1
|
Furutani Y, Hirano Y, Toguchi M, Higuchi S, Qin XY, Yanaka K, Sato-Shiozaki Y, Takahashi N, Sakai M, Kongpracha P, Suzuki T, Dohmae N, Kukimoto-Niino M, Shirouzu M, Nagamori S, Suzuki H, Kobayashi K, Masaki T, Koyama H, Sekiba K, Otsuka M, Koike K, Kohara M, Kojima S, Kakeya H, Matsuura T. A small molecule iCDM-34 identified by in silico screening suppresses HBV DNA through activation of aryl hydrocarbon receptor. Cell Death Discov 2023; 9:467. [PMID: 38135680 PMCID: PMC10746708 DOI: 10.1038/s41420-023-01755-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
IFN-alpha have been reported to suppress hepatitis B virus (HBV) cccDNA via APOBEC3 cytidine deaminase activity through interferon signaling. To develop a novel anti-HBV drug for a functional cure, we performed in silico screening of the binding compounds fitting the steric structure of the IFN-alpha-binding pocket in IFNAR2. We identified 37 compounds and named them in silico cccDNA modulator (iCDM)-1-37. We found that iCDM-34, a new small molecule with a pyrazole moiety, showed anti-HCV and anti-HBV activities. We measured the anti-HBV activity of iCDM-34 dependent on or independent of entecavir (ETV). iCDM-34 suppressed HBV DNA, pgRNA, HBsAg, and HBeAg, and also clearly exhibited additive inhibitory effects on the suppression of HBV DNA with ETV. We confirmed metabolic stability of iCDM-34 was stable in human liver microsomal fraction. Furthermore, anti-HBV activity in human hepatocyte-chimeric mice revealed that iCDM-34 was not effective as a single reagent, but when combined with ETV, it suppressed HBV DNA compared to ETV alone. Phosphoproteome and Western blotting analysis showed that iCDM-34 did not activate IFN-signaling. The transcriptome analysis of interferon-stimulated genes revealed no increase in expression, whereas downstream factors of aryl hydrocarbon receptor (AhR) showed increased levels of the expression. CDK1/2 and phospho-SAMHD1 levels decreased under iCDM-34 treatment. In addition, AhR knockdown inhibited anti-HCV activity of iCDM-34 in HCV replicon cells. These results suggest that iCDM-34 decreases the phosphorylation of SAMHD1 through CDK1/2, and suppresses HCV replicon RNA, HBV DNA, and pgRNA formation.
Collapse
Affiliation(s)
- Yutaka Furutani
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan.
| | - Yoshinori Hirano
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa, 223-8522, Japan
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Mariko Toguchi
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shoko Higuchi
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaori Yanaka
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Yumi Sato-Shiozaki
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Nobuaki Takahashi
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Marina Sakai
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Pornparn Kongpracha
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science (CSRS), RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Shushi Nagamori
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Kaoru Kobayashi
- Laboratory of Biopharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takahiro Masaki
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hiroo Koyama
- Drug Discovery Chemistry Platform Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuma Sekiba
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8461, Japan
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Center for SI Medical Research, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, 105-8471, Japan
- Sasaki Institute Shonan Medical Examination Center, 10-4 Takarachou, Hiratsuka-shi, Kanagawa, 254-0034, Japan
| |
Collapse
|
2
|
Li L, Zhang Y, Hu W, Zou F, Ning J, Rao T, Ruan Y, Yu W, Cheng F. MTHFD2 promotes PD-L1 expression via activation of the JAK/STAT signalling pathway in bladder cancer. J Cell Mol Med 2023; 27:2922-2936. [PMID: 37480214 PMCID: PMC10538262 DOI: 10.1111/jcmm.17863] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Although combination chemotherapy is widely used for bladder cancer (BC) treatment, the recurrence and progression rates remain high. Therefore, novel therapeutic targets are required. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) contributes to tumourigenesis and immune evasion in several cancers; however, its biological function in BC remains unknown. This study aimed to investigate the expression, prognostic value and protumoural function of MTHFD2 in BC and elucidate the mechanism of programmed death-ligand 1 (PD-L1) upregulation by MTHFD2. An analysis using publicly available databases revealed that a high MTHFD2 expression was correlated with clinical features and a poor prognosis in BC. Furthermore, MTHFD2 promoted the growth, migration, invasion and tumourigenicity and decreased the apoptosis of BC cells in vivo and in vitro. The results obtained from databases showed that MTHFD2 expression was correlated with immune infiltration levels, PD-L1 expression, and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. The expression of MTHFD2, PD-L1 and JAK/STAT signalling pathway-related proteins increased after interferon gamma treatment and decreased after MTHFD2 knockdown. Moreover, addition of a JAK/STAT pathway activator partially reduced the effect of MTHFD2 knockdown on BC cells. Collectively, our findings suggest that MTHFD2 promotes the expression of PD-L1 through the JAK/STAT signalling pathway in BC.
