1
|
Smith TL, Ryan TL, Escalona MB, Shuryak IE, Balajee AS. Application of FISH based G2-PCC assay for the cytogenetic assessment of high radiation dose exposures: Potential implications for rapid triage biodosimetry. PLoS One 2024; 19:e0312564. [PMID: 39453904 PMCID: PMC11508073 DOI: 10.1371/journal.pone.0312564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/27/2024] Open
Abstract
The main goal of this study is to test the utility of calyculin A induced G2-PCC assay as a biodosimetry triage tool for assessing a wide range of low and acute high radiation dose exposures of photons. Towards this initiative, chromosome aberrations induced by low and high doses of x-rays were evaluated and characterized in G2-prematurely condensed chromosomes (G2-PCCs) by fluorescence in situ hybridization (FISH) using human centromere and telomere specific PNA (peptide nucleic acid) probes. A dose dependent increase in the frequency of dicentric chromosomes was observed in the G2-PCCs up to 20 Gy of x-rays. The combined yields of dicentrics and rings in the G2-PCCs showed a clear dose dependency up to 20 Gy from 0.02/cell for 0.1 Gy to 14.98/cell for 20 Gy. Centric rings were observed more frequently than acentric ring chromosomes in the G2-PCCs at all the radiation doses from 1 Gy to 20 Gy. A head-to-head comparison was also performed by FISH on the yields of chromosome aberrations induced by different doses of x-rays (0 Gy -7.5 Gy) in colcemid arrested metaphase chromosomes and calyculin A induced G2-PCCs. In general, the frequencies of dicentrics, rings and acentric fragments were slightly higher in G2-PCCs than in colcemid arrested metaphase chromosomes at all the radiation doses, but the differences were not statistically significant. To reduce the turnaround time for absorbed radiation dose estimation, attempt was made to obtain G2-PCCs by reducing the culture time to 36 hrs. The absorbed doses estimated in x-rays irradiated (0,1,2 and 4 Gy) G2-PCCs after 36 hrs of culture were grossly like that of G2-PCCs and colcemid arrested metaphase chromosomes prepared after 48 hrs of culture. Our study indicates that the shortened version of calyculin A induced G2-PCC assay coupled with the FISH staining technique can serve as an effective triage biodosimetry tool for large-scale radiological/nuclear incidents.
Collapse
Affiliation(s)
- Tammy L. Smith
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Terri L. Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Maria B. Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| | - Igor E. Shuryak
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York, United States of America
| | - Adayabalam S. Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, United States of America
| |
Collapse
|
2
|
Yadav U, Bhat NN, Mungse US, Shirsath KB, Joshi M, Sapra BK. G 0-PCC-FISH derived multi-parametric biodosimetry methodology for accidental high dose and partial body exposures. Sci Rep 2024; 14:16103. [PMID: 38997265 PMCID: PMC11245508 DOI: 10.1038/s41598-024-65330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
High dose radiation exposures are rare. However, medical management of such incidents is crucial due to mortality and tissue injury risks. Rapid radiation biodosimetry of high dose accidental exposures is highly challenging, considering that they usually involve non uniform fields leading to partial body exposures. The gold standard, dicentric assay and other conventional methods have limited application in such scenarios. As an alternative, we propose Premature Chromosome Condensation combined with Fluorescent In-situ Hybridization (G0-PCC-FISH) as a promising tool for partial body exposure biodosimetry. In the present study, partial body exposures were simulated ex-vivo by mixing of uniformly exposed blood with unexposed blood in varying proportions. After G0-PCC-FISH, Dolphin's approach with background correction was used to provide partial body exposure dose estimates and these were compared with those obtained from conventional dicentric assay and G0-PCC-Fragment assay (conventional G0-PCC). Dispersion analysis of aberrations from partial body exposures was carried out and compared with that of whole-body exposures. The latter was inferred from a multi-donor, wide dose range calibration curve, a-priori established for whole-body exposures. With the dispersion analysis, novel multi-parametric methodology for discerning the partial body exposure from whole body exposure and accurate dose estimation has been formulated and elucidated with the help of an example. Dose and proportion dependent reduction in sensitivity and dose estimation accuracy was observed for Dicentric assay, but not in the two PCC methods. G0-PCC-FISH was found to be most accurate for the dose estimation. G0-PCC-FISH has potential to overcome the shortcomings of current available methods and can provide rapid, accurate dose estimation of partial body and high dose accidental exposures. Biological dose estimation can be useful to predict progression of disease manifestation and can help in pre-planning of appropriate & timely medical intervention.
