1
|
Stevens NE, Loreti M, Ramirez-Sanchez I, Dos Reis FCG, Sacco A, Breen EC, Nogueira L. Cigarette smoke exposure impairs early-stage recovery from lengthening contraction-induced muscle injury in male mice. Physiol Rep 2024; 12:e70064. [PMID: 39328164 PMCID: PMC11427903 DOI: 10.14814/phy2.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
The use of tobacco cigarettes produces locomotor muscle weakness and fatigue intolerance. Also, smokers and chronic obstructive pulmonary disease patients have a greater incidence of muscle injury and a deficient myogenic response. However, the effects of smoke exposure on the recovery from eccentric exercise-induced muscle injuries are unknown. Mice were exposed daily to cigarette smoke (CS) or room air (Air) for 4 months; the anterior crural muscles from one limb were injured by a lengthening contractions protocol (LCP) and recovered for 7 days. Lung compliance was greater, and body weights were lower, in CS-exposed than in the Air group. In LCP-subjected limbs, CS exposure lowered tibialis anterior myofiber cross-sectional area, decreased the size of centrally nucleated myofibers, and decreased extensor digitorum longus (EDL) mass, but did not affect EDL force from both limbs. CS exposure upregulated the mRNA levels of several myogenic (Pax7, Myf5, nNOS) genes in the EDL. The combination of CS exposure and LCP decreased Myf5 and nNOS mRNA levels and exacerbated pro-inflammatory mRNA levels. These data suggest that smoke exposure leads to an excessive pro-inflammatory response in regenerating muscle that is associated with a lower muscle mass recovery from a type of injury that often occurs during strenuous exercise.
Collapse
Affiliation(s)
- Nicole E Stevens
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Israel Ramirez-Sanchez
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, IPN, Mexico City, Mexico
| | - Felipe C G Dos Reis
- Division of Endocrinology and Metabolism, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ellen C Breen
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Leonardo Nogueira
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, San Diego, California, USA
| |
Collapse
|
2
|
Jaskiewicz K, Maleszka-Kurpiel M, Kabza M, Karolak JA, Gajecka M. Sequence variants contributing to dysregulated inflammatory responses across keratoconic cone surface in adolescent patients with keratoconus. Front Immunol 2023; 14:1197054. [PMID: 37483635 PMCID: PMC10359427 DOI: 10.3389/fimmu.2023.1197054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Background Keratoconus (KTCN) is the most common corneal ectasia resulting in a conical shape of the cornea. Here, genomic variation in the corneal epithelium (CE) across the keratoconic cone surface in patients with KTCN and its relevance in the functioning of the immune system were assessed. Methods Samples from four unrelated adolescent patients with KTCN and two control individuals were obtained during the CXL and PRK procedures, respectively. Three topographic regions, central, middle, and peripheral, were separated towards the whole-genome sequencing (WGS) study embracing a total of 18 experimental samples. The coding and non-coding sequence variation, including structural variation, was assessed and then evaluated together with the previously reported transcriptomic outcomes for the same CE samples and full-thickness corneas. Results First, pathway enrichment analysis of genes with identified coding variants pointed to "Antigen presentation" and "Interferon alpha/beta signaling" as the most overrepresented pathways, indicating the involvement of inflammatory responses in KTCN. Both coding and non-coding sequence variants were found in genes (or in their close proximity) linked to the previously revealed KTCN-specific cellular components, namely, "Actin cytoskeleton", "Extracellular matrix", "Collagen-containing extracellular matrix", "Focal adhesion", "Hippo signaling pathway", and "Wnt signaling" pathways. No genomic heterogeneity across the corneal surface was found comparing the assessed topographic regions. Thirty-five chromosomal regions enriched in both coding and non-coding KTCN-specific sequence variants were revealed, with a most representative 5q locus previously recognized as involved in KTCN. Conclusion The identified genomic features indicate the involvement of innate and adaptive immune system responses in KTCN pathogenesis.
Collapse
Affiliation(s)
| | - Magdalena Maleszka-Kurpiel
- Optegra Eye Health Care Clinic in Poznan, Poznan, Poland
- Chair of Ophthalmology and Optometry, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Kabza
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Liu Z, Fu S, He X, Liu X, Shi C, Dai L, Wang B, Chai Y, Liu Y, Zhang W. Estimates of Genomic Heritability and the Marker-Derived Gene for Re(Production) Traits in Xinggao Sheep. Genes (Basel) 2023; 14:genes14030579. [PMID: 36980850 PMCID: PMC10048694 DOI: 10.3390/genes14030579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Xinggao sheep are a breed of Chinese domestic sheep that are adapted to the extremely cold climatic features of the Hinggan League in China. The economically vital reproductive trait of ewes (litter size, LS) and productive traits of lambs (birth weight, BWT; weaning weight, WWT; and average daily gain, ADG) are expressed in females and later in life after most of the selection decisions have been made. This study estimated the genetic parameters for four traits to explore the genetic mechanisms underlying the variation, and we performed genome-wide association study (GWAS) tests on a small sample size to identify novel marker trait associations (MTAs) associated with prolificacy and growth. We detected two suggestive significant single-nucleotide polymorphisms (SNPs) associated with LS and eight significant SNPs for BWT, WWT, and ADG. These candidate loci and genes also provide valuable information for further fine-mapping of QTLs and improvement of reproductive and productive traits in sheep.