Collapse
Affiliation(s)
- Linzhi Li
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yunlong Zhang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Weimin Hu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fan Zou
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ting Rao
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yuan Ruan
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Weimin Yu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
3
|
Luo X, Jiang Y, Li Q, Yu X, Ma T, Cao H, Ke M, Zhang P, Tan J, Gong Y, Wang L, Gao L, Yang H. hESC-Derived Epicardial Cells Promote Repair of Infarcted Hearts in Mouse and Swine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300470. [PMID: 37505480 PMCID: PMC10520683 DOI: 10.1002/advs.202300470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Myocardial infarction (MI) causes excessive damage to the myocardium, including the epicardium. However, whether pluripotent stem cell-derived epicardial cells (EPs) can be a therapeutic approach for infarcted hearts remains unclear. Here, the authors report that intramyocardial injection of human embryonic stem cell-derived EPs (hEPs) at the acute phase of MI ameliorates functional worsening and scar formation in mouse hearts, concomitantly with enhanced cardiomyocyte survival, angiogenesis, and lymphangiogenesis. Mechanistically, hEPs suppress MI-induced infiltration and cytokine-release of inflammatory cells and promote reparative macrophage polarization. These effects are blocked by a type I interferon (IFN-I) receptor agonist RO8191. Moreover, intelectin 1 (ITLN1), abundantly secreted by hEPs, interacts with IFN-β and mimics the effects of hEP-conditioned medium in suppression of IFN-β-stimulated responses in macrophages and promotion of reparative macrophage polarization, whereas ITLN1 downregulation in hEPs cancels beneficial effects of hEPs in anti-inflammation, IFN-I response inhibition, and cardiac repair. Further, similar beneficial effects of hEPs are observed in a clinically relevant porcine model of reperfused MI, with no increases in the risk of hepatic, renal, and cardiac toxicity. Collectively, this study reveals hEPs as an inflammatory modulator in promoting infarct healing via a paracrine mechanism and provides a new therapeutic approach for infarcted hearts.
Collapse
Affiliation(s)
- Xiao‐Ling Luo
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Qiang Li
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Xiu‐Jian Yu
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Teng Ma
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Hao Cao
- Department of Cardiovascular and Thoracic SurgeryShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Min‐Xia Ke
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Ji‐Liang Tan
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
| | - Yan‐Shan Gong
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Li Wang
- State Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037China
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Huang‐Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and TumorLaboratory of Molecular CardiologyShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of Sciences (CAS)Shanghai200031P. R. China
- Translational Medical Center for Stem Cell Therapy, Institutes for Regenerative Medicine and Heart FailureShanghai East HospitalTongji University School of MedicineShanghai200123China
- Institute for Stem Cell and RegenerationCASBeijing100101China
| |
Collapse
|
4
|
Ruiz UEA, Santos IA, Grosche VR, Fernandes RS, de Godoy AS, Torres JDA, Freire MCLC, Mesquita NCDMR, Guevara-Vega M, Nicolau-Junior N, Sabino-Silva R, Mineo TWP, Oliva G, Jardim ACG. Imidazonaphthyridine effects on Chikungunya virus replication: Antiviral activity by dependent and independent of interferon type 1 pathways. Virus Res 2023; 324:199029. [PMID: 36565816 PMCID: PMC10194360 DOI: 10.1016/j.virusres.2022.199029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The Chikungunya virus (CHIKV) causes Chikungunya fever, a disease characterized by symptoms such as arthralgia/polyarthralgia. Currently, there are no antivirals approved against CHIKV, emphasizing the need to develop novel therapies. The imidazonaphthyridine compound (RO8191), an interferon-α (IFN-α) agonist, was reported as a potent inhibitor of HCV. Here RO8191 was investigated for its potential to inhibit CHIKV replication in vitro. RO8191 inhibited CHIKV infection in BHK-21 and Vero-E6 cells with a selectivity index (SI) of 12.3 and 37.3, respectively. Additionally, RO8191 was capable to protect cells against CHIKV infection, inhibit entry by virucidal activity, and strongly impair post-entry steps of viral replication. An effect of RO8191 on CHIKV replication was demonstrated in BHK-21 through type-1 IFN production mechanism and in Vero-E6 cells which has a defective type-1 IFN production, also suggesting a type-1 IFN independent mode of action. Molecular docking calculations demonstrated interactions of RO8191 with the CHIKV E proteins, corroborated by the ATR-FTIR assay, and with non-structural proteins, supported by the CHIKV-subgenomic replicon cells assay.