Collapse
Affiliation(s)
- Usha Yadav
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Nagesh N Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Utkarsha S Mungse
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Kapil B Shirsath
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Manish Joshi
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Balvinder K Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
3
|
Jose SR, Timothy PB, Suganthy J, Backianathan S, Amirtham SM, Rani S, Singh R. Determination of dose-response calibration curves for gamma radiation using gamma-H2AX immunofluorescence based biodosimetry. Rep Pract Oncol Radiother 2024; 29:164-175. [PMID: 39143968 PMCID: PMC11321778 DOI: 10.5603/rpor.99678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 02/29/2024] [Indexed: 08/16/2024] Open
Abstract
Background Gamma-H2AX immunofluorescence assay has gained popularity as a DNA double strand break marker. In this work, we have investigated the potential use of gamma H2AX immunofluorescence assay as a biological dosimeter for estimation of dose in our institution. Materials and methods Seven healthy individuals were selected for the study and the blood samples collected from the first five individuals were irradiated to low doses (0-10 cGy) and high doses (50-500 cGy) in a telecobalt unit. All the samples were processed for gamma-H2AX immunofluorescence assay and the dose-response calibration curves for low and high doses were determined. In order to validate the determined dose-response calibration curves, the blood samples obtained from the sixth and seventh subjects were delivered a test dose of 7.5 cGy and 250 cGy. In addition, time and cost required to complete the assay were also reported. Results The goodness of fit (R2) values was found to be 0.9829 and 0.9766 for low and high dose-response calibration curves. The time required to perform the gamma-H2AX immunofluorescence assay was found to be 7 hours and 30 minutes and the estimated cost per sample was 5000 rupees (~ 60 USD). Conclusion Based on this study we conclude that the individual dose-response calibration curves determined with gamma-H2AX immunofluorescence assay for both low and high dose ranges of gamma radiation can be used for biological dosimetry. Further, the gamma-H2AX immunofluorescence assay can be used as a rapid cost-effective biodosimetric tool for institutions with an existing confocal microscope facility.
Collapse
Affiliation(s)
- Solomon Raj Jose
- Department of Radiotherapy, Christian Medical College Vellore, Vellore, India
| | | | - J Suganthy
- Department of Anatomy, Christian Medical College Vellore, CMC, Bagayam, Vellore, India
| | | | | | - Sandya Rani
- Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | - Rabi Singh
- Department of Radiation Oncology, Christian Medical College Vellore, Vellore, India
| |
Collapse
|
4
|
Vinnikov VA. Effect of changing the radiation dose range on the in vitro cytogenetic dose response to gamma-rays. Int J Radiat Biol 2024; 100:875-889. [PMID: 38647504 DOI: 10.1080/09553002.2024.2338511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE To examine the distortion of the linear quadratic (LQ) model of in vitro cytogenetic dose response over an extended range of γ-ray doses by analyzing the available literature data, and to establish the dose ranges, in which the LQ dose response curve (DRC) can be most accurately fitted for biological dosimetry. MATERIALS AND METHODS Data on yields of dicentrics (Dic) or dicentrics plus centric rings (Dic + CR) induced in vitro in human lymphocytes by acute γ-rays were extracted from 108 open sources. The overall dose response dataset in the dose range up to 50 Gy was fitted to a fractional-rational (FR) model, which included a 'basic' LQ function in the numerator, and a reduction factor dependent on the square of the dose in the denominator. Cytogenetic dose response data obtained at Grigoriev Institute for Medical Radiology, Kharkiv, Ukraine (GIMRO) in the range 0.1 - 20.3 Gy acute γ-rays were fitted to the LQ model with the progressive changing minimum or maximum radiation dose. RESULTS The overall dose response, as expected, followed the LQ function in the dose range ≤5 Gy, but in the extended dose range appeared to be S-shaped, with intensive saturation and a plateau at doses ≥22 Gy. Coefficients of the 'basic' LQ equation in FR model were very close to many published DRCs; calculated asymptote was 17. Fitting of the GIMRO dataset to the LQ model with the shift of the dose range showed the increase in linear coefficient with the increment of either minimum or maximum radiation dose, while the decline of the quadratic coefficient was regulated mostly by the increase of the highest dose. The best goodness of fit, assessed by lower χ2 values, occurred for dose ranges 0.1 - 1.0 Gy; 0.5 - 5.9 Gy; 1.0 - 7.8 Gy; 2.0 - 9.6 Gy, 3.9 - 16.4 Gy and 5.9 - 20.3 Gy. The 'see-saw' effect in changes of LQ coefficients was confirmed by re-fitting datasets published by other laboratories. CONCLUSIONS The classical LQ model with fixed coefficients appears to have limited applicability for cytogenetic dosimetry at radiation doses >5 Gy due to the saturation of the dose response. Different response of the LQ coefficients to the changes of the dose range must be considered during the DRC construction. Proper selection of minimum and maximum dose in calibration experiments makes it possible to improve the goodness of fit of the LQ DRC.
