1
|
Zhang H, Xie S, Deng W. Mitophagy in Doxorubicin-Induced Cardiotoxicity: Insights into Molecular Biology and Novel Therapeutic Strategies. Biomolecules 2024; 14:1614. [PMID: 39766321 PMCID: PMC11674137 DOI: 10.3390/biom14121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Doxorubicin is a chemotherapeutic drug utilized for solid tumors and hematologic malignancies, but its clinical application is hampered by life-threatening cardiotoxicity, including cardiac dilation and heart failure. Mitophagy, a cargo-specific form of autophagy, is specifically used to eliminate damaged mitochondria in autophagosomes through hydrolytic degradation following fusion with lysosomes. Recent advances have unveiled a major role for defective mitophagy in the etiology of DOX-induced cardiotoxicity. Moreover, specific interventions targeting this mechanism to preserve mitochondrial function have emerged as potential therapeutic strategies to attenuate DOX-induced cardiotoxicity. However, clinical translation is challenging because of the unclear mechanisms of action and the potential for pharmacological adverse effects. This review aims to offer fresh perspectives on the role of mitophagy in the development of DOX-induced cardiotoxicity and investigate potential therapeutic strategies that focus on this mechanism to improve clinical management.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.Z.); (S.X.)
- Hubei Key Laboratory of Metabolism and Related Chronic Diseases, Wuhan 430060, China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.Z.); (S.X.)
- Hubei Key Laboratory of Metabolism and Related Chronic Diseases, Wuhan 430060, China
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (H.Z.); (S.X.)
- Hubei Key Laboratory of Metabolism and Related Chronic Diseases, Wuhan 430060, China
| |
Collapse
|
2
|
Boonha K, Kuo WW, Tsai BCK, Hsieh DJY, Lin KH, Lu SY, Kuo CH, Yang LY, Huang CY. Enhanced IGF-IIRα Expression Exacerbates Lipopolysaccharide-Induced Cardiac Inflammation, Hypertrophy, and Apoptosis Through Calcineurin Activation. ENVIRONMENTAL TOXICOLOGY 2024; 39:5173-5186. [PMID: 39109785 DOI: 10.1002/tox.24385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 10/17/2024]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide and has a high prevalence. Insulin-like growth factor-II receptor α (IGF-IIRα) acts as a stress-inducible negative regulator. This study focused on the substantial impact of heightened expression of IGF-IIRα in cardiac myoblasts and its association with the exacerbation of cardiac dysfunction. Using lipopolysaccharide (LPS)-induced H9c2 cardiac myoblasts as a model for sepsis, we aimed to elucidate the molecular interactions between IGF-IIRα and LPS in exacerbating cardiac injury. Our findings demonstrated a synergistic induction of cardiac inflammation and hypertrophy by LPS stimulation and IGF-IIRα overexpression, leading to decreased cell survival. Excessive calcineurin activity, triggered by this combined condition, was identified as a key factor exacerbating the negative effects on cell survival. Cellular changes such as cell enlargement, disrupted actin filaments, and upregulation of hypertrophy-related and inflammation-related proteins contributed to the overall hypertrophic and inflammatory responses. Overexpression of IGF-IIRα also exacerbated apoptosis induced by LPS in H9c2 cardiac myoblasts. Inhibiting calcineurin in LPS-treated H9c2 cardiac myoblasts with IGF-IIRα overexpression effectively reversed the detrimental effects, reducing cell damage and mitigating apoptosis-related cardiac mechanisms. Our study suggests that under sepsis-like conditions in the heart with IGF-IIRα overexpression, hyperactivation of calcineurin worsens cardiac damage. Suppressing IGF-IIRα and calcineurin expression could be a potential intervention to alleviate the impact of the illness and improve cardiac function.