Collapse
Affiliation(s)
| | - Igor Andrade Santos
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | - Marco Guevara-Vega
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Nilson Nicolau-Junior
- Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Robinson Sabino-Silva
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo (USP), São Carlos, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, SP, Brazil.
| |
Collapse
|
5
|
Shi W, Yao X, Fu Y, Wang Y. Interferon‑α and its effects on cancer cell apoptosis (Review). Oncol Lett 2022; 24:235. [PMID: 35720476 PMCID: PMC9185151 DOI: 10.3892/ol.2022.13355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
Interferon (IFN)-α is a cytokine that exhibits a wide range of biological activities and is used in various cancer treatments. It regulates numerous genes that serve roles in antiviral, antiproliferative and proapoptotic activities. For decades, one of the main aspects of clinical oncology has been the development of anticancer therapeutics that promote the effective elimination of cancer cells via apoptosis. However, the updated available information concerning IFN-α-induced cancer cell apoptosis needs to be assembled, so as to provide an improved theoretical reference for the basic scientific research and clinical treatment of malignant tumors. Therefore, the present review focuses on the potential effects of IFN-α in inducing cancer cell apoptosis. The biological characteristics of IFN-α, the apoptotic signaling pathways and molecular mechanisms of apoptosis caused by IFN-α are discussed in different types of cancer cells. The present review provided a comprehensive understanding of the effects of IFN-α on cancer cell apoptosis, which will aid in developing more efficient strategies to effectively control the progression of certain cancers.
Collapse
Affiliation(s)
- Weiye Shi
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Xu Yao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yu Fu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| | - Yingze Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, P.R. China
| |
Collapse
|
6
|
Yan Y, Qiu Y, Davgadorj C, Zheng C. Novel Molecular Therapeutics Targeting Signaling Pathway to Control Hepatitis B Viral Infection. Front Cell Infect Microbiol 2022; 12:847539. [PMID: 35252042 PMCID: PMC8894711 DOI: 10.3389/fcimb.2022.847539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Numerous canonical cellular signaling pathways modulate hepatitis B virus (HBV) replication. HBV genome products are known to play a significant role in regulating these cellular pathways for the liver’s viral-related pathology and physiology and have been identified as the main factor in hepatocarcinogenesis. Signaling changes during viral replication ultimately affect cellular persistence, multiplication, migration, genome instability, and genome damage, leading to proliferation, evasion of apoptosis, block of differentiation, and immortality. Recent studies have documented that numerous signaling pathway agonists or inhibitors play an important role in reducing HBV replication in vitro and in vivo, and some have been used in phase I or phase II clinical trials. These optional agents as molecular therapeutics target cellular pathways that could limit the replication and transcription of HBV or inhibit the secretion of the small surface antigen of HBV in a signaling-independent manner. As principle-based available information, a combined strategy including antiviral therapy and immunomodulation will be needed to control HBV infection effectively. In this review, we summarize recent findings on interventions of molecular regulators in viral replication and the interactions of HBV proteins with the components of the various targeting cellular pathways, which may assist in designing novel agents to modulate signaling pathways to prevent HBV replication or carcinogenesis.
Collapse
Affiliation(s)
- Yan Yan
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
- *Correspondence: Yan Yan, ; Chunfu Zheng,
| | - Yuanwang Qiu
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chantsalmaa Davgadorj
- Laboratory for Infection and Immunity, Hepatology Institute of Wuxi, The Fifth People’s Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Yan Yan, ; Chunfu Zheng,
| |
Collapse
|
7
|
Kitamura H, Tanigawa T, Kuzumoto T, Nadatani Y, Otani K, Fukunaga S, Hosomi S, Tanaka F, Kamata N, Nagami Y, Taira K, Uematsu S, Watanabe T, Fujiwara Y. Interferon-α exerts proinflammatory properties in experimental radiation-induced esophagitis: Possible involvement of plasmacytoid dendritic cells. Life Sci 2022; 289:120215. [PMID: 34890590 DOI: 10.1016/j.lfs.2021.120215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
AIMS Radiation-induced esophagitis, experienced during radiation therapy for lung cancer and head and neck cancer, is a major dose-limiting side effect of the treatment. This study aimed to elucidate the role of interferon-α (IFN-α) in radiation-induced esophagitis. MAIN METHODS C57BL/6 mice were exposed to 10 and 25Gy of single thoracic irradiation. Esophageal mucosal damage and inflammatory reactions were assessed for 5 days after irradiation. KEY FINDINGS Irradiation induced esophagitis, characterized by reduction in the thickness of epithelial layer, upregulation of proinflammatory cytokines and chemokines, infiltration of inflammatory cells into the esophageal mucosa, and apoptosis of epithelial cells. Irradiation upregulated the level of gene expression for IFN-α in the esophageal tissue, and the neutralizing antibody against IFN-α ameliorated radiation-induced esophageal mucosal damage, while administration of IFN-α receptor agonist (RO8191) had an inverse effect. Depletion of plasmacytoid dendritic cells (pDCs) by anti-CD317 antibody or pharmacological inactivation with bortezomib suppressed radiation-induced mucosal inflammation and damage, accompanied by decrease in IFN-α expression level. SIGNIFICANCE These findings suggest that IFN-α and pDCs exert proinflammatory properties in the pathophysiology of radiation-induced esophagitis.