Collapse
Affiliation(s)
- Volodymyr A Vinnikov
- S.P. Grigoriev Institute for Medical Radiology and Oncology, National Academy of Medical Science of Ukraine, Kharkiv, Ukraine
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Centre of Slovak Academy of Science, Bratislava, Slovak Republic
| |
Collapse
|
5
|
C H A, Maddaly R. Applications of Premature Chromosome Condensation technique for genetic analysis. Toxicol In Vitro 2024; 94:105736. [PMID: 37984482 DOI: 10.1016/j.tiv.2023.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/29/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
Cytogenetic techniques are used to detect aberrations in the genetic material and such techniques have a wide range of applications including for disease diagnosis, drug discovery and for the detection and quantification of mutagenic exposures. Although different types of cytogenetic techniques are in use, the Premature Chromosome Condensation (PCC) is one which is unique by virtue of it not requiring culture of peripheral blood mononucleate cells (PBMNCs) to detect chromatid and chromosomal aberrations. Such an advantage is useful in situations where rapid assessments of genetic damage is required, for example, during radiation exposures. PCC utilizes condensation of interphase chromatin by either biological or chemical means. The most widely used application of PCC is for biodosimetry. However, the rapidness of aberration detection has made PCC a useful technique for other applications such as for cancer diagnosis, drug-induced genotoxicity and preimplantation or assisted reproductive techniques. Also, PCC can be utilized for understanding the fundamental cellular mechanisms involved in chromatin condensation and chromosome morphologies. We present here the various approaches to obtain PCC, its applications and the endpoints which are used while using PCC as a cytogenetic technique.
Collapse
Affiliation(s)
- Anjali C H
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
6
|
Meher PK, Lundholm L, Wojcik A. Fluorescence in situ hybridisation for interphase chromosomal aberration-based biological dosimetry. RADIATION PROTECTION DOSIMETRY 2023; 199:1501-1507. [PMID: 37721087 PMCID: PMC10505941 DOI: 10.1093/rpd/ncac264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 09/19/2023]
Abstract
Metaphase spreads stained with Giemsa or painted with chromosome-specific probes by fluorescence in situ hybridisation (FISH) have been in use since long for retrospective dose assessment (biological dosimetry). However, in cases of accidental exposure to ionising radiation, the culturing of lymphocytes to obtain metaphase chromosomes and analysis of chromosomal aberrations is time-consuming and problematic after high radiation doses. Similarly, analysing chromosomal damage in G0/G1 cells or nondividing cells by premature chromosome condensation is laborious. Following large-scale radiological emergencies, the time required for analysis is more important than precision of dose estimate. Painting of whole chromosomes using chromosome-specific probes in interphase nuclei by the FISH technique will eliminate the time required for cell culture and allow a fast dose estimate, provided that a meaningful dose-response can be obtained by scoring the number of chromosomal domains visible in interphase nuclei. In order to test the applicability of interphase FISH for quick biological dosimetry, whole blood from a healthy donor was irradiated with 8 Gy of gamma radiation. Irradiated whole blood was kept for 2 h at 37°C to allow DNA repair and thereafter processed for FISH with probes specific for Chromosomes-1 and 2. Damaged chromosomal fragments, distinguished by extra color domains, were observed in interphase nuclei of lymphocytes irradiated with 8 Gy. These fragments were efficiently detected and quantified by the FISH technique utilising both confocal and single plane fluorescence microscopy. Furthermore, a clear dose-response curve for interphase fragments was achieved following exposure to 0, 1, 2, 4 and 8 Gy of gamma radiation. These results demonstrate interphase FISH as a promising test for biodosimetry and for studying cytogenetic effects of radiation in nondividing cells.