Collapse
Affiliation(s)
- Khwanchit Boonha
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Excellence for Antibody Research (CEAR), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- PhD Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- College of Medicine, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Institute of Sports Sciences, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, Virginia, USA
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
3
|
Lu SY, Tsai BCK, Van Thao D, Lai CH, Chen MYC, Kuo WW, Kuo CH, Lin KH, Hsieh DJY, Huang CY. Cardiac-specific overexpression of insulin-like growth factor II receptor-α interferes with the regulation of calcium homeostasis in the heart under hyperglycemic conditions. Mol Biol Rep 2023; 50:4329-4338. [PMID: 36928640 DOI: 10.1007/s11033-023-08327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/09/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy is a progressive disease caused by inexplicit mechanisms, and a novel factor, insulin-like growth factor II receptor-α (IGF-IIRα), may contribute to aggravating its pathogenesis. We hypothesized that IGF-IIRα could intensify diabetic heart injury. METHODS AND RESULTS To demonstrate the potential role of IGF-IIRα in the diabetic heart, we used (SD-TG [IGF-IIRα]) transgenic rat model with cardiac-specific overexpression of IGF-IIRα, along with H9c2 cells, to study the effects of IGF-IIRα in the heart under hyperglycemic conditions. IGF-IIRα was found to remodel calcium homeostasis and intracellular Ca2+ overload-induced autophagy disturbance in the heart during diabetes. IGF-IIRα overexpression induced intracellular Ca2+ alteration by downregulating phosphorylated phospholamban/sarcoplasmic/endoplasmic reticulum calcium-ATPase 2a (PLB/SERCA2a), resulting in the suppression of Ca2+ uptake into the endoplasmic reticulum. Additionally, IGF-IIRα itself contributed to Ca2+ withdrawal from the endoplasmic reticulum by increasing the expression of CaMKIIδ in the active form. Furthermore, alterations in Ca2+ homeostasis significantly dysregulated autophagy in the heart during diabetes. CONCLUSIONS Our study reveals the novel role of IGF-IIRα in regulating cardiac intracellular Ca2+ homeostasis and its related autophagy interference, which contribute to the development of diabetic cardiomyopathy. In future, the present study findings have implications in the development of appropriate therapy to reduce diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Shang-Yeh Lu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dao Van Thao
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chin-Hu Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung, Taiwan
- National Defense Medical Center, Taipei, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Kuan-Ho Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan.
| |
Collapse
|
4
|
Lai CH, Van Thao D, Tsai BCK, Hsieh DJY, Chen MYC, Kuo WW, Kuo CH, Lu SY, Liao SC, Lin KH, Huang CY. Insulin-like growth factor II receptor alpha overexpression in heart aggravates hyperglycemia-induced cardiac inflammation and myocardial necrosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:676-684. [PMID: 36462176 DOI: 10.1002/tox.23717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Diabetes-induced cardiovascular complications are mainly associated with high morbidity and mortality in patients with diabetes. Insulin-like growth factor II receptor α (IGF-IIRα) is a cardiac risk factor. In this study, we hypothesized IGF-IIRα could also deteriorate diabetic heart injury. The results presented that both in vivo transgenic Sprague-Dawley rat model with specific IGF-IIRα overexpression in the heart and in vitro myocardium H9c2 cells were used to investigate the negative function of IGF-IIRα in diabetic hearts. The results showed that IGF-IIRα overexpression aided hyperglycemia in creating more myocardial injury. Pro-inflammatory factors, such as Tumor necrosis factor-alpha, Interleukin-6, Cyclooxygenase-2, Inducible nitric oxide synthase, and Nuclear factor-kappaB inflammatory cascade, are enhanced in the diabetic myocardium with cardiac-specific IGF-IIRα overexpression. Correspondingly, IGF-IIRα overexpression in the diabetic myocardium also reduced the PI3K-AKT survival axis and activated mitochondrial-dependent apoptosis. Finally, both ejection fraction and fractional shortening were be significantly decrease in diabetic rats with cardiac-specific IGF-IIRα overexpression. Overall, all results provid clear evidence that IGF-IIRα can enhance cardiac damage and is a harmful factor to the heart under high-blood glucose conditions. However, the pathophysiology of IGF-IIRα under different stresses and its downstream regulation in the heart still require further research.