Collapse
Affiliation(s)
- Hiroyuki Kitamura
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tetsuya Tanigawa
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Gastroenterology, Osaka City Juso Hospital, Osaka, Japan.
| | - Takuya Kuzumoto
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuji Nadatani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Otani
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shusei Fukunaga
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Fumio Tanaka
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Noriko Kamata
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuaki Nagami
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koichi Taira
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Uematsu
- Department of Immunology and Genomics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Toshio Watanabe
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Premier Preventive Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yasuhiro Fujiwara
- Department of Gastroenterology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
8
|
Zhang X, Wang Y, Yang G. Research progress in hepatitis B virus covalently closed circular DNA. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0454. [PMID: 34931766 PMCID: PMC9088183 DOI: 10.20892/j.issn.2095-3941.2021.0454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022] Open
Abstract
Hepatitis B virus (HBV) infections are a global public health issue. HBV covalently closed circular DNA (cccDNA), the template for the transcription of viral RNAs, is a key factor in the HBV replication cycle. Notably, many host factors involved in HBV cccDNA epigenetic modulation promote the development of hepatocellular carcinoma (HCC). The HBV cccDNA minichromosome is a clinical obstacle that cannot be efficiently eliminated. In this review, we provide an update on the advances in research on HBV cccDNA and further discuss factors affecting the modulation of HBV cccDNA. Hepatitis B virus X protein (HBx) contributes to HBV cccDNA transcription and the development of hepatocarcinogenesis through modulating host epigenetic regulatory factors, thus linking the cccDNA to hepatocarcinogenesis. The measurable serological biomarkers of continued transcription of cccDNA, the effects of anti-HBV drugs on cccDNA, and potential therapeutic strategies targeting cccDNA are discussed in detail. Thus, this review describes new insights into HBV cccDNA mechanisms and therapeutic strategies for cleaning cccDNA, which will benefit patients with liver diseases.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Gastrointestinal Cancer Biology, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yufei Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
9
|
Zhang Y, Chen X, Cao Y, Yang Z. Roles of APOBEC3 in hepatitis B virus (HBV) infection and hepatocarcinogenesis. Bioengineered 2021; 12:2074-2086. [PMID: 34043485 PMCID: PMC8806738 DOI: 10.1080/21655979.2021.1931640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
APOBEC3 (A3) cytidine deaminases inhibit hepatitis B virus (HBV) infection and play vital roles in maintaining a variety of biochemical processes, including the regulation of protein expression and innate immunity. Emerging evidence indicates that the deaminated deoxycytidine biochemical activity of A3 proteins in single-stranded DNA makes them a double-edged sword. These enzymes can cause cellular genetic mutations at replication forks or within transcription bubbles, depending on the physiological state of the cell and the phase of the cell cycle. Under pathological conditions, aberrant expression of A3 genes with improper deaminase activity regulation may threaten genomic stability and eventually lead to cancer development. This review attempted to summarize the antiviral activities and underlying mechanisms of A3 editing enzymes in HBV infections. Moreover, the correlations between A3 genes and hepatocarcinogenesis were also elucidated.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yajuan Cao
- Central Laboratory, Shanghai Pulmonary HospitalSchool of Medicine, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Establishment of a Rapid Detection System for ISG20-Dependent SARS-CoV-2 Subreplicon RNA Degradation Induced by Interferon-α. Int J Mol Sci 2021; 22:ijms222111641. [PMID: 34769072 PMCID: PMC8583800 DOI: 10.3390/ijms222111641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Inhaled nebulized interferon (IFN)-α and IFN-β have been shown to be effective in the management of coronavirus disease 2019 (COVID-19). We aimed to construct a virus-free rapid detection system for high-throughput screening of IFN-like compounds that induce viral RNA degradation and suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We prepared a SARS-CoV-2 subreplicon RNA expression vector which contained the SARS-CoV-2 5′-UTR, the partial sequence of ORF1a, luciferase, nucleocapsid, ORF10, and 3′-UTR under the control of the cytomegalovirus promoter. The expression vector was transfected into Calu-3 cells and treated with IFN-α and the IFNAR2 agonist CDM-3008 (RO8191) for 3 days. SARS-CoV-2 subreplicon RNA degradation was subsequently evaluated based on luciferase levels. IFN-α and CDM-3008 suppressed SARS-CoV-2 subreplicon RNA in a dose-dependent manner, with IC50 values of 193 IU/mL and 2.54 μM, respectively. HeLa cells stably expressing SARS-CoV-2 subreplicon RNA were prepared and treated with the IFN-α and pan-JAK inhibitor Pyridone 6 or siRNA-targeting ISG20. IFN-α activity was canceled with Pyridone 6. The knockdown of ISG20 partially canceled IFN-α activity. Collectively, we constructed a virus-free rapid detection system to measure SARS-CoV-2 RNA suppression. Our data suggest that the SARS-CoV-2 subreplicon RNA was degraded by IFN-α-induced ISG20 exonuclease activity.