Collapse
Affiliation(s)
- Prabodha Kumar Meher
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lovisa Lundholm
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andrzej Wojcik
- Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
7
|
Livingston GK, Ryan TL, Escalona MB, Foster AE, Balajee AS. Retrospective Evaluation of Cytogenetic Effects Induced by Internal Radioiodine Exposure: A 27-Year Follow-Up Study. Cytogenet Genome Res 2023; 163:154-162. [PMID: 37573786 DOI: 10.1159/000533396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023] Open
Abstract
Radioiodine (131I) is widely used in the treatment of hyperthyroidism and as an effective ablative therapy for differentiated thyroid cancer. Radioiodine (131I) constitutes 90% of the currently used therapies in the field of nuclear medicine. Here, we report the cytogenetic findings of a long-term follow-up study of 27 years on a male patient who received two rounds of radioiodine treatment within a span of 26 months between 1992 and 1994 for his papillary thyroid cancer. A comprehensive cytogenetic follow-up study utilizing cytokinesis blocked micronucleus assay, dicentric chromosome assay, genome wide translocations and inversions was initiated on this patient since the first administration of radioiodine in 1992. Frequencies of micronuclei (0.006/cell) and dicentric chromosomes (0.008/cell) detected in the current study were grossly similar to that reported earlier in 2019. The mFISH analysis detected chromosome aberrations in 8.6% of the cells in the form of both unbalanced and balanced translocations. Additionally, a clonal translocation involving chromosomes 14p; 15q was observed in 2 of the 500 cells analyzed. Out of the 500 cells examined, one cell showed a complex translocation (involving chromosomes 9, 10, and 16) besides 5 other chromosome rearrangements. Collectively, our study indicates that the past radioiodine exposure results in long-lasting chromosome damage and that the persistence of translocations can be useful for both retrospective biodosimetry and for monitoring chromosome instability in the lymphocytes of radioiodine exposed individuals.
Collapse
Affiliation(s)
- Gordon K Livingston
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Terri L Ryan
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Maria B Escalona
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| | - Alvis E Foster
- Indiana University Health, Ball Memorial Hospital, Muncie, Indiana, USA
| | - Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, Tennessee, USA
| |
Collapse
|
8
|
Shuryak I, Royba E, Repin M, Turner HC, Garty G, Deoli N, Brenner DJ. A machine learning method for improving the accuracy of radiation biodosimetry by combining data from the dicentric chromosomes and micronucleus assays. Sci Rep 2022; 12:21077. [PMID: 36473912 PMCID: PMC9726929 DOI: 10.1038/s41598-022-25453-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
A large-scale malicious or accidental radiological event can expose vast numbers of people to ionizing radiation. The dicentric chromosome (DCA) and cytokinesis-block micronucleus (CBMN) assays are well-established biodosimetry methods for estimating individual absorbed doses after radiation exposure. Here we used machine learning (ML) to test the hypothesis that combining automated DCA and CBMN assays will improve dose reconstruction accuracy, compared with using either cytogenetic assay alone. We analyzed 1349 blood sample aliquots from 155 donors of different ages (3-69 years) and sexes (49.1% males), ex vivo irradiated with 0-8 Gy at dose rates from 0.08 Gy/day to ≥ 600 Gy/s. We compared the performances of several state-of-the-art ensemble ML methods and found that random forest generated the best results, with R2 for actual vs. reconstructed doses on a testing data subset = 0.845, and mean absolute error = 0.628 Gy. The most important predictor variables were CBMN and DCA frequencies, and age. Removing CBMN or DCA data from the model significantly increased squared errors on testing data (p-values 3.4 × 10-8 and 1.1 × 10-6, respectively). These findings demonstrate the promising potential of combining CBMN and DCA assay data to reconstruct radiation doses in realistic scenarios of heterogeneous populations exposed to a mass-casualty radiological event.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA.
| | - Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| |
Collapse
|
9
|
Refined premature chromosome condensation (G 0-PCC) with cryo-preserved mitotic cells for rapid radiation biodosimetry. Sci Rep 2021; 11:13498. [PMID: 34188100 PMCID: PMC8242027 DOI: 10.1038/s41598-021-92886-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Mitotic cell fusion induced Premature Chromosome Condensation (G0-PCC) assay in human lymphocytes allows rapid detection of cytogenetic damage in interphase stage, within few hours after blood collection. Hence, it is the most suitable method for rapid and high dose biodosimetry. Mitotic cells, used for G0-PCC could be either freshly isolated or previously cryo-preserved. However, under emergency scenarios, only cryo-preserved cells can be relied upon, fresh isolation will only delay the process by 18–24 h. Impact of cryopreservation on mitotic cells and their efficacy to induce PCC are not reported. In the present study, we investigated effect of cryopreservation on mitotic cells and refined the parameters for G0-PCC. More than 95% of the cells were recoverable after 4 months of cryopreservation, within 20 min recovery at 37 °C, without significant change in the mitotic index or viability. Recovered mitotic cells have shown mitotic index of 89 ± 4% and viability of 90 ± 4%, similar to that of freshly isolated cells. Decrease in metaphases was observed within 40 min after recovery as the mitotic cells progressed through cell cycle and reduced to 21% at 1 h. Nevertheless, in presence of Colcemid, the cells progressed slowly and considerably high metaphase index (60%) persisted up to ~ 2 h. The recovered cells efficiently fused with lymphocytes and induced PCC. Average PCC index varied from 10 to 20%, which did not change with cryopreservation duration. Post fusion incubation duration of 2 h was found to be optimum for proper chromosome condensation. In conclusion, use of cryo-preserved mitotic cells is the most practical approach for rapid biodosimetry. The cells can be recovered quickly and efficiently without alteration in viability or mitotic index. Recovered cells are fully competent to induce G0-PCC.
Collapse
|
10
|
Balajee AS, Hadjidekova V. Retrospective cytogenetic analysis of unstable and stable chromosome aberrations in the victims of radiation accident in Bulgaria. Mutat Res 2020; 861-862:503295. [PMID: 33551098 DOI: 10.1016/j.mrgentox.2020.503295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022]
Abstract
Five occupational workers in an industrial sterilization unit at Stamboliyski in Bulgaria were accidentally exposed to a very high specific activity of Cobalt-60 source on June 14, 2011. Initial cytogenetic analysis performed on days 2 and 7 after radiation exposure revealed the whole body absorbed radiation doses of 5.32 Gy for patient 1, 3.40 Gy for patient 2, 2.50 Gy for patient 3, 1.91 Gy for patient 4 and 1.24 Gy for patient 5 [1]. Here, a retrospective multicolor FISH analysis was performed on three patients (patients 1, 2 and 3) using the blood samples collected over a period of 4 years from 2012 through 2015. In all the three patients, cells with stable chromosome aberrations (simple and complex chromosome translocations) were 3-4 folds more than cells with unstable chromosome aberrations (dicentric, rings and excess acentric chromosome fragments). In corroboration with the results reported in the literature, we observed that the time dependent decline of dicentrics, rings and excess acentric fragments occurred much more rapidly than chromosome translocations in the blood samples of the three victims. Further, inter-individual variation in the decline of radiation induced chromosome aberrations was also noticed among the three victims. The reason for the increased persistence of balanced chromosome translocations is not entirely clear but may be attributed to certain subsets of long-lived T-lymphocytes. The retrospective cytogenetic follow up studies on radiation-exposed victims may be useful for determining the extent of genomic/chromosomal instability in the hematopoietic system.
