are still relatively scarce, which limits our understanding of the behaviours that led to their production and use. Observations of extant primates constitute a unique source of behavioural data with which to construct hypotheses about the technological forms and repertoires exhibited by our hominin ancestors. We conducted two different experiments to investigate the behavioural responses of two groups of captive chimpanzees (Pan troglodytes; n = 33 and n = 9) to disarticulated, defleshed, ungulate bones while participating in a foraging task aimed at eliciting excavating behaviour. Each chimpanzee group was provided with bone specimens with different characteristics, and the two groups differed in their respective experience levels with excavating plant tools. We found that several individuals from the inexperienced group used the provided bones as tools during the task. In contrast, none of the individuals from the experienced group used bones as excavating tools, but instead continued using plant tools. These chimpanzees also performed non-excavating bone behaviours such as percussion and tool-assisted extraction of organic material from the medullary cavity. Our findings serve as a proof-of-concept that chimpanzees can be used to investigate spontaneous bone tool behaviours such as bone-assisted excavation. Furthermore, our results raise interesting questions regarding the role that bone characteristics, as well as previous tool-assisted excavating experience with other raw materials, might have in the expression of bone tool-assisted excavation.
Collapse
|
4
|
Mateos A, Zorrilla-Revilla G, Rodríguez J. Let's Play at Digging : How Vigorous Is This Energetic Task for a Young Forager? HUMAN NATURE (HAWTHORNE, N.Y.) 2022; 33:172-195. [PMID: 35666462 PMCID: PMC9250475 DOI: 10.1007/s12110-022-09428-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
Extractive foraging tasks, such as digging, are broadly practiced among hunter-gatherer populations in different ecological conditions. Despite tuber-gathering tasks being widely practiced by children and adolescents, little research has focused on the physical traits associated with digging ability. Here, we assess how age and energetic expenditure affect the performance of this extractive task. Using an experimental approach, the energetic cost of digging to extract simulated tubers is evaluated in a sample of 40 urban children and adolescents of both sexes to measure the intensity of the physical effort and the influence of several anatomical variables. Digging is a moderately vigorous activity for inexperienced girls and boys from 8 to 14 years old, and it requires significant physical effort depending on strength and body size. However, extracting subterranean resources is a task that may be performed effectively without previous training. Sex-specific and age-specific differences in the net energy expenditure of digging were detected, even though both sexes exhibited similar proficiency levels when performing the task. Our results highlight that both boys and girls spend considerable energy while digging, with differences largely driven by body size and age. Other factors beyond ability and experience, such as strength and body size, may influence the proficiency of juveniles in performing certain physically intensive foraging tasks, such as gathering tubers.
Collapse
Affiliation(s)
- Ana Mateos
- National Research Center On Human Evolution (CENIEH), 09002, Burgos, Spain.
| | | | - Jesús Rodríguez
- National Research Center On Human Evolution (CENIEH), 09002, Burgos, Spain
| |
Collapse
|
5
|
Lindshield S, Hernandez-Aguilar RA, Korstjens AH, Marchant LF, Narat V, Ndiaye PI, Ogawa H, Piel AK, Pruetz JD, Stewart FA, van Leeuwen KL, Wessling EG, Yoshikawa M. Chimpanzees (Pan troglodytes) in savanna landscapes. Evol Anthropol 2021; 30:399-420. [PMID: 34542218 DOI: 10.1002/evan.21924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/17/2020] [Accepted: 07/29/2021] [Indexed: 12/22/2022]
Abstract
Chimpanzees (Pan troglodytes) are the only great apes that inhabit hot, dry, and open savannas. We review the environmental pressures of savannas on chimpanzees, such as food and water scarcity, and the evidence for chimpanzees' behavioral responses to these landscapes. In our analysis, savannas were generally associated with low chimpanzee population densities and large home ranges. In addition, thermoregulatory behaviors that likely reduce hyperthermia risk, such as cave use, were frequently observed in the hottest and driest savanna landscapes. We hypothesize that such responses are evidence of a "savanna landscape effect" in chimpanzees and offer pathways for future research to understand its evolutionary processes and mechanisms. We conclude by discussing the significance of research on savanna chimpanzees to modeling the evolution of early hominin traits and informing conservation programs for these endangered apes.