Collapse
|
11
|
Li J, Wen JX, Lu XC, Hou GQ, Gao X, Li Y, Liu L. Catalyst-Free Visible-Light-Promoted Cyclization of Aldehydes: Access to 2,5-Disubstituted 1,3,4-Oxadiazole Derivatives. ACS OMEGA 2021; 6:26699-26706. [PMID: 34661023 PMCID: PMC8515816 DOI: 10.1021/acsomega.1c04098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/16/2021] [Indexed: 06/01/2023]
Abstract
An efficient synthesis of a variety of 2,5-disubstituted 1,3,4-oxadiazole derivatives via a cyclization reaction by photoredox catalysis between aldehydes and hypervalent iodine(III) reagents is described. The reaction proceeds under mild conditions and affords various target compounds in excellent yields. The commercially available aldehydes without preactivation and a simple visible-light-promoted procedure without any catalysts make this strategy an alternative to the conventional methods.
Collapse
Affiliation(s)
- Jian Li
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jin-Xia Wen
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xue-Chen Lu
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Guo-Quan Hou
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xu Gao
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yang Li
- School
of Pharmaceutical Engineering, Jiangsu Food
& Pharmaceutical Science College, Huaian 223003, China
| | - Li Liu
- Jiangsu
Key Laboratory of Advanced Catalytic Materials and Technology, School
of Pharmacy, Changzhou University, Changzhou 213164, China
| |
Collapse
|
12
|
Ye J, Chen J. Interferon and Hepatitis B: Current and Future Perspectives. Front Immunol 2021; 12:733364. [PMID: 34557195 PMCID: PMC8452902 DOI: 10.3389/fimmu.2021.733364] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major health burden worldwide for which there is still no effective curative treatment. Interferon (IFN) consists of a group of cytokines with antiviral activity and immunoregulatory and antitumor effects, that play crucial roles in both innate and adaptive immune responses. IFN-α and its pegylated form have been used for over thirty years to treat chronic hepatitis B (CHB) with advantages of finite treatment duration and sustained virologic response, however, the efficacy is limited and side effects are common. Here, we summarize the status and unique advantages of IFN therapy against CHB, review the mechanisms of IFN-α action and factors affecting IFN response, and discuss the possible improvement of IFN-based therapy and the rationale of combinations with other antiviral agents in seeking an HBV cure.