Collapse
Affiliation(s)
- Zaixia Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
| | - Shaoyin Fu
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xiaolong He
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Xuewen Liu
- College of Agronomy, Animal Husbandry and Bioengineering, Xing’an Vocational and Technical College, Ulanhot 137400, China
| | - Caixia Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lingli Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Biao Wang
- Institute of Animal Husbandry, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Yuan Chai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yongbin Liu
- School of Life Science, Inner Mongolia University, Hohhot 010021, China
- Correspondence: (Y.L.); (W.Z.)
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Engineering Research Center of Genomic Big Data for Agriculture, Hohhot 010018, China
- Correspondence: (Y.L.); (W.Z.)
| |
Collapse
|
4
|
Jo YW, Park I, Yoo K, Woo HY, Kim YL, Kim YE, Kim JH, Kong YY. Notch1 and Notch2 Signaling Exclusively but Cooperatively Maintain Fetal Myogenic Progenitors. Stem Cells 2022; 40:1031-1042. [PMID: 35922037 DOI: 10.1093/stmcls/sxac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022]
Abstract
Myogenic progenitors (MPs) generate myocytes that fuse to form myofibers during skeletal muscle development while maintaining the progenitor pool, which is crucial for generating sufficient muscle. Notch signaling has been known to reserve a population of embryonic MPs during primary myogenesis by promoting cell cycle exit and suppressing premature differentiation. However, the roles of individual Notch receptors (Notch1-4) during embryonic/fetal myogenesis are still elusive. In this study, we found that Notch1 and Notch2, which exhibit the highest structural similarity among Notch receptors, maintain the MP population by distinct mechanisms: Notch1 induces cell cycle exit and Notch2 suppresses premature differentiation. Moreover, genetic and cell culture studies showed that Notch1 and Notch2 signaling in MPs are distinctively activated by interacting with Notch ligand-expressing myofibers and MP-lineage cells, respectively. These results suggest that through different activation modes, Notch1 and Notch2 distinctively and cooperatively maintain MP population during fetal myogenesis for proper muscle development.
Collapse
Affiliation(s)
- Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Young Woo
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ye Lynne Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yea-Eun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.,Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
6
|
Akturk A, Day M, Tarchini B. RGS12 polarizes the GPSM2-GNAI complex to organize and elongate stereocilia in sensory hair cells. SCIENCE ADVANCES 2022; 8:eabq2826. [PMID: 36260679 PMCID: PMC9581478 DOI: 10.1126/sciadv.abq2826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/31/2022] [Indexed: 06/10/2023]
Abstract
Inhibitory G proteins (GNAI/Gαi) bind to the scaffold G protein signaling modulator 2 (GPSM2) to form a conserved polarity complex that regulates cytoskeleton organization. GPSM2 keeps GNAI in a guanosine diphosphate (GDP)-bound state, but how GPSM2-GNAI is generated or relates to heterotrimeric G protein signaling remains unclear. We find that RGS12, a GTPase-activating protein (GAP), is required to polarize GPSM2-GNAI at the hair cell apical membrane and to organize mechanosensory stereocilia in rows of graded heights. Accordingly, RGS12 and the guanine nucleotide exchange factor (GEF) DAPLE are asymmetrically co-enriched at the hair cell apical junction, and Rgs12 mouse mutants are deaf. GPSM2 and RGS12 share GoLoco motifs that stabilize GNAI(GDP), and GPSM2 outcompetes RGS12 to bind GNAI. Our results suggest that polarized GEF/GAP junctional activity might dissociate heterotrimeric G proteins, generating free GNAI(GDP) for GPSM2 at the adjacent apical membrane. GPSM2-GNAI(GDP), in turn, imparts asymmetry to the forming stereocilia to enable sensory function in hair cells.