Collapse
Affiliation(s)
- Stacy Lindshield
- Department of Anthropology, Purdue University, West Lafayette, Indiana, USA
| | - R Adriana Hernandez-Aguilar
- Department of Social Psychology and Quantitative Psychology, Faculty of Psychology, University of Barcelona, Barcelona, Spain.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Amanda H Korstjens
- Life and Environmental Sciences Department, Bournemouth University, Talbot Campus, Poole, UK
| | | | - Victor Narat
- CNRS/MNHN/Paris Diderot, UMR 7206 Eco-anthropology, Paris, France
| | - Papa Ibnou Ndiaye
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Hideshi Ogawa
- School of International Liberal Studies, Chukyo University, Toyota, Aichi, Japan
| | - Alex K Piel
- Department of Anthropology, University College London, London, UK
| | - Jill D Pruetz
- Department of Anthropology, Texas State University, San Marcos, Texas, USA
| | - Fiona A Stewart
- Department of Anthropology, University College London, London, UK.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Kelly L van Leeuwen
- Department of Life and Environmental Sciences, Bournemouth University, Talbot Campus, Poole, UK
| | - Erin G Wessling
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Midori Yoshikawa
- Department of Zoology, National Museum of Nature and Science, Ibaraki, Tokyo, Japan
| |
Collapse
|
6
|
Motes-Rodrigo A, Tennie C. Captive great apes tend to innovate simple tool behaviors quickly. Am J Primatol 2021; 84:e23311. [PMID: 34339543 DOI: 10.1002/ajp.23311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022]
Abstract
Recent studies have highlighted the important role that individual learning mechanisms and different forms of enhancenment play in the acquisition of novel behaviors by naïve individuals. A considerable subset of these studies has focused on tool innovation by our closest living relatives, the great apes, to better undestand the evolution of technology in our own lineage. To be able to isolate the role that individual learning plays in great ape tool innovation, researchers usually employ what are known as baseline tests. Although these baselines are commonly used in behavioral studies in captivity, the length of these tests in terms of number of trials and duration remains unstandarized across studies. To address this methodological issue, we conducted a literature review of great ape tool innovation studies conducted in zoological institutions and compiled various methodological data including the timing of innovation. Our literature review revealed an early innovation tendency in great apes, which was particularly pronounced when simple forms of tool use were investigated. In the majority of experiments where tool innovation took place, this occurred within the first trial and/or the first hour of testing. We discuss different possible sources of variation in the latency to innovate such as testing setup, species and task. We hope that our literature review helps researchers design more data-informed, resource-efficient experiments on tool innovation in our closest living relatives.
Collapse
Affiliation(s)
- Alba Motes-Rodrigo
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Claudio Tennie
- Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Faith JT, Du A, Behrensmeyer AK, Davies B, Patterson DB, Rowan J, Wood B. Rethinking the ecological drivers of hominin evolution. Trends Ecol Evol 2021; 36:797-807. [PMID: 34059368 DOI: 10.1016/j.tree.2021.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
A central goal of paleoanthropology is understanding the role of ecological change in hominin evolution. Over the past several decades researchers have expanded the hominin fossil record and assembled detailed late Cenozoic paleoclimatic, paleoenvironmental, and paleoecological archives. However, effective use of these data is precluded by the limitations of pattern-matching strategies for inferring causal relationships between ecological and evolutionary change. We examine several obstacles that have hindered progress, and highlight recent research that is addressing them by (i) confronting an incomplete fossil record, (ii) contending with datasets spanning varied spatiotemporal scales, and (iii) using theoretical frameworks to build stronger inferences. Expanding on this work promises to transform challenges into opportunities and set the stage for a new phase of paleoanthropological research.