Collapse
Affiliation(s)
- Chin-Hu Lai
- Division of Cardiovascular Surgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Center of General Education is division, National Defense Medical Center, Taipei, Taiwan
| | - Dao Van Thao
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, Virginia, USA
| | - Shang-Yeh Lu
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- Department of Social Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Ho Lin
- College of Medicine, China Medical University, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
5
|
Li CC, Ramesh S, Liu TY, Wang TF, Kuo WW, Kuo CH, Chang YM, Hsieh DJY, Chen MC, Huang CY. Overexpression of cardiac-specific IGF-IIRα accelerates the development of liver dysfunction through STZ-induced diabetic hepatocyte damage in transgenic rats. ENVIRONMENTAL TOXICOLOGY 2022; 37:2804-2812. [PMID: 35993117 DOI: 10.1002/tox.23638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
This study reports the effect of cardiac-specific insulin-like growth factor-II receptor α (IGF-IIRα) overexpression on the development of liver dysfunction in transgenic rats via STZ-induced diabetic hepatocyte damage. The cardio-hepatic syndrome comprises a number of heart and liver illnesses in which an acute or chronic disease in one organ can lead to acute or chronic disease in the other. However, the molecular mechanism involved in such a set of conditions is unclear. In this study, we developed a transgenic rat model with cardiac-specific overexpression of IGF-IIRα, which is a supplementary splicing variant of insulin-like growth factor-II receptor (IGF-IIR), expressed in pathological hearts, to investigate the relationship between late fetal gene expression in diabetic hearts and their influence on diabetic hepatopathy. STZ (55 mg/kg) was intraperitoneally delivered into IGF-IIR overexpressed transgenic (TG) and non-transgenic (NTG) animal models developed in Sprague-Dawley (SD) rats after an overnight fast. The relationship among IGF-IIRα overexpression and hepatocyte damages have been determined based on the complexity of damage in the liver. Our findings revealed that overexpression of the cardiac-specific IGF-IIRα enhances diabetes-induced morphological alterations and hepatic inflammation in the livers. The diabetic transgenic rats demonstrated the development of pathological conditions such as thick collagen fiber deposition, bridging fibrosis, and elevation of α-SMA and MMP1 related liver fibrosis mechanisms. Our data suggest that IGF-IIRα overexpression in the heart during a pathological state may worsen diabetic hepatopathy in rats.
Collapse
Affiliation(s)
- Chi-Cheng Li
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Microbiology, PRIST Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Tzu-Yang Liu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tso-Fu Wang
- School of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
- Chinese Medicine Department, E-DA Hospital, Kaohsiung, Taiwan
- 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - Dennis Jine-Yuan Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
6
|
Angiotensin II Receptor Blocker Irbesartan Enhanced SIRT1 longevity Signaling Replaces the Mitochondrial Biogenetic Survival Pathway to Attenuate Hypertension-Induced Heart Apoptosis. J Cardiovasc Dev Dis 2022; 9:jcdd9080266. [PMID: 36005430 PMCID: PMC9409657 DOI: 10.3390/jcdd9080266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The present study investigated whether angiotensin II type 1 receptor blocker irbesartan (ARB) and partial agonist of PPAR-γ prevents heart apoptosis by suppressing cardiac Fas/FasL-mediated to mitochondria-mediated apoptosis in the hearts of hypertensive rat model. Methods: Cardiac function using echocardiography, H&E staining, TUNEL assay, and Western blotting were measured in the excised hearts from three groups, i.e., an untreated hypertensive group (SHR), an ARB-treated hypertensive group (50 mg/kg/day, S.C., SHR-ARB), and untreated normotensive Wistar-Kyoto rats (WKY). Results: Fas Ligand, Fas death receptors, FADD, active caspase-8, active caspase-3 (Fas/FasL-mediated apoptotic pathway), as well as Bax, cytochrome c, active caspase-9 and -3 (mitochondria-mediated apoptotic pathway), IGF-II, and p-JNK were decreased in SHR-ARB group when compared with the SHR group. SIRT1, PGC-1α, Bcl2, and Bcl-xL (SIRT1/PGC-1α pro-survival pathway) were increased in the SHR-ARB group when compared with the SHR group. Conclusions: Our findings suggested that the ARB might prevent cardiac Fas/FasL-mediated to mitochondria-mediated apoptosis pathway in the hypertensive model associated with IGF-II, p-JNK deactivation, and SIRT1/PGC-1α pro-survival pathway upregulation. ARB prevents hypertension-enhanced cardiac apoptosis via enhancing SIRT1 longevity signaling and enhances the mitochondrial biogenetic survival pathway.