Collapse
Affiliation(s)
- Adayabalam S Balajee
- Cytogenetic Biodosimetry Laboratory, Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge Associated Universities, Oak Ridge, TN, USA.
| | | |
Collapse
|
11
|
Shuryak I, Ghandhi SA, Turner HC, Weber W, Melo D, Amundson SA, Brenner DJ. Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure from 137Cs. Part 2: Integration of Gamma-H2AX and Gene Expression Biomarkers for Retrospective Radiation Biodosimetry. Radiat Res 2020; 196:491-500. [PMID: 33064820 PMCID: PMC8944909 DOI: 10.1667/rade-20-00042.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/13/2020] [Indexed: 11/03/2022]
Abstract
Inhalation and ingestion of 137Cs and other long-lived radionuclides can occur after large-scale accidental or malicious radioactive contamination incidents, resulting in a complex temporal pattern of radiation dose/dose rate, influenced by radionuclide pharmacokinetics and chemical properties. High-throughput radiation biodosimetry techniques for such internal exposure are needed to assess potential risks of short-term toxicity and delayed effects (e.g., carcinogenesis) for exposed individuals. Previously, we used γ-H2AX to reconstruct injected 137Cs activity in experimentally-exposed mice, and converted activity values into radiation doses based on time since injection and 137Cs-elimination kinetics. In the current study, we sought to assess the feasibility and possible advantages of combining γ-H2AX with transcriptomics to improve 137Cs activity reconstructions. We selected five genes (Atf5, Hist2h2aa2, Olfr358, Psrc1, Hist2h2ac) with strong statistically-significant Spearman's correlations with injected activity and stable expression over time after 137Cs injection. The geometric mean of log-transformed signals of these five genes, combined with γ-H2AX fluorescence, were used as predictors in a nonlinear model for reconstructing injected 137Cs activity. The coefficient of determination (R2) comparing actual and reconstructed activities was 0.91 and root mean squared error (RMSE) was 0.95 MBq. These metrics remained stable when the model was fitted to a randomly-selected half of the data and tested on the other half, repeated 100 times. Model performance was significantly better when compared to our previous analysis using γ-H2AX alone, and when compared to an analysis where genes are used without γ-H2AX, suggesting that integrating γ-H2AX with gene expression provides an important advantage. Our findings show a proof of principle that integration of radiation-responsive biomarkers from different fields is promising for radiation biodosimetry of internal emitters.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Waylon Weber
- Lovelace Biomedical, Albuquerque, New Mexico, 87108
| | | | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
12
|
Interphase Cytogenetic Analysis of G0 Lymphocytes Exposed to α-Particles, C-Ions, and Protons Reveals their Enhanced Effectiveness for Localized Chromosome Shattering-A Critical Risk for Chromothripsis. Cancers (Basel) 2020; 12:cancers12092336. [PMID: 32825012 PMCID: PMC7563219 DOI: 10.3390/cancers12092336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/08/2020] [Accepted: 08/15/2020] [Indexed: 01/21/2023] Open
Abstract
For precision cancer radiotherapy, high linear energy transfer (LET) particle irradiation offers a substantial advantage over photon-based irradiation. In contrast to the sparse deposition of low-density energy by χ- or γ-rays, particle irradiation causes focal DNA damage through high-density energy deposition along the particle tracks. This is characterized by the formation of multiple damage sites, comprising localized clustered patterns of DNA single- and double-strand breaks as well as base damage. These clustered DNA lesions are key determinants of the enhanced relative biological effectiveness (RBE) of energetic nuclei. However, the search for a fingerprint of particle exposure remains open, while the mechanisms underlying the induction of chromothripsis-like chromosomal rearrangements by high-LET radiation (resembling chromothripsis in tumors) await to be elucidated. In this work, we investigate the transformation of clustered DNA lesions into chromosome fragmentation, as indicated by the induction and post-irradiation repair of chromosomal damage under the dynamics of premature chromosome condensation in G0 human lymphocytes. Specifically, this study provides, for the first time, experimental evidence that particle irradiation induces localized shattering of targeted chromosome domains. Yields of chromosome fragments and shattered domains are compared with those generated by γ-rays; and the RBE values obtained are up to 28.6 for α-particles (92 keV/μm), 10.5 for C-ions (295 keV/μm), and 4.9 for protons (28.5 keV/μm). Furthermore, we test the hypothesis that particle radiation-induced persistent clustered DNA lesions and chromatin decompaction at damage sites evolve into localized chromosome shattering by subsequent chromatin condensation in a single catastrophic event—posing a critical risk for random rejoining, chromothripsis, and carcinogenesis. Consistent with this hypothesis, our results highlight the potential use of shattered chromosome domains as a fingerprint of high-LET exposure, while conforming to the new model we propose for the mechanistic origin of chromothripsis-like rearrangements.