Collapse
Affiliation(s)
- Anil Akturk
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Matthew Day
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- School of Medicine, Tufts University, Boston, MA 02111, USA
- Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME 04469, USA
| |
Collapse
|
7
|
Moitinho-Silva L, Degenhardt F, Rodriguez E, Emmert H, Juzenas S, Möbus L, Uellendahl-Werth F, Sander N, Baurecht H, Tittmann L, Lieb W, Gieger C, Peters A, Ellinghaus D, Bang C, Franke A, Weidinger S, Rühlemann MC. Host genetic factors related to innate immunity, environmental sensing and cellular functions are associated with human skin microbiota. Nat Commun 2022; 13:6204. [PMID: 36261456 PMCID: PMC9582029 DOI: 10.1038/s41467-022-33906-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the increasing knowledge about factors shaping the human microbiome, the host genetic factors that modulate the skin-microbiome interactions are still largely understudied. This contrasts with recent efforts to characterize host genes that influence the gut microbiota. Here, we investigated the effect of genetics on skin microbiota across three different skin microenvironments through meta-analyses of genome-wide association studies (GWAS) of two population-based German cohorts. We identified 23 genome-wide significant loci harboring 30 candidate genes involved in innate immune signaling, environmental sensing, cell differentiation, proliferation and fibroblast activity. However, no locus passed the strict threshold for study-wide significance (P < 6.3 × 10-10 for 80 features included in the analysis). Mendelian randomization (MR) analysis indicated the influence of staphylococci on eczema/dermatitis and suggested modulating effects of the microbiota on other skin diseases. Finally, transcriptional profiles of keratinocytes significantly changed after in vitro co-culturing with Staphylococcus epidermidis, chosen as a representative of skin commensals. Seven candidate genes from the GWAS were found overlapping with differential expression in the co-culturing experiments, warranting further research of the skin commensal and host genetic makeup interaction.
Collapse
Affiliation(s)
- Lucas Moitinho-Silva
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Elke Rodriguez
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hila Emmert
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius, Lithuania
| | - Lena Möbus
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | - Nicole Sander
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Hansjörg Baurecht
- Department for Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Lukas Tittmann
- Biobank PopGen and Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| | - Stephan Weidinger
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany.
| | | |
Collapse
|
8
|
Yuan G, Yang S, Yang S. Macrophage RGS12 contributes to osteoarthritis pathogenesis through enhancing the ubiquitination. Genes Dis 2021; 9:1357-1367. [PMID: 35873013 PMCID: PMC9293709 DOI: 10.1016/j.gendis.2021.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/26/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Ubiquitination has important functions in osteoarthritis (OA), yet the mechanism remains unclear. Here, we identify the regulator of G protein signaling 12 (RGS12) in macrophages, which promotes the association between ubiquitin and IκB during inflammation. We also find that RGS12 promotes the degradation of IκB through enhancing the ubiquitination whereas the process can be inhibited by MG132. Moreover, the increased ubiquitination further inhibits the expression of MTAP, which can indirectly activate the phosphorylation of IκB. Finally, due to the degradation of IκB, the NF-κB translocates into the nucleus and further promotes the gene expression of cytokines such as IL1β, IL6, and TNFα during inflammation. Importantly, RGS12 deficiency prevents ubiquitination and inflammation in surgically or chemically induced OA. We conclude that the lack of RGS12 in macrophages interferes with the ubiquitination and degradation of IκB, thereby preventing inflammation and cartilage damage. Our results provide evidence for the relevance of RGS12 in promoting inflammation and regulating immune signaling.
Collapse
|
9
|
Chinn IK, Xie Z, Chan EC, Nagata BM, Koval A, Chen WS, Zhang F, Ganesan S, Hong DN, Suzuki M, Nardone G, Moore IN, Katanaev VL, Balazs AE, Liu C, Lupski JR, Orange JS, Druey KM. Short stature and combined immunodeficiency associated with mutations in RGS10. Sci Signal 2021; 14:14/693/eabc1940. [PMID: 34315806 DOI: 10.1126/scisignal.abc1940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the clinical and molecular phenotype of three siblings from one family, who presented with short stature and immunodeficiency and carried uncharacterized variants in RGS10 (c.489_491del:p.E163del and c.G511T:p.A171S). This gene encodes regulator of G protein signaling 10 (RGS10), a member of a large family of GTPase-activating proteins (GAPs) that targets heterotrimeric G proteins to constrain the activity of G protein-coupled receptors, including receptors for chemoattractants. The affected individuals exhibited systemic abnormalities directly related to the RGS10 mutations, including recurrent infections, hypergammaglobulinemia, profoundly reduced lymphocyte chemotaxis, abnormal lymph node architecture, and short stature due to growth hormone deficiency. Although the GAP activity of each RGS10 variant was intact, each protein exhibited aberrant patterns of PKA-mediated phosphorylation and increased cytosolic and cell membrane localization and activity compared to the wild-type protein. We propose that the RGS10 p.E163del and p.A171S mutations lead to mislocalization of the RGS10 protein in the cytosol, thereby resulting in attenuated chemokine signaling. This study suggests that RGS10 is critical for both immune competence and normal hormonal metabolism in humans and that rare RGS10 variants may contribute to distinct systemic genetic disorders.