Collapse
|
7
|
Pandey S, Kuo CH, Chen WST, Yeh YL, Kuo WW, Chen RJ, Day CH, Pai PY, Ho TJ, Huang CY. Perturbed ER homeostasis by IGF-IIRα promotes cardiac damage under stresses. Mol Cell Biochem 2021; 477:143-152. [PMID: 34586566 DOI: 10.1007/s11010-021-04261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022]
Abstract
The heart is a very dynamic pumping organ working perpetually to maintain a constant blood supply to the whole body to transport oxygen and nutrients. Unfortunately, it is also subjected to various stresses based on physiological or pathological conditions, particularly more vulnerable to damages caused by oxidative stress. In this study, we investigate the molecular mechanism and contribution of IGF-IIRα in endoplasmic reticulum stress induction in the heart under doxorubicin-induced cardiotoxicity. Using in vitro H9c2 cells, in vivo transgenic rat cardiac tissues, siRNAs against CHOP, chemical ER chaperone PBA, and western blot experiments, we found that IGF-IIRα overexpression enhanced ER stress markers ATF4, ATF6, IRE1α, and PERK which were further aggravated by DOX treatment. This was accompanied by a significant perturbation in stress-associated MAPKs such as p38 and JNK. Interestingly, PARKIN, a stress responsive cellular protective mediator was significantly downregulated by IGF-IIRα concomitant with decreased expression of ER chaperone GRP78. Furthermore, ER stress-associated pro-apoptotic factor CHOP was increased considerably in a dose-dependent manner followed by elevated c-caspase-12 and c-caspase-3 activities. Conversely, treatment of H9c2 cells with chemical ER chaperone PBA or siRNA against CHOP abolished the IGF-IIRα-induced ER stress responses. Altogether, these findings suggested that IGF-IIRα contributes to ER stress induction and inhibits cellular stress coping proteins while increasing pro-apoptotic factors feeding into a cardio myocyte damage program that eventually paves the way to heart failure.
Collapse
Affiliation(s)
- Sudhir Pandey
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Sports Nutrition, University of Taipei, Taipei, Taiwan
| | | | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, 970, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan.
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 404, Taiwan.
- Department of Biotechnology, Asia University, Taichung, Taiwan.
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan.