Collapse
|
13
|
Yadav U, Bhat NN, Shirsath KB, Mungse US, Sapra BK. Multifaceted applications of pre-mature chromosome condensation in radiation biodosimetry. Int J Radiat Biol 2020; 96:1274-1280. [PMID: 32689847 DOI: 10.1080/09553002.2020.1798545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Biodosimetry with persistent cytogenetic indicators in peripheral blood lymphocytes (PBLs) plays crucial role in regulatory/medical management of individuals overexposed to radiation. Conventional methods require ∼48 h culture and have limited dose range (0.1-5Gy) applications due to checkpoint arrest/poor stimulation. G0-Phase Premature chromosome condensation (G0-PCC) allows chromosome aberration analysis within hours after blood collection. Due to high skill demand, applications of G0-PCC were not very well explored and being re-visited worldwide. Among all aberrations, analysis of excess chromosomal fragments is quickest. Radiation dose response curve for the fragments has been reported. PURPOSE In present study, excess fragment analysis has been addressed in detail, in addition to validation of radiation dose response curve, gender variation in the response, dose dependent repair kinetics, minimum detection limit (MDL), duration and accuracy of final dose estimation with 5blindfolded, ex vivo irradiated samples have been studied. In extension, feasibility of multiparametric dosimetry with Fluorescent in situ hybridization (FISH) based endpoints were qualitatively explored. MATERIAL AND METHODS PBLs were exposed to Gamma-Radiation and G0-PCC was performed at different time points. Decay kinetics and dose response curve were established. Gender Variation of the frequency of the fragments was assessed at 0, 2 and 4 Gy. FISH was performed with G0-PCC applying centromere probe, whole chromosome paints, multi-color FISH and multi-color banding probes. RESULTS Radiation response curve for fragments was found to be linear (Slope 1.09 ± 0.031 Gy-1). Background frequency as well as dose response did not show significant gender bias. Based on variation in background frequency of fragments MDL was calculated to be ∼0.3 Gy. Kinetics of fragment tested at 0, 4, 8, 16 and 24 h showed exponential decay pattern from 0 to 8 h and without further decay. Final dose estimation of five samples was completed within 13 man-hours. Dicentric chromosomes, translocations, insertions and breaks were identifiable in combination with centromere FISH and WCP. Advanced methods employing multicolor FISH and multi-color banding were also demonstrated with PCC spreads. CONCLUSION G0-PCC, can be useful tool for high dose biodosimetry with quick assessment of fragment frequency. Further, it holds potential for multi-parametric dosimetry in combination with FISH.
Collapse
Affiliation(s)
- Usha Yadav
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Nagesh Nagabhushana Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | | | - Utkarsha Sagar Mungse
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Balvinder Kaur Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
14
|
Shuryak I, Turner HC, Perrier JR, Cunha L, Canadell MP, Durrani MH, Harken A, Bertucci A, Taveras M, Garty G, Brenner DJ. A High Throughput Approach to Reconstruct Partial-Body and Neutron Radiation Exposures on an Individual Basis. Sci Rep 2020; 10:2899. [PMID: 32076014 PMCID: PMC7031285 DOI: 10.1038/s41598-020-59695-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/27/2020] [Indexed: 11/28/2022] Open
Abstract
Biodosimetry-based individualized reconstruction of complex irradiation scenarios (partial-body shielding and/or neutron + photon mixtures) can improve treatment decisions after mass-casualty radiation-related incidents. We used a high-throughput micronucleus assay with automated scanning and imaging software on ex-vivo irradiated human lymphocytes to: a) reconstruct partial-body and/or neutron exposure, and b) estimate separately the photon and neutron doses in a mixed exposure. The mechanistic background is that, compared with total-body photon irradiations, neutrons produce more heavily-damaged lymphocytes with multiple micronuclei/binucleated cell, whereas partial-body exposures produce fewer such lymphocytes. To utilize these differences for biodosimetry, we developed metrics that describe micronuclei distributions in binucleated cells and serve as predictors in machine learning or parametric analyses of the following scenarios: (A) Homogeneous gamma-irradiation, mimicking total-body exposures, vs. mixtures of irradiated blood with unirradiated blood, mimicking partial-body exposures. (B) X rays vs. various neutron + photon mixtures. The results showed high accuracies of scenario and dose reconstructions. Specifically, receiver operating characteristic curve areas (AUC) for sample classification by exposure type reached 0.931 and 0.916 in scenarios A and B, respectively. R2 for actual vs. reconstructed doses in these scenarios reached 0.87 and 0.77, respectively. These encouraging findings demonstrate a proof-of-principle for the proposed approach of high-throughput reconstruction of clinically-relevant complex radiation exposure scenarios.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA.