Collapse
Affiliation(s)
- J Tyler Faith
- Natural History Museum of Utah, University of Utah, Salt Lake City, UT 84108, USA; Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Andrew Du
- Department of Anthropology and Geography, Colorado State University, Fort Collins, CO 80523, USA
| | - Anna K Behrensmeyer
- Department of Paleobiology, National Museum of Natural History, Washington, DC 20013, USA
| | - Benjamin Davies
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - David B Patterson
- Department of Biology, University of North Georgia, Dahlonega, GA 30597, USA
| | - John Rowan
- Department of Anthropology, University at Albany, Albany, NY 12222, USA
| | - Bernard Wood
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
8
|
Gürbüz RB, Lycett SJ. Could woodworking have driven lithic tool selection? J Hum Evol 2021; 156:102999. [PMID: 34022498 DOI: 10.1016/j.jhevol.2021.102999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022]
Abstract
Understanding early stone tools, particularly relationships between form and function, is fundamental to understanding the behavioral evolution of early hominins. The oldest-claimed flake tools date to ca. 3.3 million years ago, and their development may represent a key step in hominin evolution. Flake form, and its relationship to function, has long been a focus of Paleolithic studies, almost exclusively with respect to meat acquisition. However, evidence for woodworking is now known from sites dating to 1.5 Ma. Additionally, Pan troglodytes are known to manufacture wooden tools for hunting and foraging, thus creating a phylogenetic (parsimony) argument for more ancient woodworking. However, few studies examining woodworking and Paleolithic tools have been completed to date. Indeed, it remains an open question whether woodworking may have instigated specific selective demands on the form of early stone tools. Here, we conducted an experiment testing the comparative woodworking efficiency (measured by time) of small and large flakes. Two groups of participants used either a relatively small or large unretouched flake to remove a predefined area from standardized samples of wood. Those using larger flakes were significantly more efficient (i.e., required less time) during this woodworking task. Our results demonstrate that larger flakes could have been preferentially chosen by hominins for woodworking, consistent with previous data generated experimentally in other (non-woodworking) tasks. Moreover, the production of relatively large flakes, such as those at Lomekwi, could have been motivated by woodworking, rather than, or in addition to, butchery. Such issues may also have encouraged the use of Levallois production strategies in later times.
Collapse
Affiliation(s)
- Rebecca Biermann Gürbüz
- Department of Anthropology, Ellicott Complex, 380 Academic Center, University at Buffalo, SUNY, Buffalo, NY 14261, USA.
| | - Stephen J Lycett
- Department of Anthropology, Ellicott Complex, 380 Academic Center, University at Buffalo, SUNY, Buffalo, NY 14261, USA
| |
Collapse
|
9
|
Motes-Rodrigo A, Tennie C. The Method of Local Restriction: in search of potential great ape culture-dependent forms. Biol Rev Camb Philos Soc 2021; 96:1441-1461. [PMID: 33779036 DOI: 10.1111/brv.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022]
Abstract
Humans possess a perhaps unique type of culture among primates called cumulative culture. In this type of culture, behavioural forms cumulate changes over time, which increases their complexity and/or efficiency, eventually making these forms culture-dependent. As changes cumulate, culture-dependent forms become causally opaque, preventing the overall behavioural form from being acquired by individuals on their own; in other words, culture-dependent forms must be copied between individuals and across generations. Despite the importance of cumulative culture for understanding the evolutionary history of our species, how and when cumulative culture evolved is still debated. One of the challenges faced when addressing these questions is how to identify culture-dependent forms that result from cumulative cultural evolution. Here we propose a novel method to identify the most likely cases of culture-dependent forms. The 'Method of Local Restriction' is based on the premise that as culture-dependent forms are repeatedly transmitted via copying, these forms will unavoidably cumulate population-specific changes (due to copying error) and therefore must be expected to become locally restricted over time. When we applied this method to our closest living relatives, the great apes, we found that most known ape behavioural forms are not locally restricted (across domains and species) and thus are unlikely to be acquired via copying. Nevertheless, we found 25 locally restricted forms across species and domains, three of which appear to be locally unique (having been observed in a single population of a single species). Locally unique forms represent the best current candidates for culture-dependent forms in non-human great apes. Besides these rare exceptions, our results show that overall, ape cultures do not rely heavily on copying, as most ape behaviours appear across sites and/or species, rendering them unlikely to be culture-dependent forms resulting from cumulative cultural evolution. Yet, the locally restricted forms (and especially the three locally unique forms) identified by our method should be tested further for their potential reliance on copying social learning mechanisms (and in turn, for their potential culture-dependence). Future studies could use the Method of Local Restriction to investigate the existence of culture-dependent forms in other animal species and in the hominin archaeological record to estimate how widespread copying is in the animal kingdom and to postulate a timeline for the emergence of copying in our lineage.