| |
Collapse
|
8
|
Wen DT, Zheng L, Lu K, Hou WQ. Physical exercise prevents age-related heart dysfunction induced by high-salt intake and heart salt-specific overexpression in Drosophila. Aging (Albany NY) 2021; 13:19542-19560. [PMID: 34383711 PMCID: PMC8386524 DOI: 10.18632/aging.203364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/17/2021] [Indexed: 12/21/2022]
Abstract
A long-term high-salt intake (HSI) seems to accelerate cardiac aging and age-related diseases, but the molecular mechanism is still not entirely clear. Exercise is an effective way to delay cardiac aging. However, it remains unclear whether long-term exercise (LTE) can protect heart from aging induced by high-salt stress. In this study, heart CG2196(salt) specific overexpression (HSSO) and RNAi (HSSR) was constructed by using the UAS/hand-Gal4 system in Drosophila. Flies were given exercise and a high-salt diet intervention from 1 to 5 weeks of age. Results showed that HSSR and LTE remarkably prevented heart from accelerated age-related defects caused by HSI and HSSO, and these defects included a marked increase in heart period, arrhythmia index, malondialdehyde (MDA) level, salt expression, and dTOR expression, and a marked decrease in fractional shortening, SOD activity level, dFOXO expression, PGC-1α expression, and the number of mitochondria and myofibrils. The combination of HSSR and LTE could better protect the aging heart from the damage of HSI. Therefore, current evidences suggested that LTE resisted HSI-induced heart presenility via blocking CG2196(salt)/TOR/oxidative stress and activating dFOXO/PGC-1α. LTE also reversed heart presenility induced by cardiac-salt overexpression via activating dFOXO/PGC-1α and blocking TOR/oxidative stress.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China.,Ludong University, Yantai 264025, Shandong Province, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Kai Lu
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China
| | - Wen-Qi Hou
- Ludong University, Yantai 264025, Shandong Province, China
| |
Collapse
|
9
|
Lin HCH, Paul CR, Kuo CH, Chang YH, Chen WST, Ho TJ, Day CH, Viswanadha VP, Tsai Y, Huang CY. IGF IIRα-triggered pathological manifestations in the heart aggravate renal inflammation in STZ-induced type-I diabetes rats. Aging (Albany NY) 2021; 13:17536-17547. [PMID: 34233296 PMCID: PMC8312445 DOI: 10.18632/aging.203244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
Pathological manifestations in either heart or kidney impact the function of the other and form the basis for the development of cardiorenal syndrome. However, the mechanism or factors involved in such scenario are not completely elucidated. In our study, to find the correlation between late fetal gene expression in diabetic hearts and their influence on diabetic nephropathy, we created a rat model with cardiac specific overexpression of IGF-IIRα, which is an alternative splicing variant of IGFIIR, expressed in pathological hearts. In this study, transgenic rats over expressing cardiac specific IGF-IIRα and non-transgenic animal models established in SD rats were administered with single dose of streptozotocin (STZ, 55 mg/Kg) to induce Type I diabetes. The correlation between IGF-IIRα and kidney damages were further determined based on their intensity of damage in the kidneys. The results show that cardiac specific overexpression of IGF-IIRα elevates the diabetes associated inflammation and morphological changes in the kidneys. The diabetic transgenic rats showed advancement in the pathological features such a renal tubular damage, collagen accumulation and enhancement in STAT3 associated mechanism of renal fibrosis. The results therefore show that that IGF-IIRα expression in the heart during pathological condition may worsen symptoms of diabetic nephropathy in rats.