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Jay R Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Lydia Cunha
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Monica Pujol Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Mohammad H Durrani
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew Harken
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Antonella Bertucci
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
15
|
Cornforth MN. Occam's broom and the dirty DSB: cytogenetic perspectives on cellular response to changes in track structure and ionization density. Int J Radiat Biol 2020; 97:1099-1108. [PMID: 31971454 DOI: 10.1080/09553002.2019.1704302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Given equal doses, it is well-known that densely ionizing radiations are more potent in causing a number of biological effects compared to sparsely ionizing radiations, such as x- or gamma rays. According to classical models of radiation action, this results from differences in the spatial distribution of lesions along charged particle tracks. In recent years investigators have been barraged with the alternative narrative that this is instead due to 'qualitative' differences in the types of molecular lesions that each type of radiation produces. The present review discusses, mainly from a cytogenetic perspective, the merits and shortcomings of these seemingly contradictory viewpoints. There may be a kernel of truth to the idea that qualitative differences in the types of molecular lesions produced at the nanometer level affect RBE/LET relationships, but to ignore the fact that such differences result from longer-range spatial distributions of lesions produced along charged particle tracks is an unjustifiably narrow stance tantamount to employing Occam's Broom. Not only are such spatial considerations indispensable in explaining the impact of ionization density upon higher-order biological endpoints, particularly chromosome aberrations, the explanations they provide render arguments based principally on the quality of IR damage largely superfluous.
Collapse
Affiliation(s)
- Michael N Cornforth
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
16
|
Ricoul M, Gnana Sekaran TS, Brochard P, Herate C, Sabatier L. γ-H2AX Foci Persistence at Chromosome Break Suggests Slow and Faithful Repair Phases Restoring Chromosome Integrity. Cancers (Basel) 2019; 11:1397. [PMID: 31546867 PMCID: PMC6770925 DOI: 10.3390/cancers11091397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many toxic agents can cause DNA double strand breaks (DSBs), which are in most cases quickly repaired by the cellular machinery. Using ionising radiation, we explored the kinetics of DNA lesion signaling and structural chromosome aberration formation at the intra- and inter-chromosomal level. Using a novel approach, the classic Premature Chromosome Condensation (PCC) was combined with γ-H2AX immunofluorescence staining in order to unravel the kinetics of DNA damage signalisation and chromosome repair. We identified an early mechanism of DNA DSB joining that occurs within the first three hours post-irradiation, when dicentric chromosomes and chromosome exchanges are formed. The slower and significant decrease of "deleted chromosomes" and 1 acentric telomere fragments observed until 24 h post-irradiation, leads to the conclusion that a second and error-free repair mechanism occurs. In parallel, we revealed remaining signalling of γ-H2AX foci at the site of chromosome fusion long after the chromosome rearrangement formation. Moreover there is important signalling of foci on the site of telomere and sub-telomere sequences suggesting either a different function of γ-H2AX signalling in these regions or an extreme sensibility of the telomere sequences to DNA damage that remains unrepaired 24 h post-irradiation. In conclusion, chromosome repair happens in two steps, including a last and hardly detectable one because of restoration of the chromosome integrity.
Collapse
Affiliation(s)
- Michelle Ricoul
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Tamizh Selvan Gnana Sekaran
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Patricia Brochard
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Cecile Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Laure Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|