Collapse
Affiliation(s)
- Jianyu Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Research Unit of Cure of Chronic Hepatitis B Virus Infection, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
13
|
Gailhouste L, Sudoh M, Qin XY, Watashi K, Wakita T, Ochiya T, Matsuura T, Kojima S, Furutani Y. Epigenetic reprogramming promotes the antiviral action of IFNα in HBV-infected cells. Cell Death Discov 2021; 7:130. [PMID: 34078875 PMCID: PMC8170866 DOI: 10.1038/s41420-021-00515-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 05/01/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infections remain a health burden affecting ~250 million people worldwide. Thus far, available interferon-alpha (IFNα)-based therapies have shown unsatisfactory cure rates, and alternative therapeutic molecules are still required. However, their development has been hampered because accessible cell models supporting relevant HBV replication and appropriate antiviral activity are lacking. Strategies that reverse epigenetic alterations offer a unique opportunity for cell reprogramming, which is valuable for restoring altered cellular functions in human cell lines. This work aimed to investigate the feasibility of converting HepG2 cells that stably overexpress the HBV entry receptor (sodium/taurocholate cotransporting polypeptide, NTCP) toward IFNα-responsive cells using epigenetic reprogramming. Herein, we showed that an epigenetic regimen with non-cytotoxic doses of the demethylating compound 5-azacytidine restored the anti-HBV action of IFNα in epigenetically reprogrammed HepG2-NTCP-C4 cells, named REP-HepG2-NTCP cells. Thus, a significant inhibition in HBV DNA levels was measured in REP-HepG2-NTCP cells after IFNα treatment. This inhibitory effect was associated with the enhancement of IFNα-mediated induction of critical interferon-stimulated genes (ISGs), which was limited in non-reprogrammed cells. In particular, our data indicated that re-expression of 2’-5’-oligoadenylate synthetase 1 (OAS1) and interferon regulatory factor 9 (IRF9) was the result of an epigenetically driven unmasking of these genes in reprogrammed cells. At last, we evaluated the therapeutic potential of the IFN analog CDM-3008 in REP-HepG2-NTCP cells and demonstrated the efficiency of this chemical compound in triggering ISG induction and HBV inhibition. In summary, this study shows that epigenetic reprogramming promotes the IFNα response in HBV-infected cells and is potentially attractive for cell-based experimental screening of IFN-like compounds.
Collapse
Affiliation(s)
- Luc Gailhouste
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Japan.
| | - Masayuki Sudoh
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Japan.,Department of Translational Research, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Xian-Yang Qin
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| | - Tomokazu Matsuura
- Department of Laboratory Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Soichi Kojima
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Yutaka Furutani
- Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Wako, Japan.
| |
Collapse
|
14
|
Fernandes RS, de Godoy AS, Santos IA, Noske GD, de Oliveira KIZ, Gawriljuk VO, Gomes Jardim AC, Oliva G. Discovery of an imidazonaphthyridine and a riminophenazine as potent anti-Zika virus agents through a replicon-based high-throughput screening. Virus Res 2021; 299:198388. [PMID: 33887282 DOI: 10.1016/j.virusres.2021.198388] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 12/17/2022]
Abstract
The 2015/16 Zika virus (ZIKV) epidemic led to almost 1 million confirmed cases in 84 countries and was associated to the development of congenital microcephaly and Guillain-Barré syndrome. More recently, a ZIKV African lineage was identified in Brazil raising concerns about a future outbreak. The long-term consequences of viral infection emphasizes the need for the development of effective anti-ZIKV drugs. In this study, we developed and characterized a ZIKV replicon cell line for the screening of viral replication inhibitors. The replicon system was developed by engineering the IRES-Neo cassette into the 3' UTR terminus of the ZIKV Rluc DNA construct. After in vitro transcription, replicon RNA was used to transfect BHK-21 cells, that were selected with G418, thus generating the BHK-21-RepZIKV_IRES-Neo cell line. Through this replicon-based cell system, we identified two molecules with potent anti-ZIKV activities, an imidazonaphthyridine and a riminophenazine, both from the MMV/DNDi Pandemic Response Box library of 400 drug-like compounds. The imidazonaphthyridine, known as RO8191, showed remarkable selectivity against ZIKV, while the riminophenazine, the antibiotic Clofazimine, could act as a non-nucleoside analog inhibitor of viral RNA-dependent RNA polymerase (RdRp), as evidenced both in vitro and in silico. The data showed herein supports the use of replicon-based assays in high-throughput screening format as a biosafe and reliable tool for antiviral drug discovery.
Collapse
Affiliation(s)
- Rafaela Sachetto Fernandes
- Physics Institute of Sao Carlos, University of Sao Paulo, Av. Joao Dagnone, 1100, Jardim Santa Angelina, São Carlos, 13563-120, Brazil.