Collapse
Affiliation(s)
- Henry Cherng-Han Lin
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Catherine Reena Paul
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei 11153, Taiwan
| | - Yung-Hsien Chang
- Department of Chinese Medicine, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | - William Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi General Hospital, Hualien 97004, Taiwan.,School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 97004, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan.,School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | | | | | - Yuhsin Tsai
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 41354, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.,Department of Biotechnology, Asia University, Taichung 413, Taiwan
| |
Collapse
|
10
|
Song M, Kim J, Shin H, Kim Y, Jang H, Park Y, Kim SJ. Development of Magnetic Torque Stimulation (MTS) Utilizing Rotating Uniform Magnetic Field for Mechanical Activation of Cardiac Cells. NANOMATERIALS 2020; 10:nano10091684. [PMID: 32867131 PMCID: PMC7557977 DOI: 10.3390/nano10091684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Regulation of cell signaling through physical stimulation is an emerging topic in biomedicine. Background: While recent advances in biophysical technologies show capabilities for spatiotemporal stimulation, interfacing those tools with biological systems for intact signal transfer and noncontact stimulation remains challenging. Here, we describe the use of a magnetic torque stimulation (MTS) system combined with engineered magnetic particles to apply forces on the surface of individual cells. MTS utilizes an externally rotating magnetic field to induce a spin on magnetic particles and generate torsional force to stimulate mechanotransduction pathways in two types of human heart cells—cardiomyocytes and cardiac fibroblasts. Methods: The MTS system operates in a noncontact mode with two magnets separated (60 mm) from each other and generates a torque of up to 15 pN µm across the entire area of a 35-mm cell culture dish. The MTS system can mechanically stimulate both types of human heart cells, inducing maturation and hypertrophy. Results: Our findings show that application of the MTS system under hypoxic conditions induces not only nuclear localization of mechanoresponsive YAP proteins in human heart cells but also overexpression of hypertrophy markers, including β-myosin heavy chain (βMHC), cardiotrophin-1 (CT-1), microRNA-21 (miR-21), and transforming growth factor beta-1 (TGFβ-1). Conclusions: These results have important implications for the applicability of the MTS system to diverse in vitro studies that require remote and noninvasive mechanical regulation.
Collapse
Affiliation(s)
- Myeongjin Song
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Jongseong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Hyundo Shin
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea;
| | - Yekwang Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Hwanseok Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
- Correspondence: (Y.P.); (S.-J.K.); Tel.: +82-2-2286-1460 (Y.P.)
| | - Seung-Jong Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea; (M.S.); (J.K.); (Y.K.); (H.J.)
- Correspondence: (Y.P.); (S.-J.K.); Tel.: +82-2-2286-1460 (Y.P.)
| |
Collapse
|
11
|
Wen DT, Wang WQ, Hou WQ, Cai SX, Zhai SS. Endurance exercise protects aging Drosophila from high-salt diet (HSD)-induced climbing capacity decline and lifespan decrease by enhancing antioxidant capacity. Biol Open 2020; 9:bio045260. [PMID: 32414766 PMCID: PMC7272356 DOI: 10.1242/bio.045260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 04/20/2020] [Indexed: 01/19/2023] Open
Abstract
A high-salt diet (HSD) is a major cause of many chronic and age-related defects such as myocardial hypertrophy, locomotor impairment and mortality. Exercise training can efficiently prevent and treat many chronic and age-related diseases. However, it remains unclear whether endurance exercise can resist HSD-induced impairment of climbing capacity and longevity in aging individuals. In our study, flies were given exercise training and fed a HSD from 1-week old to 5-weeks old. Overexpression or knockdown of salt and dFOXO were built by UAS/Gal4 system. The results showed that a HSD, salt gene overexpression and dFOXO knockdown significantly reduced climbing endurance, climbing index, survival, dFOXO expression and SOD activity level, and increased malondialdehyde level in aging flies. Inversely, in a HSD aging flies, endurance exercise and dFOXO overexpression significantly increased their climbing ability, lifespan and antioxidant capacity, but they did not significantly change the salt gene expression. Overall, current results indicated that a HSD accelerated the age-related decline of climbing capacity and mortality via upregulating salt expression and inhibiting the dFOXO/SOD pathway. Increased dFOXO/SOD pathway activity played a key role in mediating endurance exercise resistance to the low salt tolerance-induced impairment of climbing capacity and longevity in aging DrosophilaThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Deng-Tai Wen
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| | - Wei-Qing Wang
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| | - Wen-Qi Hou
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| | - Shu-Xian Cai
- Co-Innovation Center for Utilization of Botanical Functional Ingredients, Department of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Shuai-Shuai Zhai
- Department of Physical Education, Ludong University, City Yantai 264025, Shan Dong Province, China
| |
Collapse
|