Collapse
Affiliation(s)
- Ivan K Chinn
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhihui Xie
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Eunice C Chan
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva CH-1211, Switzerland.,School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia
| | - Wei-Sheng Chen
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA
| | - Fan Zhang
- Transgenic Core, NHLBI/NIH, Bethesda, MD 20892 USA
| | - Sundar Ganesan
- Biological Imaging Section, NIAID/NIH Bethesda, MD 20892, USA
| | - Diana N Hong
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Motoshi Suzuki
- Protein Chemistry Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Glenn Nardone
- Protein Chemistry Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, NIAID/NIH, Bethesda, MD 20892, USA
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, Geneva CH-1211, Switzerland.,School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia
| | - Andrea E Balazs
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX 77030, USA
| | - Chengyu Liu
- Transgenic Core, NHLBI/NIH, Bethesda, MD 20892 USA
| | - James R Lupski
- Department of Molecular and Human Genetics and Baylor-Hopkins Center for Mendelian Genomics, Baylor College of Medicine, Houston, TX 77030, USA.,Texas Children’s Hospital, Houston, TX 77030, USA
| | - Jordan S Orange
- Columbia University Vagelos College of Physicians and Surgeons and New York-Presbyterian Hospital
| | - Kirk M Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, NIAID/NIH Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Regulators of G protein signalling as pharmacological targets for the treatment of neuropathic pain. Pharmacol Res 2020; 160:105148. [PMID: 32858121 DOI: 10.1016/j.phrs.2020.105148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain, a specific type of chronic pain resulting from persistent nervous tissue lesions, is a debilitating condition that affects about 7% of the population. This condition remains particularly difficult to treat because of the poor understanding of its underlying mechanisms. Drugs currently used to alleviate this chronic pain syndrome are of limited benefit due to their lack of efficacy and the elevated risk of side effects, especially after a prolonged period of treatment. Although drugs targeting G protein-coupled receptors (GPCR) also have several limitations, such as progressive loss of efficacy due to receptor desensitization or unavoidable side effects due to wide receptor distribution, the identification of several molecular partners that contribute to the fine-tuning of receptor activity has raised new opportunities for the development of alternative therapeutic approaches. Regulators of G protein signalling (RGS) act intracellularly by influencing the coupling process and activity of G proteins, and are amongst the best-characterized physiological modulators of GPCR. Changes in RGS expression have been documented in a range of models of neuropathic pain, or after prolonged treatment with diverse analgesics, and could participate in altered pain processing as well as impaired physiological or pharmacological control of nociceptive signals. The present review summarizes the experimental data that implicates RGS in the development of pain with focus on the pathological mechanisms of neuropathic pain, including the impact of neuropathic lesions on RGS expression and, reciprocally, the influence of modifying RGS on GPCRs involved in the modulation of nociception as well as on the outcome of pain. In this context, we address the question of the relevance of RGS as promising targets in the treatment of neuropathic pain.
Collapse
|
11
|
Yuan G, Yang S, Ng A, Fu C, Oursler MJ, Xing L, Yang S. RGS12 Is a Novel Critical NF-κB Activator in Inflammatory Arthritis. iScience 2020; 23:101172. [PMID: 32512384 PMCID: PMC7281782 DOI: 10.1016/j.isci.2020.101172] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/15/2019] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory disease, which currently lacks effective treatment. Here, we discovered that the Regulator of G Protein Signaling 12 (RGS12) plays a key role in regulating inflammation. Transcriptional and protein analysis revealed that RGS12 was upregulated in human and mouse RA macrophages. Deletion of RGS12 in myeloid lineage or globally inhibits the development of collagen-induced arthritis including joint swelling and bone destruction. Mechanistically, RGS12 associates with NF-κB(p65) to activate its phosphorylation and nuclear translocation through PTB domain, and NF-κB(p65) regulates RGS12 expression in a transcriptional manner. The nuclear translocation ability of NF-κB(p65) and RGS12 can both be enhanced by cyclooxygenase-2 (COX2). Furthermore, ablation of RGS12 via RNA interference significantly blocks the inflammatory process in vivo and in vitro. These results demonstrate that RGS12 plays a critical role in the pathogenesis of inflammatory arthritis.
Collapse
Affiliation(s)
- Gongsheng Yuan
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuting Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Ng
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Chuanyun Fu
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Merry Jo Oursler
- Department of Medicine, Endocrine Research Unit, Mayo Clinic, Rochester, MN, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuying Yang
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|