| | - Andre Schutzer de Godoy
- Physics Institute of Sao Carlos, University of Sao Paulo, Av. Joao Dagnone, 1100, Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Amazonas, 1700, bloco 4C sala 216, Umuarama, Uberlândia, 38405-317, Brazil
| | - Gabriela Dias Noske
- Physics Institute of Sao Carlos, University of Sao Paulo, Av. Joao Dagnone, 1100, Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Ketllyn Irene Zagato de Oliveira
- Physics Institute of Sao Carlos, University of Sao Paulo, Av. Joao Dagnone, 1100, Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Victor Oliveira Gawriljuk
- Physics Institute of Sao Carlos, University of Sao Paulo, Av. Joao Dagnone, 1100, Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Amazonas, 1700, bloco 4C sala 216, Umuarama, Uberlândia, 38405-317, Brazil
| | - Glaucius Oliva
- Physics Institute of Sao Carlos, University of Sao Paulo, Av. Joao Dagnone, 1100, Jardim Santa Angelina, São Carlos, 13563-120, Brazil
| |
Collapse
|
15
|
Zeng J, Wu D, Hu H, Young JAT, Yan Z, Gao L. Activation of the Liver X Receptor Pathway Inhibits HBV Replication in Primary Human Hepatocytes. Hepatology 2020; 72:1935-1948. [PMID: 32145089 DOI: 10.1002/hep.31217] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/19/2019] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) infection is ranked among the top health priorities worldwide. Accumulating evidence suggests that HBV infection and replication are closely associated with liver metabolism. The liver X receptors (LXRs), which belong to the superfamily of nuclear hormone receptors, are important physiological regulators of lipid and cholesterol metabolism. However, the association between the LXR pathway and HBV infection remains largely unclear. APPROACH AND RESULTS In this study, the antiviral activity of LXR agonists was investigated using multiple HBV cellular models. We observed that in HBV-infected primary human hepatocytes (PHHs), synthetic LXR agonists (T0901317, GW3965, and LXR-623), but not an LXR antagonist (SR9238), potently inhibited HBV replication and gene expression, as demonstrated by substantial reductions in viral RNA, DNA, and antigen production following agonist treatment. However, covalently closed circular DNA (cccDNA) levels were not significantly reduced by the agonists. In addition, no rebound in viral replication was observed after treatment withdrawal, indicating a long-lasting inhibitory effect. These results suggest that LXR agonists decrease the transcriptional activity of cccDNA. In contrast, no significant anti-HBV effect was observed in HepG2-derived cell lines. Interestingly, LXR agonist treatment strongly reduced cholesterol 7α-hydroxylase 1 (CYP7A1) mRNA levels. Knockdown of CYP7A1 gene expression with small interfering RNA inhibited HBV activity in PHHs, suggesting CYP7A1 as a potential factor contributing to the antiviral effects of LXR agonists. CONCLUSIONS We found that activation of the LXR pathway with synthetic LXR agonists could elicit potent anti-HBV activity in PHHs, possibly through sustained suppression of cccDNA transcription. Our work highlights the therapeutic potential of targeting the LXR pathway for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Jing Zeng
- Roche Innovation Center Shanghai, Shanghai, China
| | - Daitze Wu
- Roche Innovation Center Shanghai, Shanghai, China
| | - Hui Hu
- Roche Innovation Center Shanghai, Shanghai, China
| | | | - Zhipeng Yan
- Roche Innovation Center Shanghai, Shanghai, China
| | - Lu Gao
- Roche Innovation Center Shanghai, Shanghai, China
| |
Collapse
|
16
|
Qin Y, Bollin K, de Macedo MP, Carapeto F, Kim KB, Roszik J, Wani KM, Reuben A, Reddy ST, Williams MD, Tetzlaff MT, Wang WL, Gombos DS, Esmaeli B, Lazar AJ, Hwu P, Patel SP. Immune profiling of uveal melanoma identifies a potential signature associated with response to immunotherapy. J Immunother Cancer 2020; 8:jitc-2020-000960. [PMID: 33203661 PMCID: PMC7674090 DOI: 10.1136/jitc-2020-000960] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background To date, no systemic therapy, including immunotherapy, exists to improve clinical outcomes in metastatic uveal melanoma (UM) patients. To understand the role of immune infiltrates in the genesis, metastasis, and response to treatment for UM, we systematically characterized immune profiles of UM primary and metastatic tumors, as well as samples from UM patients treated with immunotherapies. Methods Relevant immune markers (CD3, CD8, FoxP3, CD68, PD-1, and PD-L1) were analyzed by immunohistochemistry on 27 primary and 31 metastatic tumors from 47 patients with UM. Immune gene expression profiling was conducted by NanoString analysis on pre-treatment and post-treatment tumors from patients (n=6) receiving immune checkpoint blockade or 4-1BB and OX40 dual costimulation. The immune signature of UM tumors responding to immunotherapy was further characterized by Ingenuity Pathways Analysis and validated in The Cancer Genome Atlas data set. Results Both primary and metastatic UM tumors showed detectable infiltrating lymphocytes. Compared with primary tumors, treatment-naïve metastatic UM showed significantly higher levels of CD3+, CD8+, FoxP3+ T cells, and CD68+ macrophages. Notably, levels of PD-1+ infiltrates and PD-L1+ tumor cells were low to absent in primary and metastatic UM tumors. No metastatic organ-specific differences were seen in immune infiltrates. Our NanoString analysis revealed significant differences in a set of immune markers between responders and non-responders. A group of genes relevant to the interferon-γ signature was differentially up-expressed in the pre-treatment tumors of responders. Among these genes, suppressor of cytokine signaling 1 was identified as a marker potentially contributing to the response to immunotherapy. A panel of genes that encoded pro-inflammatory cytokines and molecules were expressed significantly higher in pre-treatment tumors of non-responders compared with responders. Conclusion Our study provides critical insight into immune profiles of UM primary and metastatic tumors, which suggests a baseline tumor immune signature predictive of response and resistance to immunotherapy in UM.