Collapse
Affiliation(s)
- Alba Motes-Rodrigo
- Department of Early Prehistory and Quaternary Ecology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Claudio Tennie
- Department of Early Prehistory and Quaternary Ecology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Hernandez-Aguilar RA, Reitan T. Deciding Where to Sleep: Spatial Levels of Nesting Selection in Chimpanzees (Pan troglodytes) Living in Savanna at Issa, Tanzania. INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00186-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractTo understand how animals select resources we need to analyze selection at different spatial levels or scales in the habitat. We investigated which physical characteristics of trees (dimensions and structure, e.g., height, trunk diameter, number of branches) determined nesting selection by chimpanzees (Pan troglodytes) on two different spatial scales: individual nesting trees and nesting sites. We also examined whether individual tree selection explained the landscape pattern of nesting site selection. We compared the physical characteristics of actual (N = 132) and potential (N = 242) nesting trees in nesting sites (in 15 plots of 25 m × 25 m) and of all trees in actual and potential nesting sites (N = 763 in 30 plots of 25 m × 25 m). We collected data in May and June 2003 in Issa, a dry and open savanna habitat in Tanzania. Chimpanzees selected both the site they used for nesting in the landscape and the trees they used to build nests within a nesting site, demonstrating two levels of spatial selection in nesting. Site selection was stronger than individual tree selection. Tree height was the most important variable for both nesting site and tree selection in our study, suggesting that chimpanzees selected both safe sites and secure trees for sleeping.
Collapse
|
11
|
Bandini E, Tennie C. Exploring the role of individual learning in animal tool-use. PeerJ 2020; 8:e9877. [PMID: 33033659 PMCID: PMC7521350 DOI: 10.7717/peerj.9877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023] Open
Abstract
The notion that tool-use is unique to humans has long been refuted by the growing number of observations of animals using tools across various contexts. Yet, the mechanisms behind the emergence and sustenance of these tool-use repertoires are still heavily debated. We argue that the current animal behaviour literature is biased towards a social learning approach, in which animal, and in particular primate, tool-use repertoires are thought to require social learning mechanisms (copying variants of social learning are most often invoked). However, concrete evidence for a widespread dependency on social learning is still lacking. On the other hand, a growing body of observational and experimental data demonstrates that various animal species are capable of acquiring the forms of their tool-use behaviours via individual learning, with (non-copying) social learning regulating the frequencies of the behavioural forms within (and, indirectly, between) groups. As a first outline of the extent of the role of individual learning in animal tool-use, a literature review of reports of the spontaneous acquisition of animal tool-use behaviours was carried out across observational and experimental studies. The results of this review suggest that perhaps due to the pervasive focus on social learning in the literature, accounts of the individual learning of tool-use forms by naïve animals may have been largely overlooked, and their importance under-examined.
Collapse
Affiliation(s)
- Elisa Bandini
- Department of Prehistory and Quaternary Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Claudio Tennie
- Department of Prehistory and Quaternary Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Neadle D, Bandini E, Tennie C. Testing the individual and social learning abilities of task-naïve captive chimpanzees ( Pan troglodytes sp.) in a nut-cracking task. PeerJ 2020; 8:e8734. [PMID: 32195057 PMCID: PMC7069405 DOI: 10.7717/peerj.8734] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/11/2020] [Indexed: 11/20/2022] Open
Abstract
Nut-cracking is often cited as one of the most complex behaviours observed in wild chimpanzees. However, the cognitive mechanisms behind its acquisition are still debated. The current null hypothesis is that the form of nut-cracking behaviour relies on variants of social learning, with some researchers arguing, more precisely, that copying variants of social learning mechanisms are necessary. However, to date, very few experiments have directly investigated the potentially sufficient role of individual learning in explaining the behavioural form of nut-cracking. Despite this, the available data provides some evidence for the spontaneous acquisition of nut-cracking by chimpanzees; later group acquisition was then found to be at least facilitated by (unspecified) variants of social learning. The latter findings are in line with both suggested hypotheses, i.e., that copying social learning is required and that other (non-copying) social learning mechanisms are at play. Here we present the first study which focused (initially) on the role of individual learning for the acquisition of the nut-cracking behavioural form in chimpanzees. We tested task-naïve chimpanzees (N = 13) with an extended baseline condition to examine whether the behaviour would emerge spontaneously. After the baseline condition (which was unsuccessful), we tested for the role of social learning by providing social information in a step-wise fashion, culminating in a full action demonstration of nut-cracking by a human demonstrator (this last condition made it possible for the observers to copy all actions underlying the behaviour). Despite the opportunities to individually and/or socially learn nut-cracking, none of the chimpanzees tested here cracked nuts using tools in any of the conditions in our study; thus, providing no conclusive evidence for either competing hypothesis. We conclude that this failure was the product of an interplay of factors, including behavioural conservatism and the existence of a potential sensitive learning period for nut-cracking in chimpanzees. The possibility remains that nut-cracking is a behaviour that chimpanzees can individually learn. However, this behaviour might only be acquired when chimpanzees are still inside their sensitive learning period, and when ecological and developmental conditions allow for it. The possibility remains that nut-cracking is an example of a culture dependent trait in non-human great apes. Recommendations for future research projects to address this question are considered.
Collapse
Affiliation(s)
- Damien Neadle
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Psychology, School of Social Sciences, Faculty of Business, Law and Social Sciences, Birmingham City University, Birmingham, United Kingdom
| | - Elisa Bandini
- Department of Early Prehistory and Quaternary Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Claudio Tennie
- Department of Early Prehistory and Quaternary Ecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Motes-Rodrigo A, Hernandez-Aguilar RA, Laska M. Preferential hand use by captive chimpanzees (Pan troglodytes) in manual and tool digging. Primates 2019; 60:367-373. [PMID: 31006044 PMCID: PMC6612319 DOI: 10.1007/s10329-019-00727-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/10/2019] [Indexed: 11/30/2022]
Abstract
Digging for underground storage organs of plants has been reported in various populations of wild chimpanzees (Pan troglodytes). However, it is unknown so far whether chimpanzees display lateral biases in manual digging as direct observations of this behavior are still lacking. It was therefore the aim of the present study to assess, for the first time, hand preferences for digging in a group of nine captive chimpanzees. We found that with only one exception, all individuals engaged in manual digging for buried food. Five individuals displayed a significant right-hand preference, two a significant left-hand preference, and one was ambidextrous. No apparent differences between males and females were found with regard to the direction or strength of hand preferences for manual digging. Only one out of four parent–offspring pairs was congruent in their preferred hand for manual digging. Three of the eight chimpanzees who dug manually also used tools in order to excavate buried food. Among those three individuals, one displayed a significant right-, one a significant left-hand preference, and one was ambidextrous. Only one of these three chimpanzees was consistent in preferring the same hand for manual and tool digging. The present findings are in line with the notion that chimpanzees display significant hand preferences at the individual level for haptic-guided behaviors, with a tendency for the right hand.
Collapse
Affiliation(s)
- Alba Motes-Rodrigo
- IFM Biology, Linköping University, 581 83, Linköping, Sweden.,Department of Early Prehistory and Quaternary Ecology, University of Tübingen, Tübingen, Germany
| | - R Adriana Hernandez-Aguilar
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Blindern, Oslo, Norway
| | - Matthias Laska
- IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|