Collapse
Affiliation(s)
- Yong Qin
- Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas, USA
| | - Kathryn Bollin
- Medical Oncology, Scripps MD Anderson Cancer Center, San Diego, California, USA
| | | | - Fernando Carapeto
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kevin B Kim
- Center for Melanoma Research and Treatment, California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Jason Roszik
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khalida M Wani
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexandre Reuben
- Thoracic/Head & Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sujan T Reddy
- Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michelle D Williams
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael T Tetzlaff
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei-Lien Wang
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dan S Gombos
- Department of Head and Neck Surgery, Section of Ophthalmology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bita Esmaeli
- Orbital Oncology & Ophthalmic Plastic Surgery, Department of Plastic Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander J Lazar
- Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Hwu
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sapna P Patel
- Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Zhao YZ, You J, Liu HE. Suppressor of cytokine signaling proteins 1 and 3 and hepatitis B virus infection. Shijie Huaren Xiaohua Zazhi 2020; 28:1076-1083. [DOI: 10.11569/wcjd.v28.i21.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Suppressor of cytokine signaling proteins (SOCS) are cytokine pathway inhibitors that play an important role in regulating the antiviral effect of interferon (IFN). Current studies have shown that SOCS1 and SOCS3 are closely related to hepatitis B virus (HBV) infection. Inhibition or stimulation of SOCS1 and SOCS3 expression may affect the antiviral effect by regulating the production of IFN, and may also affect the pathogenicity of HBV together with other cytokines or transcription regulators. This paper mainly discusses the possible mechanisms of SOCS1 and SOCS3 in HBV infection.
Collapse
Affiliation(s)
- Yin-Zhou Zhao
- The NHC Key Laboratory of Drug Addiction Medicine, Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Jing You
- The NHC Key Laboratory of Drug Addiction Medicine, Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| | - Huai-E Liu
- The NHC Key Laboratory of Drug Addiction Medicine, Department of Infectious Diseases and Hepatology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan Province, China
| |
Collapse
|
18
|
Park YK, Lee SY, Lee AR, Kim K, Kim K, Kim K, Choi B. Antiviral activity of interferon-stimulated gene 20, as a putative repressor binding to hepatitis B virus enhancer II and core promoter. J Gastroenterol Hepatol 2020; 35:1426-1436. [PMID: 31951295 PMCID: PMC7497004 DOI: 10.1111/jgh.14986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Interferon-stimulated gene 20 (ISG20) is an interferon-inducible exonuclease that inhibits the replication of several RNA viruses. In patients with chronic hepatitis B, ISG20 expression is related to the interferon-α treatment response. However, the molecular mechanism of ISG20-mediated anti-hepatitis B virus (HBV) activity is unclear. METHODS We have investigated the effect of ISG20 on antiviral activity to address that. The life cycle of HBV was analyzed by the ectopic expression of ISG20 in HepG2 and HepG2-NTCP cells. Finally, to provide physiological relevance of our study, the expression of ISG20 from chronic hepatitis B patients was examined. RESULTS Interferon-stimulated gene 20 was mainly induced by interferon-β and dramatically inhibited HBV replication. In addition, ISG20 decreased HBV gene expression and transcription. Although ISG20 inhibited HBV replication by reducing viral enhancer activity, the expression of transcription factors that bind the HBV enhancer was not affected. Particularly, ISG20 suppressed HBV enhancer activity by binding to the enhancer II and core promoter (EnhII/Cp) region. CONCLUSION Our findings suggest that ISG20 exerts the anti-HBV activity by acting as a putative repressor binding to the HBV EnhII/Cp region.
Collapse
Affiliation(s)
- Yong Kwang Park
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Sun Young Lee
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Ah Ram Lee
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of MedicineKonkuk UniversitySeoulKorea
| | - Kyung‐Chang Kim
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Kisoon Kim
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| | - Kyun‐Hwan Kim
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of MedicineKonkuk UniversitySeoulKorea
| | - Byeong‐Sun Choi
- Division of Viral Disease Research, Center for Infectious Disease ResearchKorea National Institute of HealthCheongju‐siChungbukKorea
| |
Collapse
|
19
|
Abstract
Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ben X Wang
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|